Project Overview

• Key Team Members
• System Feasibility Analysis
 ▪ Scope and Approach
 ▪ High Level Results
• Fuel Element Fabrication and Test Status
 ▪ Approach 1: Packed Powder Cartridge (PPC) Fuel Element
 ▪ Approach 2: Spark Plasma Sintering (SPS) Fuel Element
 ▪ Approach 3: TRi-structural ISOtropic (TRISO) or Coated Mixed Carbide (CMC) (New Work)
 ▪ Fuel Development Design Independent Review Team (DIRT) Recommendations
 ▪ Transient Reactor (TREAT) Facility Testing at Idaho National Laboratory
• NTP Technology Development Challenges

NTP Flight Demonstration Formulation Study

• Objective
• Options
• Design Collaboration Team
• Flight Demo 1 (FD1) Study Results
• Schedule

Project Summary
Key Benefits
Provide NASA with a robust in-space transportation architecture that enables faster transit and round trip times, reduced SLS launches, and increased mission flexibility.

Current Strategy and Investments
Risk Reduction: Determine the feasibility of an low enriched uranium (LEU)-based NTP engine with solid cost and schedule confidence.
Flight Demo Study: Evaluate NTP concepts to execute a flight demonstration mission to include potential users and missions and additional fuel forms. This study is inviting industry participation.

Partnerships and Collaborations
NASA and Department of Energy (DoE) (Idaho National Lab, Los Alamos National Lab, and Oak Ridge National Lab) are collaborating on fuel element and reactor design and fabrication for LEU-based NTP feasibility. DoE provides indemnity to industry.

NASA, DoE and Department of Defense (DoD)/Strategic Capabilities Office (SCO) are working to develop a common fuel source for special purpose reactors including NTP and “Pele”. Shared investments will address key challenges of the TRIstructural ISOtropic (TRISO) fuel form that will inform both the NTP risk reduction and flight demo formulation.

DoD, DoE, and NASA are formulating a collaborative effort that utilizes and benefits each organization. Specific areas include: Indemnification, mission requirements, design, analysis, facilities and testing.
System Feasibility Analysis

Project Goal
- Determine the feasibility of a LEU-based NTP engine with solid cost and schedule confidence

System Feasibility Analysis Scope
- Focuses on overall feasibility of an LEU engine/reactor/fuel and engine ground testing system based on current GCD NTP Project goals and objectives
 - Establish a conceptual design for an NTP LEU engine in the thrust range of interest for a human Mars mission
 - Design, fabricate and test prototypical fuel elements for a nuclear thermal rocket reactor
 - **Fuel Element (FE) Test Facilities**: No one facility provides everything needed – multiples facilities are leveraged to obtain needed feasibility assessment data
 - *Compact Fuel Element Environmental Test (CFEET)* System, Marshall Space Flight Center, (MSFC) - Small (≤2") specimens, RF induction heated to prototypic temperatures (≤2850 K) in non-flowing hydrogen
 - *Nuclear Thermal Rocket Element Environmental Simulator (NTREES)*, MSFC - Larger (≤20") FEs, RF induction heated to prototypic temperatures, (≤2850 K), pressures (≤1000 psia) in flowing hydrogen
 - *Transient Reactor Test (TREAT)* Facility, Idaho National Laboratory (INL) - Small (≤2") specimens, heated by nuclear fission: prototypic temperatures (≤2850 K)
 - Identify robust production manufacturing methods for a LEU fuel element and reactor core

System Feasibility Analysis Approach
- Technical Feasibility: A systems engineering approach
 - Assessment defines a set of key criteria against which the engine/reactor/fuel and engine ground testing system feasibility will be judged
 - Provided for each key criteria will be a piece of objective evidence:
 - A report, analysis, test, or piece of design data, that demonstrates how the criteria item is satisfied
FY19 System Feasibility Results

