A Study of an Alternative Carbon Source to Improve Environmental Sustainability in Steel Production

Blake Stewart^{1,2}, Haley Doude¹, Terry Taylor³, Morgan Abney³, and Hongjoo Rhee^{1,2}

¹Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, MS 39762 ²Department of Mechanical Engineering, Mississippi State University, Mississippi State, MS 39762 ³Marshall Space Flight Center, National Aeronautics and Space Administration, Huntsville, AL 35812

October 2, 2019

Motivation

- One ton iron from blast furnace = $0.33 \sim 0.44$ ton $CO_2^{[12]}$
- Global iron and steel CO₂ emissions = **1.7 gigatons**^[8]
- Environmental regulations are requiring manufacturers to reduce oxocarbon emissions.
- High quality steel alloys with smaller carbon footprint.
- Potential for production cost savings.

Benxi Steel Plant, China, 2000. (Credit: Jon Bower Pollution/Alamy Stock Photo)

Overview

- Biomass coal limited in production and cost ^[3,10].
- ULCOS CO₂ capture method = $10 \sim 15\%$ reduction^[11]
- U.K. recently funded decarbonization in steel industry^[9].
- Coal has been generated from CO₂ using liquid metals^[2].
- Two different ferrous alloys are manufactured with novel carbon source compared to conventional to determine viability as steel carbon source.
- Alternative carbon was produced via a carbon sequestration system.
- Mechanical and microstructural investigation revealed comparable metallurgical properties.

Comparison of Elemental Carbon

- Conventional and alternative carbon were evaluated before alloying.
- Investigation methods
 - X-Ray Powder Diffraction (XRD)
 - Allotropy
 - Field Emission Scanning Electron Microscopy (FE-SEM)
 - Morphology

Conventional Carbon

Alternative Carbon

SEM reveals significant differences in morphology

X100

Clumps of spherical particles, 80-150µm

Tangled balls, 10-75µm

Conventional C

XRD shows similar crystalline structure

Conventional Carbon

- Graphitic carbon
 - 26.1°
- Peak shift and broadening likely due to grinding prior to scan^[1]

- Alternative Carbon
 - Graphitic carbon
 - 26.4°
 - Cementite Fe₃C

• 44.6°

0.5mm glass slides, copper K- α wavelength, 10-90 degrees 20

Comparison of Produced Ingots

• Two ferrous alloys were produced using each carbon source

- Low Carbon
 - AISI 1020
- High Carbon
 - Gray Cast Iron
- Investigation methods
 - Chemical composition
 - Light microscopy
 - Phase fraction, grain size
 - Mechanical performance
 - Quasi-static tension/compression, 0.001/s until fracture
 - Brinell and Rockwell-B Hardness (additional HRC for cast iron)

Vacuum Induction Melting Furnace (VIMF)

Low Carbon Steels

- Cast in Vacuum Induction Melt Furnace (VIMF)
- Target composition
 - ▶ Carbon (C): 0.2 wt.%
 - Silicon (Si): 0 wt.%
 - Manganese (Mn): 0.45 wt.%
 - Iron (Fe): balance
- Hot rolled to 0.5"
 - 1250°C austenitizing
 - Air cooled

Analysis on as-rolled condition

Hot Rolling using In-house Reversing Rolling Mill

Low carbon steel micrographs

3-D views of low carbon steel microstructures

Conventional C

Alternative C

Low carbon steel grain sizes

Average phase fractions

- Conventional:
- 82.6 ± 1.43 % ferrite
- 17.4 ± 1.43 % pearlite
- Alternative:
- 81.7 ± 0.627 % ferrite
- 18.3 ± 0.627 % pearlite
- Average grain sizes
 - Conventional:
 - $33.4 \pm 4.95 \ \mu m$ (ASTM: G= 6.5-7.0)
 - Alternative:
 - $36.6 \pm 1.680 \ \mu m$ (ASTM: G= 6.5-7.0)

Grain size analysis of low carbon steel using conventional C by ASTM E112-13: Planimetric (Jefferies) Procedure

Low carbon steel tensile testing results

MISSISSIPPI STATE

- L-C2 slightly higher σ_{uys} due to smaller grain size
 - Grain size reduced from colder rolling issue
- Similar to standard values for performance

11

Low carbon steel tensile fracture surfaces

Fracture surfaces of Conventional Carbon tensile specimen

Fracture surfaces of Alternative Carbon tensile specimen

Low carbon steel hardness

- Average hardness
 - HB, HRB, and
 - HRC (cast irons only)
- Industry standard for AISI 1020 around 111 HB

Alloy	Hardness		
	HB	HRB	
L-C	116 ±	60.14 ±	
	6.432	7.540	
L-A	113 ±	60.92 ±	
	5.481	3.103	

Cast Irons

- Cast in Vacuum Induction Melt Furnace (VIMF)
- Target composition
 - Carbon (C): 3.5 wt.%
 - Silicon (Si): 2.5 wt.%
 - Manganese (Mn): 0.45 wt.%
 - Iron (Fe): balance
- Analysis on as-cast condition

