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Abstract
Terrestrial ecosystems contribute most of the interannual variability (IAV) in 
atmospheric carbon dioxide (CO2) concentrations, but processes driving the IAV of 
net ecosystem CO2 exchange (NEE) remain elusive. For a predictive understanding 
of the global C cycle, it is imperative to identify indicators associated with ecological 
processes that determine the IAV of NEE. Here, we decompose the annual NEE of 
global terrestrial ecosystems into their phenological and physiological components, 
namely maximum carbon uptake (MCU) and release (MCR), the carbon uptake period 
(CUP), and two parameters, α and β, that describe the ratio between actual versus 
hypothetical maximum C sink and source, respectively. Using long‐term observed 
NEE from 66 eddy covariance sites and global products derived from FLUXNET ob‐
servations, we found that the IAV of NEE is determined predominately by MCU at the 
global scale, which explains 48% of the IAV of NEE on average while α, CUP, β, and 
MCR explain 14%, 25%, 2%, and 8%, respectively. These patterns differ in water‐lim‐
ited ecosystems versus temperature‐ and radiation‐limited ecosystems; 31% of the 
IAV of NEE is determined by the IAV of CUP in water‐limited ecosystems, and 60% of 
the IAV of NEE is determined by the IAV of MCU in temperature‐ and radiation‐lim‐
ited ecosystems. The Lund‐Potsdam‐Jena (LPJ) model and the Multi‐scale Synthesis 
and Terrestrial Model Inter‐comparison Project (MsTMIP) models underestimate the 
contribution of MCU to the IAV of NEE by about 18% on average, and overestimate 
the contribution of CUP by about 25%. This study provides a new perspective on the 
proximate causes of the IAV of NEE, which suggest that capturing the variability of 
MCU is critical for modeling the IAV of NEE across most of the global land surface.
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1  | INTRODUC TION

The large year‐to‐year variation in the growth rate of atmospheric 
carbon dioxide (CO2) is due primarily to the interannual variability 
(IAV) of the terrestrial carbon cycle rather than the oceanic C cycle (Le 
Quéré et al., 2018). The causes for the IAV of terrestrial C cycle differ 
across different global regions and scales of observation (Jung et al., 
2017) and models have difficulty replicating it (Keenan et al., 2012; 
Niu et al., 2017), indicating a fundamental gap in our understanding. 
Temperature (Wang et al., 2014), precipitation (Jung et al., 2017; 
Poulter et al., 2014), and solar radiation (Ichii, Hashimoto, Nemani, 
& White, 2005; Nemani et al., 2003) have been reported as the most 
important climate factors in controlling the IAV of the terrestrial C 
cycle in different ecosystems, but the biological mechanisms under‐
lying the IAV of net ecosystem CO2 exchange (NEE) at the global scale 
are far from clear. It is imperative to identify the drivers associated 
with underlying ecological processes that determine the IAV of NEE 
for an improved predictive understanding of the global C cycle.

The variation of NEE results from the small imbalance between 
two larger fluxes: the photosynthetic uptake of CO2 (gross primary 
production, GPP) and the respiratory release of CO2 from autotro‐
phic and heterotrophic processes (ecosystem respiration, ER). Annual 
GPP is easily decomposed into different processes; for example, 90% 
of its annual variability can be explained by the product of the maxi‐
mum daily GPP (GPPmax) and growing season length in temperate and 
boreal ecosystems (Xia et al., 2015; Zhou et al., 2016). These findings 
rely on the notion that the seasonality of GPP follows a fundamental 
unifying pattern across different vegetation types and highlight the 
important role of GPPmax and growing season length in controlling 
plant CO2 uptake, although it is unclear if these indictors related to 
plant C uptake emerge to be the most important controls over the 
IAV of NEE. As far as we know, a decomposition of the indicators 
that contribute to annual global NEE has not been studied to date, 
especially in the southern hemisphere where biomes such as tropical 
forests, savanna, and Mediterranean ecosystems are dominant.

Extending the net carbon uptake period (CUP) likely, but not nec‐
essarily, leads to larger net C uptake (Churkina, Schimel, Braswell, 
& Xiao, 2005; Dragoni et al., 2011; Richardson et al., 2013). An in‐
crease in the maximum net C uptake/release rate tends to stimulate/
reduce annual net C uptake as well (Fu, Dong, Zhou, Stoy, & Niu, 
2017; Zscheischler et al., 2016). Changes in the maximum net carbon 
uptake/release and the length of net CUP are thus likely to co‐con‐
tribute to the variability in annual NEE (Figure 1). Unlike GPPmax and 
growing season length (Xia et al., 2015; Zhou et al., 2016), the max‐
imum net carbon uptake/release and net CUP contain the signals 
of both photosynthesis and respiration, which more directly reflect 
the net carbon uptake at the ecosystem level. As the maximum net 
carbon uptake/release represents important characteristics of pho‐
tosynthesis and respiration, it can be used as an indicator of physi‐
ology while the net CUP can be used as an indicator of net C uptake 
phenology. These indicators represent different mechanisms about 
how net carbon uptake phenology and physiology regulate the IAV 
of NEE.