System Feasibility Data Tracking
- The matrix which tracks feasibility data uses a color-coding system (green, yellow, and red) to visually indicate the status of feasibility for each item:
 - Green indicates the criteria is met
 - Yellow indicates that the criteria are close to being met with some planned work remaining
 - Red indicates that significant further work is required to determine if the criteria can be met
- Determined 34 of 42 criteria to be green
- Assessed the remaining 8 as yellow (shown below): criteria are close to being met - some FY20 planned work remaining

<table>
<thead>
<tr>
<th>Title</th>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Element Designs, Fabrication and Testing</td>
<td>Design, develop and test fuel elements that will meet the neutronic, thermal hydraulic and structural performance requirements of a reactor conceptual design.</td>
</tr>
<tr>
<td>High Assay Low Enriched Uranium (HALEU) Reactor</td>
<td>Design a reactor concept using a LEU fuel system with a refractory metal based fuel element that will go critical, achieve full rated thermal power conditions and meet endurance lifetime within the given engine system allocated reactor mass and volume constraints while balancing the power density and ability to cool the reactor.</td>
</tr>
<tr>
<td>Fuel (UN) Performance – Thermo-Physical Character</td>
<td>Performance behavior of fuels in reactor application are understood to give confidence fuel form will function for the endurance lifetime (starts/duration).</td>
</tr>
<tr>
<td>Material Selection - Reactor</td>
<td>Design a reactor concept capable of operating in a combined thermal and radiation environment.</td>
</tr>
<tr>
<td>NTPE Health & Status Monitoring</td>
<td>Design a NTP engine concept that will monitor the health and status of the engine</td>
</tr>
<tr>
<td>CFM Thermal Performance</td>
<td>Show that CFM system performance will limit LH2 boil-off sufficiently to close the reference mission architecture.</td>
</tr>
<tr>
<td>Propellant Loss due to Leakage</td>
<td>Show that a path exists to develop valves and couplings that provide sufficiently low leakage rate to meet the CFM ConOps needs.</td>
</tr>
<tr>
<td>Cryocooler Performance</td>
<td>Show that a development path exists to advance cryocooler performance to meet the CFM ConOps needs.</td>
</tr>
</tbody>
</table>

More detailed table in backup section
Fuel Element Development Status

• Fuel Element Development and Test Status

 ▪ Approach 1: Packed Powder Cartridge (PPC) Development
 - BWXT designed and developed the fuel form and cartridge consisting of Molybdenum (Mo)-depleted uranium nitride (dUN) “cold end” and Mo-tungsten (W)-dUN “hot end”
 - Mo-dUN “cold end” FE development and testing
 - Complex fab and assembly: 20” NTREES FEs consisted of 23 parts and 41 welds
 - Challenges to cartridge welds delayed testing approximately 2 months
 - Fuel element butt welds and flow channels showed cracks prior to testing
 - Completed “cold end” Mo-dUN fuel element (FE) test in NTREES
 - Fuel element failed during testing
 - Mo-W-dUN “hot end” FE fabrication delayed from September 2019 to December 2019 due to materials availability and fabrication issues
 - Recommendations from a Design Independent Review Team (DIRT): Discontinue Approach 1 (packed powder cartridge development) and focus resources on alternate FE development activities
 - Canceled: Continuing Mo-W-dUN “hot end” FE fabrication and NTREES test scheduled for January, 2020

Mo-dUn cold end: pre-NTREES test

Centerline crack on side with weld overlap
Packed Powder Cartridge (PPC) Fuel Element Development

- Results: Mo-dUN “cold end” FE testing in the NTREES Test Facility on 6/27/19 (API Milestone)
 - During a planned hold at 1850K the NTREES facility experienced a power system fault resulting in an unintended cool down rate
 - The resulting rate of cooling (≈ 80-90 K/sec) was not greater than predicted for an actual nuclear fuel element in service
 - Determined that the cooling rate did not initiate nor was it insufficient to induce breakage of a properly designed FE
 - FE separated into two pieces along a butt weld; no dUN was present in the chamber

