

Pulsed Plasma Acceleration Modeling in Detonation and Deflagration Modes

Kurt Polzin NASA-Marshall Space Flight Center

Christine Greve

Texas A&M University

Kamesh Sankaran

NASA

Whitworth University

National Aeronautics and Space Administration www.nasa.gov

Introduction

• Pulsed Plasma Accelerators

- Pulsed Plasma Thrusters (PPT)
- Quasi-Steady Magnetoplasmadynamic (MPD) Thrusters

Jahn, Physics of Electric Propulsion (1968)

• **PPT** (typically)

ADVANCED CONCEPTS

- Transient, ~1-10 μs
- Snowplow / Detonation mode acceleration
- Low efficiency (relative to MPD)

Jahn, Physics of Electric Propulsion (1968)

- MPD (typically)
 - Quasi-steady, ~1 ms or longer pulse
 - Blowing / Deflagration mode acceleration
 - Higher efficiency (approaching 50% at high power)

- Thrusters that don't fit either category or have performance that deviates from expectations
- Coaxial High ENerGy (CHENG) "Deflagration Gun"
- ~10 μs timescale pulses
- Claimed high thrust density, high efficiency
- More consistent with deflagration mode acceleration
- Gas injection initiates/switches discharge

Cheng, Nuclear Fusion 10 (1970)

Motivation for Present Work

• Gas-Fed PPT

- Two performance regimes as a a function of mass bit (Mode I, Mode II)
- Electrode erosion not enough to explain increase as a function of decreased mass bit in Mode II
- Spark plug initiates discharge

Ziemer, *Performance Scaling of Gas-Fed Pulsed Plasma Thrusters*, Princeton Ph.D. Dissertation (2001)

Modeling & Experiments - Literature

- Cheng (1970), Nuclear Fusion (1970)
- Poehlmann, et al. (2007-2010), AIAA Paper 2007-5263 (2007), Phys. Plasmas (2010), Ph.D. dissertation (2010)
 - Used Rankine-Hugoniot model for pulsed plasma acceleration
 - Selectable parameters determined where on the graph one resided (detonation or deflagration)
- Woodall and Len, J. Appl. Phys. (1985)
- Sitaraman and Raja, Phys. Plasmas (2014)
 - MHD simulations
 - Adjusted plasma temperature and conductivity to gain agreement between the models and data
 - Low Conductivity \rightarrow Deflagration Mode
 - High Conductivity \rightarrow Detonation Mode

- **Figure 2:** Hugoniot relation. Poehlmann, *et al.*, AIAA Paper 2007-5263
- Subramaniam, et al., Phys. Plasmas (2017), Plasma
 - Sources Sci. Tech. (2018)
 - Resistive MHD simulations
 - Modeled discharge as sequence of events
 - Compared to Schlieren measurements as plasma jet impacted downstream object
 - Varied time between gas injection and current pulse
 - Short Delay \rightarrow Low Conductivity \rightarrow Deflagration Mode
 - Deflagration to Detonation after first half-cycle
 - Long Delay \rightarrow High Conductivity \rightarrow Detonation Mode

5

The Quasi-Steady Arc

- Princeton gas-fed z-pinch work
 - Purely pulsed detonation-mode device

- Lengthened pulse with a PFN
- Extended cathode

- Quasi-steady MPD thruster
 - Initial pulsed detonation-mode current sheet
 - Becomes a deflagration-mode current channel if pulse is long enough (~1-3 ms or greater for Q-S operation)

GF-PPT - Revisited

- No ringing in this circuit
- Scaling of peak current and $\int I^2 dt$ with mass bit
- Implies mass loading has an effect on the nature of the discharge waveform
- Integral indicative of the overall impulse imparted to the gas over the course of the discharge

Ziemer, *Performance Scaling of Gas-Fed Pulsed Plasma Thrusters*, Princeton Ph.D. Dissertation (2001)

Proposed Model

- Neutral fluid species (Eulerian reference frame)
 - Initial gas injection and current sheet wake

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial z} \left(\rho u_z\right) = 0$$
$$\frac{\partial \left(\rho u_z\right)}{\partial t} + \frac{\partial}{\partial z} \left(\rho u_z^2 + P\right) = (f_z)_{\text{ext}}$$
$$\frac{P}{\rho^{\gamma}} = \text{constant}$$