Other indicators that are necessary to describe net C uptake and 
release include the ratio between actual versus hypothetical maxi‐
mum C sink during the growing season and the ratio between actual 
versus hypothetical maximum C source (Figure 1). These indicators 
reflect how much C uptake and loss are constrained by environmen‐
tal drivers in a given year, respectively, which also contribute to the 
IAV of NEE. However, it is unclear how much the IAV in NEE is at‐
tributed to the changes in the maximum net carbon uptake/release, 
net CUP and the ratios of actual to hypothetical maximum C sink and 
source, and what is the relative importance of these indictors across 
different ecosystems and climate zones globally. Exploring the rela‐
tive contributions of these indicators will elucidate the contributions 
of phenological and physiological changes to annual NEE variability 
and improve our understanding of the IAV of NEE at global scale. 
Furthermore, the distribution of their relative contributions may be 
connected to local climate conditions, such as water, temperature, 
and radiation, because local climate conditions drive the seasonal 
dynamics of NEE and impact the indicators related to phenology and 
physiology (Chapin III, Matson, & Vitousek, 2011). However, the ef‐
fects of climatic drivers in controlling the distribution of their rela‐
tive contributions remain unclear. We hypothesize that the relative 
contributions of phenological and physiological indicators to the IAV 
of NEE may be different among water‐limited, temperature‐limited, 
and radiation‐limited ecosystems. Changing CUP by a few days may 
not considerably affect annual net C uptake in temperature‐limited 
ecosystems with a single period of C uptake per growing season (e.g., 
boreal and temperate ecosystems) because net C uptake strength 
around the C sink/source transition days tends to be small. However, 
in water‐limited ecosystems, changes in CUP—often due to precipi‐
tation events—may appreciably change annual C uptake (Ahlström et 
al., 2015; Poulter et al., 2014).

To better predict the IAV of terrestrial NEE in a changing climate, 
it is critical to accurately simulate the roles of phenological and phys‐
iological indicators in controlling the IAV of NEE. In recent decades, 
land surface models have incorporated more and more processes in 
an attempt to simulate C cycle processes as realistically as possible 
(Luo et al., 2017; Oleson et al., 2010), however, it is far from clear 
whether land surface models can capture the contributions of these 
indictors to the IAV of NEE or not. Comparing results calculated 
from model outputs with observations allow us to investigate the 
performance of current land surface models and highlight future di‐
rections for improving model predictive skills.

In this study, we used global databases of eddy covariance ob‐
servations at the site scale and global terrestrial NEE data products 
that fuse eddy covariance and remote‐sensing observations using 
three different machine learning techniques, FLUXCOM (Jung et al., 
2017), to study how phenological and physiological indictors deter‐
mine the IAV of NEE in terrestrial ecosystems. We also compared the 
results calculated from FLUXCOM observations with that of the LPJ 
model and ensemble of Multi‐scale Synthesis and Terrestrial Model 
Inter‐comparison Project (MsTMIP) models to see whether the land 
surface models can capture the observed role of phenological and 
physiological indicators in controlling the IAV of NEE. The specific 
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objectives are to (a) characterize the global patterns of these phe‐
nological and physiological indicators; (b) partition their relative con‐
tributions to the IAV of NEE across different global ecosystems; and 
(c) evaluate whether land surface models can capture their relative 
contributions. To do so, we decompose annual NEE into phenolog‐
ical and physiological indictors that determine it, namely maximum 
rates of net carbon uptake (MCU) and release (MCR), the net uptake 
period (CUP), and two parameters, α and β, that describe the ratio 
between actual versus hypothetical maximum C sink and source, re‐
spectively (Figure 1).

2  | MATERIAL S AND METHODS

2.1 | Datasets

Net ecosystem exchange (NEE) observations from eddy co‐
variance data were retrieved from the FLUXNET2015 dataset. 

FLUXNET2015 contains daily averages of CO2, water vapor, and 
energy fluxes that are harmonized, standardized, and gap‐filled 
(Chu, Baldocchi, John, Wolf, & Reichstein, 2017; Papale et al., 
2006; Reichstein et al., 2005). Study sites were chosen accord‐
ing to the following two criteria. (a) Only site‐years with which 
more than 80% of the NEE data were measured or gap‐filled 
with high confidence (i.e., data marked as “the original” or “most 
reliable” according to the quality flag, were selected; in other 
words, only the site‐years at least 292 days of high‐quality flux 
measurements or estimates were used). (b) Sites with a mini‐
mum of 5 years of observations were selected. A subset of 66 
sites satisfied the two criteria, among which there were 19 ev‐
ergreen needleleaf forests, three evergreen broadleaf forests, 
11 deciduous broadleaf forests, five mixed forests, 10 grass‐
lands, nine croplands, three sites with closed and open shrub‐
lands, two wetlands, and four sites with savannas or woody 
savannas (Table S1).