Pursuing multiple manufacturing options for fuel element development

Option 1: Packed Powder Cartridge (Canceled)
Fuel Element Development and Test Status

- **Approach 2: Spark Plasma Sintered (SPS) Cermet Fuel Element Development**
 - MSFC developed process
 - Successfully fabricated and tested 2 hex Mo/W/dUN fuel wafers for testing in the Compact Fuel Element Environmental Test (CFEET) system
 - Will deliver a 16-inch surrogate fuel test article for NTREES testing in November, 2019
 - Fabrication and NTREES testing of Mo-W-dUN diffusion bonded test article is scheduled for March, 2020

- **Approach 3: TRi-structural ISOtropic (TRISO) or Coated Mixed Carbide (CMC) - NEW**
 - STMD provided funding for an initial fuel development study and fabrication demonstration for higher temperature multiuse TRISO fuels
 - Surrogate Silicon Carbide (SiC) TRISO in a SiC matrix
 - Zirconium Carbide (ZrC) TRISO in a ZrC matrix
 - DIRT recommendation: Pursue higher performing (Isp = 1000+ sec) CMC fuel
 - NTP Project formulating a plan for CMC fuel development
- Spark Plasma Sintering (SPS) Cermet FE Development at MSFC
 - Process rapidly (~5 min.) consolidates powder material into solid components
 - Successfully fabricated 2 hex Mo-W-dUN fuel wafers for testing in the CFEET system (GCD milestone)
 - Met integrity and density (>95%)
 - Tested in CFEET at 2250K for 20 minutes under hot hydrogen
 - No noticeable dissociation of UN occurred
 - Experienced migration at Mo-UN interface: confirms that hydrogen is detrimental to fuel performance
 - Cladding is crucial to mitigate hydrogen attack
 - Goal: Fabricate a Mo-W-dUN diffusion bonded FE and test in NTREES by 3/31/20 (API Milestone)

A NASA Proprietary Process via SPS
- Allows for sintering built in cooling channels
- Provides close contact between fuel and cooling channel
- Optimizes heat transfer from fuel

Pursuing multiple manufacturing options for fuel element development
Option 2: Spark Plasma Sintered (SPS)
Fuel Element Development Status, continued

- Why TRi-structural ISOtropic (TRISO) Fuel Development?
 - TRISO development is a joint effort with NASA and the Strategic Capabilities Office (SCO)
 - Additional interest from other agencies including the DOE and DARPA
 - Evolution of High Temperature Gas Cooled Reactor (HTGR) fuels
 - Larger TRISO or TRIZO (ZrC coated) fuel
 - SiC, ZrC or other UHTC matrix
 - Offers High Temperature Multi Use Fuel Feasibility
 - SiC estimated temperature limit: 2100 K (possibly higher with UHTC coatings)
 - ZrC estimated temp. limit: 3000 K
 - Promising chemical compatibility with various coolants: NH3, H2O, CO2, H2, etc.
 - Initial feasibility studies underway with hydrogen
- Began new work to initiate high temperature multi use feasibility and development

Approach 3: TRi-structural ISOtropic (TRISO) or Coated Mixed Carbide (CMC) – New Work
• Fuel Development Design Independent Review Team (DIRT)

 ▪ The Board made four recommendations

1. Discontinue packed powder cartridge fuel development (Option 1) and focus resources on alternate FE development activities

2. Continue to vigorously pursue Spark Plasma Sintering (SPS) fuel development (Option 2)
 - Directed the project to submit a written plan for SPS development for the remainder of the project baseline

3. Recommend not pursuing graphite composite development
 - Directed the project to submit written rationale detailing reasons why graphite composite should not be pursued

