

The NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission: An emerging era of global, hyperspectral Earth system remote sensing

SPIE Remote Sensing Palais de la Musique et des Congrès Strasbourg, France

9 - 12 September 2019

Eric T. Gorman^{*a}, David A. Kubalak^b, Deepak Patel^c, Andre⁷ Dress^d, David B. Mott^e, Gerhard Meister^f, and P. Jeremy Werdell^f,

NASA Goddard Space Flight Center, Greenbelt, MD USA 20771 ^aInstrument & Payload Systems Engineering Branch ^bOptics Branch ^cThermal Engineering Branch ^dEarth Science Projects Division ^eDetector Systems Branch ^fOcean Ecology Laboratory

Plankton, Aerosol, Cloud, ocean Ecosystem (PACE)

Mission Complement:

- HyperSpectral Scanner
- Two Polarimeter Instruments
- Spacecraft Earth Pointing Platform
- **OBPG Science Data Segment (SDS)**
- Vicarious Calibration System

PACE Science

New opportunities to monitor fisheries and respond to toxic algae blooms, and key ocean and atmosphere data for forecasting air quality and weather that will improve our understanding of Earth's climate.

Mission Elements (Organization)

- Competed Science Team (NASA ESD)
- Vicarious Calibration (NASA ESD)
- Ocean Color Instrument (GSFC)
- Science Data Analysis (GSFC)
- Spacecraft (GSFC)
- Polarimeters (SRON, UMBC)
- Launch services (LSP)

Key Mission Parameters

- 98° inclination; ~676.5 km altitude ٠
- Sun-Sync (1pm MLT AN),
 - 2 day global coverage
- Class C Mission
- LRD Mar. 2023

Observatory

* Fuel only, design life is 3 years, the extra 7 yrs is ~9% of the required mission fuel budget

^T Baseline Requirement

PACE Partners (US)

PACE Partners (International)

Moving from multi-spectral radiometry to spectroscopy

Instrument Mass	260 kg CBE ,305 kg NTE
Instrument Power	280 W CBE, Orbital Average
Thermal System	Passive Cooling with Loop Heat Pipes
Mechanisms	Rotating Telescope Mechanism (~6Hz) Half Angle Mirror Mechanism (~3Hz) Solar Calibration Mechanism (<500 Cycle)
Deployments	Rotating Telescope Launch Lock
Ground Sample Distance	1050m at Nadir
Aperture	90mm
iFOV	0.08° Along Track x 1.42° Cross Track
UVNIR System EFL	0.134m
UVNIR System f/no	1.49
Total Field of Regard	+/- 56.5°
Dynamic Range	SNR at L_{typ} , No Saturation at L_{max}
UVNIR Bands (nm)	342.5nm – 887.5nm , 5nm Resolution
NIRSWIR Bands (nm)	940, 1038, 1250, 1378, 1615, 2130, 2260
UVVIS & VISNIR FPAs	2 CCDs, 128 x 512, 26 micron Integrated 14 Bit ADC
NIRSWIR FPAs	16MCT/16InGaAs Photodiodes, < 250 micron analog output to SIDECAR ASIC
Relative Radiometric Accuracy	< 0.5% Pre-Launch 1-sigma
SNR @ L _{typ}	> 1000:1: 340 - 700nm > 600:1: 700 - 865nm > 50:1 940 - 2260nm
On-Board Solar Calibration Assembly	Daily & Monthly Solar Calibration Targets
Orbital Average Data Rate	13 Mbps up to 40 Mbps

- Cross-Track Rotating Telescope
- UVVIS & VISNIR Slit Grating Hyperspectral Spectrographs
 - 2 CCD FPAs with On-Chip TDI Synchronized with Rotating Telescope and Half Angle Mirror
- NIR-SWIR Fiber Coupled Multiband Filter Spectrograph
 - 32 InGaAs/MCT Single Photo Diode FPAs with Digital TDI
- Concept follows the heritage of the SeaWiFS, MODIS, and VIIRS

OCI Instrument System Optical Block Diagram

OCI Subassemblies & Functions

PACE OCI SPIE Remote Sensing 2019

Thermal Control System Summary

Description

- Thermal Control System is primarily a passive heat flow design composed of radiators and straps.
- FPA interface Thermal Control ٠ System is the only active thermal design with the Loop Heat Pipe.
- Operational, Survival and Decontamination heaters provide temperature control throughout the different phases of the mission.
- Thermal design has been updated based on test data through ETU testing of RT, HAM and the mechanisms
- The UVNIR radiators, SDA temperatures are maintained through use of Earth Shade limiting the radiator view factor to earth by 80%.

PACE: phytoplankton – all things great & small

- OCI is 2-day global coverage hyperspectral in the UV-NIR with 7 SWIR bands
- Headed towards instrument and mission CDR this winter
- Working to a launch in 2023 (Preserving 2022 Launch Opportunity)