F I G U R E  1  Conceptual figure of α, maximum CO2 uptake (MCU), CO2 uptake period (CUP), β, and maximum CO2 release (MCR) in 
determining the changes in annual net ecosystem CO2 exchange (NEE) (e) with examples of the annual course of observed and filtered 
NEE (a–d) from different eddy covariance sites (Table S1). α is the ratio of actual carbon sink and hypothetical maximum carbon sink in a 
year defined as the simple product of CUP × MCU, and β is the ratio of actual carbon source and hypothetical maximum carbon source, 
that is, the length of the calendar year minus CUP, multiplied by MCR. We applied the Savitzky–Golay filter to minimize the role of random 
variability in flux observations (Savitzky & Golay, 1964) and calculated α, MCU, CUP, β, and MCR for each site or grid (see Materials and 
Methods) [Colour figure can be viewed at wileyonlinelibrary.com]
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The three FLUXCOM datasets are built with three machine 
learning techniques (Random Forests, Artificial Neural Networks, 
Multivariate Adaptive Regression Splines) to upscale flux observa‐
tions from FLUXNET in space and time and integrate these with cli‐
mate and remote‐sensing data for the period 1980–2013 (Jung et al., 
2011, 2017; Tramontana et al., 2016). Global maps of NEE from three 
FLUXCOM datasets at 0.5° spatial resolution and daily temporal res‐
olution were used individually, and then the median was taken based 
on these three results for analysis.

NEE datasets from Lund‐Potsdam‐Jena (LPJ) dynamic global 
vegetation model and the MstMIP outputs were also used to eval‐
uate whether land surface models capture the relative contribu‐
tions of α, MCU, CUP, β, and MCR to the IAV of NEE. We simulated 
the daily NEE from 1980 to 2013 with a spatial resolution of 0.5° 
using LPJ (Sitch et al., 2003) to match with the studied period of 
the FLUXCOM datasets (1980–2013). The MstMIP provides the 
three hourly NEE over 7 years (2004–2010) at spatial resolutions 
of 0.5°  ×  0.5° (https​://daac.ornl.gov/CMS/guide​s/CMS_CO2_
Fluxes_TBMO.html). The three hourly NEE were derived from 
monthly NEE outputs from the weighted ensemble mean NEE in 
MstMIP (the 15 MsTMIP models included: BIOME_BGC, CLM, 
CLM4VIC, CLASS_CTEM, DLEM, GTEC, ISAM, an earlier version 
of LPJ, ORCHIDEE, SIB3, SIBCASA, TEM6, TRIPLEX‐GHG, VEGAS, 
and VISIT; Huntzinger et al., 2013; Wei et al., 2014). The three 
hourly NEE data were aggregated to daily totals.

To analyze the role of climatic drivers in controlling the distri‐
bution of relative contributions in the α, MCU, CUP, β, and MCR, 
global maps of temperature, water, and radiation constraints to plant 
growth derived from long‐term climate statistics were used (Nemani 
et al., 2003). The MODIS MCD12C1 land‐cover product was used to 
classify the land pixels and to calculate statistics by IGBP vegetation 
classes (Friedl & Brodley, 1997). MCD12C1 provides the dominant 
land‐cover types at a spatial resolution of 0.05° using a supervised 
classification algorithm that is calibrated using a database of land‐
cover training sites. We remapped using a majority filter to a spa‐
tial resolution of 0.5° (Figure S1; Marcolla, Rödenbeck, & Cescatti, 
2017).

2.2 | Definitions and calculations for α, MCU, CUP, 
β and MCR

We used the daily NEE for each site or grid to calculate α, MCU, 
CUP, β, and MCR (Figure 1) and applied the Savitzky–Golay fil‐
ter to minimize the role of random variability in flux observations 
(Savitzky & Golay, 1964). The sign convention of NEE is from the 
perspective of the atmosphere such that NEE is negative for eco‐
system C uptake and positive for C release to the atmosphere 
(Figure 1; Chapin et al., 2006). We defined the CUP as the num‐
ber of days with net C uptake (NEE < 0 g C m−2 day−1, Figure 1, 
i.e., days during which the magnitude of GPP is larger than ER). 
Following this definition, there may be multiple periods across 
the course of a calendar year that may have net C uptake; these 
are added for the calculation of CUP on an annual basis. The MCU 

is defined as the maximum value of daily net C uptake of the fil‐
tered time series (Figure 1). α is the ratio of actual carbon sink and 
hypothetical maximum carbon sink in a year defined as the simple 
product of CUP × MCU, and β is the ratio of actual carbon source 
and hypothetical maximum carbon source (Figure 1), that is, the 
length of the calendar year (n) minus CUP, multiplied by MCR. 
We differentiate between indicators calculated from the eddy 
covariance databases (sites) and FLUXCOM (FLUXCOM) and explore 
similarities between them.

2.3 | Calculation of the IAV of NEE and relative 
contributions

Annual NEE can be expressed as a function of the five indicators α, 
MCU, CUP, β, and MCR (Figure 1):

where n = 365 or 366 days. We used a perturbation analysis to sep‐
arate the contributions of the five indicators to the IAV of NEE and 
test the sensitivity of this method against a variance decomposition 
approach in Supporting Information (Text S1). The total differential 
form of annual NEE with respect to the five indicators is as follows:

where

and higher order terms are excluded. Equation (2) explains more 
than 97% of the variability of observed NEE across all ecosystems on 
average.