4. Recommended continuation of Coated Mixed Carbide (CMC) fuel design including:
 - Surrogate Silicon Carbide (SiC) TRISO in a SiC matrix
 - Zirconium Carbide (ZrC) TRISO in a ZrC matrix
 - Directed the project to submit a written plan for CMC development for the remainder of the project baseline
• SIRIUS-1 Experiment Plan
 - Purpose: Demonstrate TREAT’s ability to simulate prototypic stresses on fuel and evaluate fuel performance during rapid heat up and thermal cycling condition
 - Experiment uses a SPS, hexagonal, 19-hole, Mo-W Cermet sample containing 21% enriched UN
 - Test Campaign Status: (GCD milestone)
 - Completed a successful transient nuclear power test 9/10/19: NTP Project’s first nuclear test
 - Reached a maximum temperature of approximately 2300 C and held a steady temperature hold for approximately 15 seconds before the reactor shut down
 - Examined sample by radiography – no cracking observed
 - Completed second transient test on 10/3/19 reaching same max temperatures as first test
 - Additional transient runs at higher temperatures are scheduled in October/November, 2019
 - Is a pathfinder for future testing of low enriched uranium (LEU) Cermet fuel samples in May, 2020
NTP Technology Development Challenges

- **Nuclear Fuels / Reactor**
 - High temperature/high power density fuel
 - Logistics and infrastructure
 - Unique moderator element/control drums/pressure vessel
 - Short operating life/limited required restarts
 - Space environment

- **Integrated engine design**
 - Thermohydraulics/flow distribution
 - Structural support
 - Turbopump/nozzle and other ex-reactor components
 - Acceptable ground test strategy (technical/regulatory compliant)

- **Integrated stage design**
 - Hydrogen Cryogenic Fluid Management
 - Automated Rendezvous and Docking

NTP can provide tremendous benefits. NTP challenges comparable to other challenges associated with exploration beyond earth orbit.
Flight Demonstration Study
NTP Flight Demo

NTP Demo: First Step

NTP Demo

NASA Robotic Science Missions

Beyond Solar System

NTP Demo

Lunar Power Station

2020

NTP Missions
Humans Beyond Cislunar

2030

Far Future
NTP Flight Demo (FD) Study

- Objective: Generate peer-reviewed documentation and briefings to provide enough clarity to STMD on the potential for executing a NTP flight demo to support an informed response back to Congress.

- The study will:
 1) Evaluate NTP concepts to execute a flight demonstration mission in the immediate timeframe and later options.
 2) Invite similar concept studies from industry.
 3) Assess potential users and missions that would utilize a NTP vehicle.
NTP Flight Demo Options

Flight Demo (FD) Options to be Considered

- FD1 - Nearest Term, Traceable, High TRL (Target Soonest Flight Hardware Delivery)
 - Emphasis on schedule over performance
- FD2 - Near Term, Enabling Capability (TBD availability Date)
 - Emphasis on extensible performance over schedule

Internal (NASA-led) and Industry-led Studies using similar GR&A

Customer Utilization Studies

- Science Mission Directorate
- DoD (via DARPA)

Outbrief to STMD will provide “MCR-like” products

- Including acquisition strategy, draft project plan, certification strategy, etc.
The NTP Flight Demo concept will be developed by an integrated collaborative engineering team:
- Vehicle design and mission analysis led by MSFC Advanced Concepts Office
- Reactor design led by Department of Energy
- Engine system definition led by MSFC Propulsion Department
NTP Flight Demo – FD1 Vehicle

FD1 Mission Profile
- Emphasis on *schedule over performance* in order to accomplish a NTP FD mission in an *immediate* timeframe and still demonstrate a propulsion functionality.
- Vehicle design concept relies on high TRL fuel and reactor designs in order to minimize technical risk, and will emphasize using commercial off-the-shelf (COTS) hardware with minimal modifications to manage cost and streamline the acquisition strategy.

FD1 Mission Study Results
- 5-year project schedule considered executable with moderate risk
- Project cost assessed to be within Category 2 regime (<$1B)
- Mission executed in high earth orbit (>2000 miles) allows simpler onboard systems (esp. power, communications and avionics), better LV affordability.
- All onboard systems considered to be high TRL (7) with the exception of the reactor and associated I&C.