Cast iron micrographs

Phase fraction / Grain structure: Distribution D, Class 7

Cast iron tensile test results

- Significant variability
- But, consistent when testing from the same ingot

- —C-C1 RD —C-C1 TD —C-C2 RD —C-C2 TD —C-C3 RD —C-C3 TD
- C-A1 RD C-A1 TD C-A2 RD C-A2 TD C-A3 RD C-A3 TD

Cast iron fracture surfaces

Fracture surface of Conventional Carbon tensile specimen

Fracture surface of Alternative Carbon tensile specimen

Cast iron hardness

- Average hardness
 - ▶ HB, HRB, and HRC
- Similar hardness for all cast iron with one exception
 - ▶ C-C1: ~250 HB
- Industry range from 120-550 HB

Alloy	Hardness			
	HB	HRB	HRC	
C-C	193 ±	83.11 ±	4.47 ±	
	48.989	1.925	1.220	
C-A	167 ±	82.84 ±	2.86 ±	
	6.763	1.830	1.150	

 Similar in composition and hardness to SAE J431 automotive GCI
 <187 HB

Summary / Discussion

- A novel carbon source was studied to determine if alternative carbon produces similar metallurgical results as conventional carbon
- Two ferrous alloys, 1020 and grey cast iron, were manufactured
- Low carbon alloys show comparable structure and properties for both carbon sources
- Cast iron shows significant variance in properties
 - Believed to be caused by cooling rate inequalities throughout the ingot
 - Cooling significantly affects mechanical properties ^[6,7]
 - Implies alternative carbon could be used for numerous alloys and different solidification rates and heat treatments
- Mechanical and microstructural investigation reveals comparable metallurgical properties
- ⇒ The alternative carbon source showed it is possible to use as the elemental carbon source for steel making
 19

Acknowledgements

- Marshall Space Flight Center (MSFC), National Aeronautics and Space Administration (NASA)
- Environmental Control and Life Support System Group at MSFC, NASA
- Center for Advanced Vehicular Systems (CAVS), Mississippi State University (MSU)

References

- [1] B. Cullity and S. Stock, *Elements of X-ray diffraction*. [Reading]: Addison-Wesley Publishing Company, 1978, pp. 340-341.
- [2] D. Esrafilzadeh, A. Zavabeti, R. Jalili, P. Atkin, J. Choi, B. Carey, R. Brkljača, A. O'Mullane, M. Dickey, D. Officer, D. MacFarlane, T. Daeneke and K. Kalantar-Zadeh, "Room temperature CO2 reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces", Nature Communications, vol. 10, no. 1, 2019 [Online]. Available: https://doi.org/10.1038/s41467-019-08824-8
- [3] E. Mousa, C. Wang, J. Riesbeck and M. Larsson, "Biomass applications in iron and steel industry: An overview of challenges and opportunities", *Renewable and Sustainable Energy Reviews*, vol. 65, pp. 1247-1266, 2016.
- [4] J. Davis, ASM Specialty Handbook: Cast Irons. Russel: ASM International, 1996.
- [5] J. Rodrigues, "Blast-Furnace Stoichiometry PDF Free Download", kundoc.com, 2019. [Online]. Available: https://kundoc.com/pdf-blast-furnace-stoichiometry-.html. [Accessed: 12- Sep- 2019]
- [6] L. Collini, G. Nicoletto and R. Koecna, "Microstructure and mechanical properties of pearlitic gray cast iron," Materials Science and Engineering: A, vol. 488, issue 1-2, pp. 529-539, 2008.
- [7] M. Jabbari Behnam, P. Davami and N. Varahram, "Effect of cooling rate on microstructure and mechanical properties of gray cast iron", Materials Science and Engineering: A, vol. 528, no. 2, pp. 583-588, 2010.
- [8] Davis, S., Lewis, N., Shaner, M., Aggarwal, S., Arent, D., Azevedo, I., Benson, S., Bradley, T., Brouwer, J., Chiang, Y., Clack, C., Cohen, A., Doig, S., Edmonds, J., Fennell, P., Field, C., Hannegan, B., Hodge, B., Hoffert, M., Ingersoll, E., Jaramillo, P., Lackner, K., Mach, K., Mastrandrea, M., Ogden, J., Peterson, P., Sanchez, D., Sperling, D., Stagner, J., Trancik, J., Yang, C. and Caldeira, K. (2018). Net-zero emissions energy systems. Science, 360(6396), p.eaas9793.
- [9] "Steel News", *Aist.org*, 2019. [Online]. Available: https://www.aist.org/news/steel-news/2019/august/26-30-august-2019/u-k-establishes-funds-to-support-steel-decarboniza. [Accessed: 01- Sep- 2019]
- [10] T. Norgate, N. Haque, M. Somerville and S. Jahanshahi, "Biomass as a Source of Renewable Carbon for Iron and Steelmaking", *ISIJ International*, vol. 52, no. 8, pp. 1472-1481, 2012.
- [11] "ULCOS = Ultra Low CO2 Steel Making", Sustainableinsteel.eu, 2019. [Online]. Available: https://www.sustainableinsteel.eu/p/532/ulcos_=_ultra_low_co2_steel_making.html. [Accessed: 06- Feb- 2019]
- [12] "United States Environmental Protection Agency", *Epa.gov*, 2019. [Online]. Available: https://www.epa.gov/sites/production/files/2016-11/documents/iron-steel-ghg-bact-2012.pdf. [Accessed: 10- Sep-2019]
 MISSISSIPPI STATE

UNIVERSITY