In practice, the differentials of annual NEE and of the five in‐
dicators are approximated by the anomalies (∆) of the variables, 
namely, the differences between the variables with respect to 
their long‐term mean values. The annual NEE anomaly is separated 
into five independent components, that is, �NEE

�α
dα, �NEE

�MCU
dMCU, 

�NEE

�CUP
dCUP, �NEE

�β
dβ, �NEE

�MCR
dMCR representing the annual NEE change 

induced by the five indicators, respectively. The relative contri‐
butions of the changes in the five indicators to the IAV of NEE 
were calculated as Equation (3) according to the consistency of 

(1)NEE=α×MCU×CUP+β×
(
n−CUP

)
×MCR

(2)
dNEE=

�NEE

�α
dα+

�NEE

�MCU
dMCU+

�NEE

�CUP
dCUP

+
�NEE

�β
dβ+

�NEE

�MCR
dMCR

�NEE

�α
=MCU×CUP

�NEE

�MCU
=α×CUP

�NEE

�CUP
=α×MCU−β×MCR

�NEE

�β
=−MCR×

(
CUP−n

)

�NEE

�MCR
=−β×

(
CUP−n

)

https://daac.ornl.gov/CMS/guides/CMS_CO2_Fluxes_TBMO.html
https://daac.ornl.gov/CMS/guides/CMS_CO2_Fluxes_TBMO.html
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�NEE

�α
dα, �NEE

�MCU
dMCU, �NEE

�CUP
dCUP, �NEE

�β
dβ, �NEE

�MCR
dMCR with annual NEE 

anomaly over the period 1980–2013 (Ahlström et al., 2015; Zhou 
et al., 2017).

where i refers to the year from 1980 to 2013; x represents the α, 
MCU, CUP, β, or MCR, and ∆NEEi is the annual NEE anomaly based 
on Equation (2). �x represents the relative contributions of the five 
indicators to the IAV of NEE. In Equation (3), the positive sign reveals 
identical IAV of the indicator with annual NEE, and vice versa, and 
the magnitude denotes the amount of the relative contribution.

3  | RESULTS

3.1 | Spatial patterns of mean α, MCU, CUP, β, MCR, 
and their IAV

Global patterns of α, MCU, CUP, β, and MCR from the eddy covari‐
ance observations and FLUXCOM products were similar. Ecosystems 
with high mean negative NEE (i.e., strong carbon sinks) had large α and 
CUP; for example, the largest mean α (αFLUXCOM = 0.75, αsites = 0.61, 
Figure 2a,b) and CUP (CUPFLUXCOM = 365.25 days, αsites = 365.25 days, 
Figure 1d) were found in tropical rainforests; while α and CUP average 
about 0.45 (αsites = 0.44 ± 0.08, αFLUXCOM = 0.48 ± 0.10) and 180 days 
(CUPsites = 178 ± 68, CUPFLUXCOM = 187 ± 94 days), respectively, in 
boreal and temperate ecosystems (Figure 2b,d). Mean MCU was 
greater in forests (MCUsites = −5.73 ± 2.52, MCUFLUXCOM = −2.99 ± 0.
99 g C m−2 day−1) than in other ecosystems (MCUsites = −5.38 ± 3.32, 
MCUFLUXCOM = −1.62 ± 1.14 g C m

−2 day−1, Figure 2c) noting the con‐
vention that net C uptake by the land surface is denoted as negative. 
Mean β and MCR had relatively low spatial variability across the globe 
(Figure 2e,f). Mean β (βsites = 0.39 ± 0.08, βFLUXCOM = 0.52 ± 0.12, 
Figure 2e) was about 0.4 but MCR from FLUXCOM was smaller than 
that of tower observations (MCRsites = 2.37 ± 1.34, MCRFLUXCOM = 0.
40 ± 0.19 g C m−2 day−1, Figure 2f).

We found hot spots of NEE IAV in eastern and southern South 
America, eastern and southern Africa, Southeast Asia, Australia, 
central and eastern North America, and Europe (Figure 2g). Although 
the IAV in α, MCU, CUP, β, and MCR created the IAV of NEE, the 
MCU and CUP had larger IAV than α, β, and MCR at the global scale 
(Figure 2h–l). The larger IAV of MCU was mainly distributed in boreal 
and temperate ecosystems while the larger IAV of CUP was focused 
on water‐limited ecosystems (Figure 2i,j).

3.2 | Relative contributions of α, MCU, CUP, β, and 
MCR to the IAV of NEE

The relative contributions of these five indictors to the IAV of NEE 
were different for different ecosystems, climate zones, and veg‐
etation types (Figures 3 and 4). Eddy covariance observations and 
FLUXCOM products consistently showed that the IAV of MCU and 

CUP contributed more to the IAV of NEE than that of α, β, and MCR 
at the global scale (Figure 3 and S2), especially across boreal, temper‐
ate, and tropical ecosystems for the case of MCU and water‐limited 
ecosystems for the case of CUP (Figure 3b,c). The IAV of α contributed 
nearly 40% to the IAV of NEE in tropical forests (Figure 3a). The IAV 
of MCU contributed about 60% of the IAV of NEE across different 
latitude bands (30–60°N, 5°S‐5°N. and 40–60°S), while the IAV of 
CUP played a dominant role between 10 and 30°S (40%, Figure 3f). 
The contributions of α, MCU. and CUP to the IAV of NEE were roughly 
equal across 20°N (Figure 3f) in the humid subtropical climate zone 
that still experiences seasonality in CUP. The contributions of β and 
MCR to the IAV of NEE were small (<10%) and relatively stable across 
latitudes.