Although the FD1 concept was considered low risk and feasible, it had limited extensibility to an operational NTP system
- GCD preboard considered the schedule to be optimistic and the cost to be out of balance with anticipated results

FD1 NTP Concept
- High TRL fuel (U8Mo)
- Low-risk reactor design
- 1 MWt (100 lbf thrust)
- 1000 K fuel temp (500 sec I_{sp})

No turbopump
- GH2 blowdown
- COPV tanks
- Simple propellant lines and pad processing

No gimbal
- Multi-mode RCS for all impulse
NTPFD internal study Mid-Term Briefing conducted on 31 July to inform NASA response to Congress

- Briefing was presented to the NASA/DoE Preboard and focused on the completed FD1 mission study, with a status of the FD2 study
 - The FD1 mission concept was low risk and feasible, but Preboard considered the 5-year schedule to be optimistic and the cost to be out of balance with the anticipated benefits.

- Work transitioned on to the FD2 mission study
 - Focus on extended schedule to achieve higher performance for improved traceability to an operational NTP system
 - Fuel/Reactor design team conducted a FD2 reactor workshop at NASA-LaRC on 12 September
 - AMA conducted a kickoff of the NTPFD Industry-supported study on 2 October
The STMD NTP project is addressing the key challenges related to determining the technical feasibility and affordability of an LEU-based NTP engine.

- The project is maturing technologies associated with fuel production, fuel element manufacturing and testing.
- The project is developing reactor and engine conceptual designs.
- The project performed a detailed cost analysis for developing an NTP flight system.
- An NTP system could reduce crew transit time to Mars and increase mission flexibility, which would enable a human exploration campaign.
- The project is pursuing multiple study paths to evaluate the cost/benefits and route to execute a NTP Flight Demonstration Project.
Backup
NTP Fuel Element Test Facilities

<table>
<thead>
<tr>
<th></th>
<th>CFEET</th>
<th>NTREES</th>
<th>TREAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>MSFC</td>
<td>MSFC</td>
<td>DOE INL</td>
</tr>
<tr>
<td>Heating</td>
<td>Radiative (RF induction coil coupled with tungsten susceptor)</td>
<td>Test Article Internal Resistance (Current induced by RF Coll)</td>
<td>Nuclear Fission (tailored power)</td>
</tr>
<tr>
<td>NTP Test Fuel</td>
<td>YSZ, ZrN, and dUN</td>
<td>ZrN and dUN</td>
<td>High Assay LEU UN</td>
</tr>
<tr>
<td>NTP Test Specimen</td>
<td>C0, C7 (0 or 7 cooling tubes)</td>
<td>N19 (19 cooling tubes)</td>
<td>C7 (7 cooling tubes)</td>
</tr>
<tr>
<td>NTP Test Specimen Size</td>
<td>0.75" hex, 2" length</td>
<td>1.15" hex, 20" length</td>
<td>0.75" hex, 2" length</td>
</tr>
<tr>
<td>NTP Test Article Temperature</td>
<td>≤ 2850 K</td>
<td>≤ 2850 K</td>
<td>≤ 2850 K</td>
</tr>
<tr>
<td>Test Chamber Pressure</td>
<td>20 psia</td>
<td>≤ 1000 psia</td>
<td>~ 20 psia</td>
</tr>
<tr>
<td>Test Chamber Gas</td>
<td>Hydrogen – Cover</td>
<td>Argon or Nitrogen</td>
<td>Safe Gas Cover</td>
</tr>
<tr>
<td>Test Article Gas Flow</td>
<td>~none</td>
<td>Hydrogen - Full FE Scaled Flow Rate</td>
<td>~none</td>
</tr>
</tbody>
</table>

No one test facility provides everything needed, so multiple existing facilities are leveraged to obtain needed feasibility assessment information.

