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{88\,4%%8%8 Introduction

 Pulsed Plasma Accelerators

— Pulsed Plasma Thrusters (PPT)

— Quasi-Steady Magnetoplasmadynamic (MPD) Thrusters
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Jahn, Physics of Electric Propulsion (1968)

e PPT (typically)
— Transient, ~1-10 us
— Snowplow / Detonation mode acceleration
— Low efficiency (relative to MPD)
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e MPD (typically)
— Quasi-steady, ~1 ms or longer pulse
— Blowing / Deflagration mode acceleration
— Higher efficiency (approaching 50% at high
power)




VANEED Motivation for Present Work

Thrusters that don't fit either category or have
performance that deviates from expectations

Coaxial High ENerGy (CHENG) “Deflagration Gun”

— ~10 ps timescale pulses IR ymm—
— Claimed high thrust density, high ik R BARREL
efficiency - 29.21cm -
— More consistent with deflagration
mode acceleration
— Gas injection initiates/switches p s BARREL
discharge )
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Cheng, Nuclear Fusion 10 (1970)
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VANEED Motivation for Present Work
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Modell | Model
* Gas-Fed PPT
— Two performance regimes as a a 2
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Ziemer, Performance Scaling of Gas-Fed
Pulsed Plasma Thrusters, Princeton Ph.D.
Dissertation (2001)
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¥ Modeling & Experiments - Literature &

Cheng (1970), Nuclear Fusion (1970)

Poehlmann, et al. (2007-2010), AIAA Paper 2007- ol v

5263 (2007), Phys. Plasmas (2010), Ph.D. dissertation (2010)
— Used Rankine-Hugoniot model for pulsed plasma acceleration

— Selectable parameters determined where on the graph one

resided (detonation or deflagration)

Woodall and Len, J. Appl. Phys. (1985)
Sitaraman and Raja, phys. Plasmas (2014)

— MHD simulations

Il (Weak Deflagration)

AL - q*v (Strong Deflagration)
(Origin of the -
Hugonioh Cave) (Lower e Point) ™" :
1;p; 1/p

Figure 2: Hugoniot relation.
Poehlmann, et al., AIAA Paper 2007-5263

— Adjusted plasma temperature and conductivity to gain agreement

between the models and data
— Low Conductivity — Deflagration Mode

— High Conductivity — Detonation Mode
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Subramaniam, et aI., Phys. Plasmas (2017), Plasma

Sources Sci. Tech. (2018)

— Resistive MHD simulations

— Modeled discharge as sequence of events

— Compared to Schlieren measurements as plasma jet impacted
downstream object

— Varied time between gas injection and current pulse
— Short Delay — Low Conductivity — Deflagration Mode
» Deflagration to Detonation after first half-cycle

— Long Delay — High Conductivity — Detonation Mode 5



Princeton gas-fed z-pinch work
— Purely pulsed detonation-mode device

Lengthened pulse with a PFN

Extended cathode

Quasi-steady MPD thruster

— Initial pulsed detonation-mode current sheet
— Becomes a deflagration-mode current channel

if pulse is long enough (~1-3 ms or greater for
Q-S operation)
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{éBﬁ%EB%E GF-PPT - Revisited -@
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discharge
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EBNEERR Proposed Model

gas injection (0 <t < tdelay) current sheet initiation (fgelay) current sheet ‘detonation’ mode
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£Q Model of Processes

# Neutral fluid species (Eulerian reference frame)

¢ Initial gas injection and current sheet wake

dp 0
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& Stationary Discharge Plasma Acceleration

Model of Processes

Circuit equations
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Assumption for Transition
Detonation to Deflagration

dL

— R-p_.detf_uu + Lyv,

sheet ejection

sheet ejection

Thruster Length
Inner electrode diameter

Outer electrode diameter

Capacitance C'

Stray inductance Ly
Stray resistance I,

‘Detonation’ plasma resistance Rp deton
Initial charge voltage

Inlet gas temperature

23 cm
5 mm
5 cm
112 pF
50 nH
5 mf2
2.5 mf}
1000 V
208 K

contributor to Iy

amount of contribution

location/time of evaluation

plasma sheet
exit gas flux
gas in channel after pulse

MsgheetVz
f mu., dt
f pu, Adz

evaluated at detachment
at the exit
entire domain
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{éBﬁ%EB%EResults — Injection and Detonation Mode

Gas Injection Timing
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{éBﬁ%EB%E Results — Detonation Mode [irs1f

Current Sheet Mass Shedding (A, = 0.6)
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Reduction in sheet inertia through shedding does not affect time to reach the
end of the channel (still encountering mass the whole way — drag)
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{88\,4%%8% Results — Detonation to Deflagration &

Discharge Current (A, = 0.6, v, = 0.1/(10% s))
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Resistance assumption successful in developing a patched solution (unclear
If it is correct, though)

Pushes curves into the overdamped regime
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{88\,4%%8% Results — Detonation Mode Wake

(A, = 0.6, v, = 0.1/(10° s))
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{88\,4%%8% Results — Deflagration Mode
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Fluid hasn’t advanced far in this time-period ... very little noticeable
electromagnetic acceleration

Calculated results indicate very little contribution to the impulse bit

tdel ay

Detonation [y (uN — s)

Deflagration Iy (uN — s)

10 ps
50 ps
0.1 ms
0.5 ms

36.8
91.9

179

1.0
0.30
0.21
0.15
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{é‘BM’%’éE?E Conclusions

¢ One-D coupled circuit / momentum equation model

® Based upon history of QS-MPD, model assumes the plasma is accelerated in a
series of steps starting with a detonation mode (current sheet) and, if the current
has not crossed zero yet, transitioning to a deflagration mode (MPD)

€ Enhancements on the detonation mode portion appear to be working properly, and
the impulse bit computed is in-line with expectations

# Gas loading in the channel has a major impact on the trajectory of the current
sheet, which affects the response of the pulsed circuit

& Deflagration mode modeling was not in-line with expectations (much too low)

¢ Assumptions used to ‘patch’ the detonation and deflagration modes for one
continuous solution merit significant further investigation (resistance
assumption, current distribution assumption)

® In part, running against the limits of what a one-D circuit-model-based theory
can capture
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