Across different vegetation types, the contributions of α, MCU, 
CUP, β. and MCR from the eddy covariance observations and 
FLUXCOM products were similar. α contributed about 40% of the 
IAV of NEE in EBF (FLUXCOM: 38%, Sites: 41%, see Figure 4 for a 
list of abbreviations), but less than 20% in all other vegetation types 
(Figure 4a). The contribution of MCU to the IAV of NEE in forests 
(EBF, DBF, ENF, DNF, FLUXCOM: 60%–67%, Sites: 40%–50%) was 
larger than that of nonforests (GRA, SHR, CRO, SAV, FLUXCOM: 
39%–47%, Sites: 20%–50%). Conversely, the contribution of CUP to 
the IAV of NEE in nonforested ecosystems (FLUXCOM: 30%–32%, 
Sites: 37%–66%) contributed more than that of forests (FLUXCOM: 
12%–19%, Sites: 13%–38%, Figure 4). The contributions from β 
(<4%) and MCR (5%–20%) were smaller and less variable among 
different vegetation types (Figure 4d,e). In summary, CUP played a 
dominant role in controlling the IAV of NEE in water‐limited systems 
(Figure 5) while MCU contributed more in temperature and radi‐
ation‐limited ecosystems (i.e., energy‐limited ecosystems; Nemani 
et al., 2003).

3.3 | Model comparison

The relative contributions of MCU and CUP to the IAV of NEE calcu‐
lated from LPJ and MsTMIP models mismatched that of FLUXCOM 
observations (Figures 6 and 7). Results from LPJ showed that the 
IAV of α, MCU, CUP, β, and MCR explained 6%, 29%, 51%, 3%, and 
12% the IAV of NEE, respectively (Figure 6f–j), which were similar to 
that of the MsTMIP models (9%, 30%, 49%, 2%, and 9%, respectively, 
Figure 6k–o), but FLUXCOM observations found their relative contri‐
butions to the IAV of NEE to be 14%, 48%, 25%, 2%, and 8%, respec‐
tively (Figure 6a–e). Although both the LPJ model and MsTMIP outputs 
showed MCU and CUP dominated the IAV of NEE at global scale, the 
contribution of MCU to the IAV of NEE from land surface models was 
underestimated to about 18% (Figure 6b,g,i), while the contribution 
of CUP was overestimated to about 25% (Figure 6c,h,m). The main 
areas for the mismatch between land surface models and observations 
were in forest, rather than nonforests ecosystems (Figure 7). Models 
underestimated the contribution of MCU in evergreen broadleaf for‐
ests, deciduous broadleaf forests, and evergreen needleleaf forests 
(Figure 7a) while the contribution of CUP was largely overestimated in 
these vegetation types (Figure 7b).

(3)�x=

∑
i

�NEE

�x
dxi

�ΔNEEi�
ΔNEEi∑

i
��ΔNEEi��

,
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F I G U R E  2  Global patterns of mean net ecosystem CO2 exchange (NEE), α, maximum carbon uptake (MCU), carbon uptake period (CUP), 
β, maximum carbon release (MCR), and their interannual variability (IAV). Global patterns of mean NEE (a), α (b), MCU (c), CUP (d), β (e), and 
MCR (f) using FLUXCOM (median from three products, 1980–2013) and eddy covariance research sites (circles). Global patterns of the IAV 
of NEE (g), α (h), MCU (i), CUP (j), β (k), and MCR (l) using FLUXCOM (median from three products). The magnitude of IAV (right) is defined as 
standard deviation of annual value normalized by the mean standard deviation (values above 1 indicate above‐average IAV) [Colour figure 
can be viewed at wileyonlinelibrary.com]
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4  | DISCUSSION

4.1 | An integrated approach for quantifying the IAV 
of NEE

This study sheds new light on the IAV of terrestrial carbon ex‐
change at global scale as revealed by eddy‐flux measurements of 
NEE and FLUXCOM NEE products. We have conceptualized the 
seasonal pattern of NEE into its observed MCU and release, the 
CUP, and two parameters, α and β, that describe the actual car‐
bon sink and source versus hypothetical maximum carbon sink 
and source defined by other parameters (Figure 1). IAV in α, MCU, 
CUP, β, and MCR create the IAV of NEE. The new approach demon‐
strated in this study is suitable for all ecosystems globally, including 
dryland, Mediterranean, and tropical ecosystems. Xia et al. (2015) 
and Zhou et al. (2016) reported that the decomposing method of 
GPP works well for the ecosystems with distinct one‐peak seasonal 

patterns, however, its explanatory power is very limited in dryland, 
Mediterranean, and tropical ecosystems that not exhibit a single 
seasonal C uptake signal. Our study complements this knowledge 
gap and provides new insight into the IAV of NEE globally.