Current sheet plasma acceleration (Lagrangian reference frame)

$$\begin{aligned} \frac{dV}{dt} &= -\frac{I}{C} \\ \frac{dI}{dt} &= \frac{V - I \left[(R_e + R_{p,deton}) + L_1 v_z \right]}{(L_0 + L_1 z)} \\ \frac{dz}{dt} &= v_z \\ \frac{dv_z}{dt} &= \left(\frac{L_1 I^2}{2} - v_z^2 \lambda_e A \rho \left(z \right) \right) / m \\ \frac{dm}{dt} &= \lambda_e v_z A \rho \left(z \right) - \nu_L m \end{aligned}$$

Model of Processes

Stationary Discharge Plasma Acceleration

Circuit equations

$$\frac{dV}{dt} = -\frac{I}{C},$$

$$\frac{dI}{dt} = \frac{V - I \left(R_e + R_{\rm p, deflag}\right)}{\left(L_0 + L_1 l\right)},$$

Accelerating Force

$$(F_z)_{\text{ext}}(t) = \frac{L_1 i(t)^2}{2}$$

$$\left(f_z\right)_{\rm ext}(t) = \frac{L_1 \, i(t)^2}{2 \, A \, \Delta z}$$

Assumption for Transition Detonation to Deflagration

$$\begin{aligned} R_{\rm p,deflag} &= R_{\rm p,deton} + \left. \frac{dL}{dt} \right|_{\rm sheet \ ejection} \\ &= R_{\rm p,deton} + \left. L_1 v_z \right|_{\rm sheet \ ejection} \end{aligned}$$

Thruster Length	$23~{ m cm}$
Inner electrode diameter	$5 \mathrm{~mm}$
Outer electrode diameter	$5~{ m cm}$
Capacitance C	$112 \ \mu F$
Stray inductance L_0	50 nH
Stray resistance R_e	$5~{ m m}\Omega$
'Detonation' plasma resistance $R_{\rm p,deton}$	$2.5~\mathrm{m}\Omega$
Initial charge voltage	1000 V
Inlet gas temperature	$298 \mathrm{K}$

contributor to $I_{\rm bit}$	amount of contribution	location/time of evaluation
plasma sheet	$m_{ m sheet}v_z$	evaluated at detachment
exit gas flux	$\int \dot{m} u_z dt$	at the exit
gas in channel after pulse	$\int \rho u_z A dz$	entire domain

Results – Injection and Detonation Mode 🚳

Amount of gas encountered has a major effect on the discharge current and trajectory (current sheet drag)

Position and discharge current as a function of t_{delay} ($\lambda_e = 1$)

Polzin & Greve, AIAA-2018-4728

Results – Detonation Mode

Current Sheet Mass Shedding ($\lambda_e = 0.6$)

Reduction in sheet inertia through shedding does not affect time to reach the end of the channel (still encountering mass the whole way – drag)

Results – Detonation to Deflagration

Discharge Current ($\lambda_e = 0.6$, $v_L = 0.1/(10^{-6} \text{ s})$)

Resistance assumption successful in developing a patched solution (unclear if it is correct, though)

Pushes curves into the overdamped regime

Results – Detonation Mode Wake

 $(\lambda_e = 0.6, v_L = 0.1/(10^{-6} \text{ s}))$

Fluid hasn't advanced far in this time-period ... very little noticeable electromagnetic acceleration

Calculated results indicate very little contribution to the impulse bit

$t_{ m delay}$	Detonation $I_{\rm bit} (\mu N - s)$	Deflagration $I_{\rm bit} (\mu N - s)$
$10 \ \mu s$	36.8	1.0
$50~\mu { m s}$	91.9	0.30
$0.1 \mathrm{ms}$	132	0.21
$0.5 \mathrm{~ms}$	179	0.15

Conclusions

- One-D coupled circuit / momentum equation model
- Based upon history of QS-MPD, model assumes the plasma is accelerated in a series of steps starting with a detonation mode (current sheet) and, if the current has not crossed zero yet, transitioning to a deflagration mode (MPD)
- Enhancements on the detonation mode portion appear to be working properly, and the impulse bit computed is in-line with expectations
- Gas loading in the channel has a major impact on the trajectory of the current sheet, which affects the response of the pulsed circuit
- Deflagration mode modeling was not in-line with expectations (much too low)
 - Assumptions used to 'patch' the detonation and deflagration modes for one continuous solution merit significant further investigation (resistance assumption, current distribution assumption)
 - In part, running against the limits of what a one-D circuit-model-based theory can capture