The IAV of NEE is explained by indicators that are related to 
underlying biological processes, for example, physiology and phe‐
nology, which can help diagnose causes of its interannual variation. 
Controls of IAV of NEE are complex because NEE is comprised of 
two separate fluxes, GPP and ER, driven by different factors includ‐
ing light, temperature, soil moisture, and leaf area index, whose im‐
pact and control will differ by ecosystem, climate space, season, and 
more (Baldocchi, Chu, & Reichstein, 2018; Baldocchi, Ryu, & Keenan, 
2016; Zeng, Mariotti, & Wetzel, 2005). These five indicators related 
to phenology and physiology provide a simple way to track the vari‐
ations of NEE. Environmental drivers may ultimately cause the IAV 
of NEE by regulating these phenological and physiological indicators 

F I G U R E  3  The relative contributions of (a) α, (b) MCU, (c) CUP, (d) β, and (e) MCR to the interannual variability of net ecosystem CO2 
exchange (NEE) and their latitudinal patterns (±standard error, f) using the median of three FLUXCOM products and eddy covariance 
research sites (circles). The same results using a variance decomposition method are presented in Figure S2  [Colour figure can be viewed at 
wileyonlinelibrary.com]
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(Fu, Stoy, et al., 2017; Niu et al., 2017). Thus, understanding the 
relationships between climate and these phenological and physio‐
logical indicators could reveal fundamental mechanisms underlying 
IAV of NEE and be useful for better predicting annual NEE under 
global change. Additionally, we found that mean α increased from 
boreal and temperate ecosystems (0.4) to tropical ecosystems (0.75), 
which is critical for understanding global patterns of NEE because α 
characterizes the capacity of terrestrial ecosystem productivity and 
shapes the seasonality of NEE. If the daily NEE always equals the 
MCU during the growing season, the α will be equal to 1. But this 
never happens because the environmental conditions are changing 
and are not always ideal. In this way, α reflects how much C uptake 
is constrained by environmental drivers during the growing season.

Mean MCU and MCR from FLUXCOM were lower than that observed 
at the site level, due in part to the spatial averaging of the MCU and MCR 
by FLUXCOM that dampens their mean values and uncertainties that 

arise from the upscaling method (Jung et al., 2011; Tramontana et al., 
2016). It has to be considered that the FLUXCOM product is driven by 
data from flux networks that are limited in some areas (e.g., the tropics 
and the Southern Hemisphere); therefore, these observation‐driven esti‐
mates are underconstrained in those areas. A second reason for the dis‐
crepancy could be the difference of studied period, which is from 1980 
to 2013 for FLUXCOM, while site observations only cover 5–15 years.

4.2 | Dominant role of MCU in contributing to the 
IAV of NEE

This study establishes that the IAV of global NEE is largely ex‐
plained by the physiological (MCU) and phenological indicators 
(CUP), especially the former. Perhaps surprisingly, α controls only 
about 10% of the IAV in NEE in the temperate and boreal zones. In 
other words, the ratio of actual to hypothetical maximum C sink is 
less variable than the size of the “box” described by CUP and MCU 
that defines it. The small contributions of β and MCR to the IAV of 
NEE are fairly constant across the globe, indicating that the IAV of 
NEE is driven by the net CO2 uptake during the growing season, 
rather than net CO2 release during the nongrowing season. A small 
relative change in MCU is often indicative of substantial changes in 
peak NEE and thus annual net C uptake (Fu, Dong, et al., 2017; Fu, 
Stoy, et al., 2017; Zscheischler et al., 2016). The important role of 
MCU to NEE also has been recognized in a number of recent studies 
on changes to the terrestrial carbon cycle (Gonsamo, Chen, & Ooi, 
2018; Reichstein, Bahn, Mahecha, Kattge, & Baldocchi, 2014; Zhou 
et al., 2017; Zscheischler et al., 2016). Specifically, the numbers of 
occurrences of high values in observed daily ecosystem fluxes are 
strongly correlated with their annual sums, while the influence of 
phenological transitions has less importance (Zscheischler et al., 
2016). It was also well documented that annual NEE correlates well 
with the maximum light saturated GPP at seven European long‐term 
observation sites (Reichstein et al., 2014). Here, we demonstrated 
that MCU also dominates the IAV of NEE at global scale, especially 
in temperature‐ and radiation‐limited ecosystems (Figure 5). These 
results suggest that variations of CO2 uptake during the peak grow‐
ing season are critical in determining the interannual variation of 
ecosystem C cycle and its responses to the changing climate.

Not only does MCU dominate the IAV of NEE at the global scale, 
but there is also an increasing trend in MCU which contributes to the 
increasing trend in C sink strength (Fu, Dong, et al., 2017). Gonsamo 
et al. (2018) reported that the peak season plant activity (peak max‐
imum NDVI value) increased by 7.8% for 1982–2015, which further 
highlights the importance of MCU in contributing the land C sink. The 
increasing trends in summertime C uptake in northern ecosystems 
(Graven et al., 2013) have been attributed to increasing leaf area and 
plant biomass (Myneni, Keeling, Tucker, Asrar, & Nemani, 1997; Pan et 
al., 2011), increasing coverage of evergreen shrubs and trees (Walther 
et al., 2002), and shifting the age composition toward fast growing veg‐
etation after disturbances that have more intense seasonal C uptake 
(Soja et al., 2007), all suggesting ongoing changes in MCU that must 
be further studied to understand the variability of the global C cycle.

F I G U R E  4  Mean contributions (±standard deviation) of (a) α, 
(b) MCU, (c) CUP, (d) β, and (e) MCR to the interannual variability 
of net ecosystem CO2 exchange using FLUXCOM and tower sites 
across different vegetation types. CRO, croplands; DBF, deciduous 
broadleaf forests; DNF, deciduous needleleaf forests; EBF, 
evergreen broadleaf forests; ENF, evergreen needleleaf forests; 
GRA, grasslands; SAV, savannas; SHR, shrublands [Colour figure 
can be viewed at wileyonlinelibrary.com]
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F I G U R E  5  Frequency distributions 
of the contribution of CUP (a) and 
MCU (b) to the interannual variability 
of net ecosystem CO2 exchange 
across global regions in which the net 
primary productivity is limited by water, 
temperature, or radiation [Colour figure 
can be viewed at wileyonlinelibrary.com]
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F I G U R E  6  The relative contributions of α, maximum carbon uptake (MCU), carbon uptake period (CUP), β, maximum carbon release 
(MCR) to the interannual variability of net ecosystem CO2 exchange using FLUXCOM (a–e), Lund‐Potsdam‐Jena (LPJ) (f–j), Multi‐scale 
Synthesis and Terrestrial Model Inter‐comparison Project (MsTMIP) models (k–o), and eddy covariance research sites (circles) [Colour figure 
can be viewed at wileyonlinelibrary.com]
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In water‐limited ecosystems, however, we found that CUP played 
an important role in contributing to the IAV of NEE. In water‐limited 
ecosystems, changes in CUP—often due to precipitation events—may 
appreciably change annual C uptake (Ahlström et al., 2015; Poulter 
et al., 2014). Although the length of CUP in water‐limited ecosys‐
tems is shorter than that of temperature‐ or radiation‐limited eco‐
systems (Figure 2d), the IAV of CUP in water‐limited ecosystems 
is larger (Figure 2j), and dominates the IAV of NEE. Plants living in 
water‐limited areas often opportunistically respond to rainfall events, 
which thereby determine productivity (Tang, Arnone Iii, Verburg, 
Jasoni, & Sun, 2015). Many recent studies have advanced our knowl‐
edge of how ecosystem phenology—and thereby CUP—influences the 
terrestrial ecosystem C cycle (Buermann et al., 2018; Churkina et al., 
2005; Piao, Friedlingstein, Ciais, Viovy, & Demarty, 2007; Richardson 
et al., 2013), and our results further emphasize its importance for un‐
derstanding the IAV of NEE in water‐limited ecosystems.

4.3 | Land surface models cannot capture the 
contributions of MCU and CUP

Compared with the relative contributions of MCU and CUP to the 
IAV of NEE calculated from FLUXCOM, both the LPJ model and 
MsTMIP models underestimated the contribution of MCU to the IAV 

of NEE and overestimated the contribution of CUP. The main areas 
for the mismatch between land surface models and observations were 
in forests, rather than nonforests ecosystems (Figures 6 and 7). The 
mean and IAV of the MCU in forests are larger than that of nonfor‐
ests ecosystems, and the land surface models do not capture this 
large IAV of MCU in forests, leading to the underestimation of its 
contribution to the IAV of NEE. Our results suggested that future re‐
search needs to improve the simulating capability of MCU, especially 
in forests, for land surface models. In addition to model structure, 
particular attention to the meteorological data being used and how 
this affects uncertainty in daily fluxes should be further investigated.

The underestimation of MCU’s contribution to the IAV of NEE 
in land surface models might be caused by an underestimation of 
the maximum leaf area index, plant photosynthetic capacity, and/
or missing representation of agricultural management. Many land 
surface models underestimate the maximum leaf area index, es‐
pecially in the high latitudes (Winkler, Myneni, Alexandrov, & 
Brovkin, 2019), which leads to an underestimation of GPP. Huang 
et al. (2018) also reported the uncertainty of simulating the plant 
photosynthetic capacity in land surface models. For example, the 
control of leaf nitrogen concentrations and environmental vari‐
ables (e.g., temperature, radiation, day length, and humidity) are 
conventionally assumed to be constant for each plant functional 
type or to vary linearly with leaf nitrogen concentrations in cur‐
rent terrestrial biosphere models, when modeling plant photo‐
synthetic capacity (e.g., Vcmax; Ali et al., 2015). Moreover, models 
differ in the design of crop types and the ways in which they deal 
with crop and agricultural management. MsTMIP models might 
underestimate the contribution of agricultural activities to the 
MCU, because most models do not explicitly represent crops and 
agricultural management (Huang et al., 2018; Thomas et al., 2016). 
In addition, most models underestimate the magnitude of hetero‐
trophic respiration (Liu et al., 2018). It is difficult to capture the 
complexity of heterotrophic respiration (e.g., microbial responses; 
Mäkiranta et al., 2009), which impacts ecosystem respiration and 
thus on MCU and CUP. Dynamic Global Vegetation models have 
routinely incorporated temperature and moisture constraints on 
heterotrophic respiration, but the effects of moisture on decom‐
position rate are much more uncertain than temperature (Koven, 
Hugelius, Lawrence, & Wieder, 2017; Sierra, Trumbore, Davidson, 
Vicca, & Janssens, 2015).

4.4 | Implications of MCU and CUP under 
changing climate

The predominant role of peak growing season physiology in caus‐
ing the IAV in the terrestrial carbon cycle has important implica‐
tions for understanding the global C cycle in response to climate 
change. Because climate change likely results in an increased fre‐
quency and intensity of summer drought and heat waves (Ciais 
et al., 2005; Hall, Qu, & Neelin, 2008; Sheffield & Wood, 2008), 
future changes in growing season climate may cause substantial 
changes in C cycling by impacting the CO2 uptake capacity at peak 

F I G U R E  7  Mean contributions (±standard deviation) of the 
interannual variability (IAV) of maximum carbon uptake (MCU,  
a) and carbon uptake period (CUP, b) to the IAV of net ecosystem 
CO2 exchange using FLUXCOM observations, Lund‐Potsdam‐Jena 
(LPJ), and Multi‐scale Synthesis and Terrestrial Model Inter‐comparison 
Project (MsTMIP) outputs across different vegetation types. CRO, 
croplands; DBF, deciduous broadleaf forests; DNF, deciduous 
needleleaf forests; EBF, evergreen broadleaf forests; ENF, evergreen 
needleleaf forests; GRA, grasslands; SAV, savannas; SHR, shrublands
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growing season, which would lead to larger IAV in the terrestrial 
C cycle and atmospheric CO2 growth rates. To better simulate 
land CO2 exchange under changing climate, it is urgent for global 
models to realistically represent physiological processes that de‐
termine peak growing season ecosystem function. The latter are 
highly dynamic and may require dynamic instead of fixed param‐
eter values for the maximum rate of carboxylation in models to 
accurately simulate the variability of MCU (Li et al., 2016; Xiao, 
Davis, Urban, & Keller, 2014).

Previous work on the IAV of NEE mostly has focused on the 
ultimate causes of climate impacts (Jung et al., 2017; Poulter 
et al., 2014; Wang et al., 2014; Zeng et al., 2005). Climate causes 
the IAV of NEE largely through its influence on MCU and CUP. 
Numerous studies have attributed the IAV of terrestrial C cycle 
to different climate factors with generally conflicting results 
(Kindermann, Würth, Kohlmaier, & Badeck, 1996; Schaefer et al., 
2002; Zeng et al., 2005), and few have explicitly examined how 
climate factors impact the fundamental processes of terrestrial C 
cycle and consequently cause the IAV of C uptake. As revealed in 
this study, the processes underlying the IAV in NEE are primarily 
physiological and phenological, which are associated with MCU 
and CUP, both of which are regulated by changes in environmen‐
tal factors, but in different ways. If these climate factors have 
compensatory effects on MCU and CUP, they will lead to negligi‐
ble impacts on annual NEE (Buermann et al., 2018; Fu, Stoy, et al., 
2017; Wolf et  al., 2016). For example, a warmer spring usually 
induces a longer growing season and thus results in higher pro‐
duction. But a subsequent warmer and drier summer may sup‐
press summer production, potentially offsetting the increase in 
terrestrial ecosystem production that is expected with a longer 
growing season (Angert et al., 2005; Cleland, Chuine, Menzel, 
Mooney, & Schwartz, 2007). Namely, in some ecosystems, early 
spring and longer growing seasons may decrease annual GPP or 
NEE because the earlier onset of growing season may increase 
transpiration, leaving less available water in the soil in summer 
and limiting plant growth later in the growing season (Kljun et al., 
2006; Wolf et al., 2016). Such offsetting and compensatory im‐
pacts of climate factors could be reasons why different studies 
in the past have generated contradictory or conflicting results 
on the causes of the IAV in terrestrial C fluxes and atmospheric 
CO2 growth rate. Future research needs to pay more attention to 
the different effects of climate anomalies on the MCU and CUP 
for a better understanding of the IAV of NEE globally, as well as 
exploring how elevated atmospheric CO2 interacts with leaf and 
canopy processes.

In summary, this study demonstrated a universal approach for 
integrating phenology and physiology globally and sheds new light 
on explaining IAV in terrestrial carbon exchange at global scale. It 
suggests that the IAV in terrestrial NEE can be understood by de‐
composing it into proximate causes of C uptake using metrics of 
phenology and physiology. The IAV of NEE was determined pre‐
dominately by variability in the MCU at the global scale, which ex‐
plained 48% of the IAV of NEE on average. CUP played an important 

role in contributing to the IAV of NEE in water‐limited ecosystems 
while MCU dominated the IAV of NEE in temperature‐ and radi‐
ation‐limited ecosystems. The LPJ model and the MsTMIP mod‐
els underestimate the contribution of MCU to the IAV of NEE by 
about 18% on average, and overestimate the contribution of CUP 
by about 25%. The major role of MCU in determining the IAV in 
NEE is supported by recent advances in terms of the global increase 
of seasonal amplitude of atmosphere CO2 concentration (Graven 
et al., 2013), increasing greenness in northern ecosystems (Myneni 
et  al., 1997), and increasing trends in annual CO2 uptake in tem‐
perate and boreal areas (Keenan et al., 2014). This study provides a 
new perspective on the proximate causes of the IAV in NEE, which 
may explain the different results in previous studies on the ulti‐
mate causes of IAV in the C cycle (Kindermann et al., 1996; Poulter 
et al., 2014; Schaefer et al., 2002; Wang et al., 2014; Zeng et al., 
2005). The mechanisms underlying the IAV in the terrestrial C cycle 
through changes in CO2 uptake amplitude and period is of critical 
importance for improving our ability to project future change in the 
earth system.
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