Compact Fuel Element Environmental Test (CFEET)

Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

Transient Reactor Test Facility (TREAT)
FY19 Results

• Determined 34 of 42 criteria to be green
• Assessed the remaining 8 as yellow: criteria are close to being met with some planned work remaining in FY20

<table>
<thead>
<tr>
<th>System / Subsystem</th>
<th>Criteria Number</th>
<th>Criteria Title</th>
<th>Criteria Statement (Capable of being done, carried out, or dealt with successfully)</th>
<th>Method of Compliance</th>
<th>RYG Assessment by CE/PM</th>
<th>Review and Approval Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine Systems - Integrated System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>NTPE Health and Status Monitoring</td>
<td>Design a NTP engine concept that will monitor the health and status of the engine.</td>
<td>Report</td>
<td>Yellow</td>
<td>Not finished with identification of candidate sensors. This is forward work and could be done in 2020 or as part of an I&C TMP.</td>
<td></td>
</tr>
<tr>
<td>Reactor and Engine System Instrumentation and Control (I&C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine Subsystems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subsystems and Components - Valves</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subsystems and Components - Turbomachinery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subsystems and Components - Reactor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>High Assay Low Enriched Uranium (HALEU) Reactor</td>
<td>Design a reactor concept using a LEU fuel system with a refractory metal based fuel element that will go critical, achieve full rated thermal power conditions, and meet endurance lifetime within the given engine system allocated reactor mass and volume constraints while balancing the power density and ability to cool the reactor.</td>
<td>Analysis, Report, or Design Data</td>
<td>Yellow</td>
<td>Criteria 26 is driving color for 20.</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Material Selection - Reactor</td>
<td>Design a reactor concept capable of operating in a combined thermal and radiation environment.</td>
<td>Report or Design Data</td>
<td>Yellow</td>
<td>Forward work remaining to address stress issues but have design space solutions to explore. This is also driving criteria 20 as well.</td>
<td></td>
</tr>
<tr>
<td>Fabrication Technology and Fuel Tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Fuel Element Designs, Fabrication, and Testing</td>
<td>Design, develop, and test fuel elements that will meet the neutronic, thermal hydraulic, and structural performance requirements of the reactor conceptual design.</td>
<td>Test</td>
<td>Yellow</td>
<td>Test results have slipped into FY20 and have delayed the completion of Feasibility Assessment for Criteria 28 and 31</td>
<td></td>
</tr>
<tr>
<td>Fuel (UN) Production</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>UN Performance - Thermo-physical Character</td>
<td>Performance behavior of fuels in reactor application are understood to give confidence fuel form will function for the endurance lifetime and start/starts.</td>
<td>Report, Analysis, and Test</td>
<td>Yellow</td>
<td>Test results have slipped into FY20 and have delayed the completion of Feasibility Assessment for Criteria 28 and 31</td>
<td></td>
</tr>
</tbody>
</table>

Subsystems and Components - Thrust Chamber Assembly (TCA)

Subsystems and Components - Nozzle

Engine Test Requirements

Nuclear Engine Ground Testing Capability

Cryogenic Fluid Management

NTP Mars Mission CFM

40 | CFM Thermal Performance | Show that CFM system performance will limit LH2 boil-off sufficiently to close the reference mission architecture. | Report, Analysis | Yellow | CFM CONOPS will provide analysis through all mission phases to support assessment |
41 | Propellant Loss due to Leakage | Show that a path exists to develop valves and couplings that provide sufficiently low leakage rate to meet the CFM CONOPS needs. | Report, Analysis | Yellow | Work is ongoing for three different valve designs at M&SC. |
42 | Cryocooler Performance | Show that a development path exists to advance cryocooler performance to meet the CFM CONOPS needs. | Report, Analysis, Test | Yellow | 20 W 20K cryocooler is in development under SBIR. The acceptance test has slipped into FY20 due to mechanical problems with the turbomachinery elements but are not seen as presenting a critical challenge to the technical feasibility. Yellow until testing is done and evaluated. |
Particle design provides excellent fission product retention in the fuel and is at the heart of the safety basis for high temperature gas reactors.

Spherical fuel pebbles

Cylindrical fuel compacts

Prismatic graphite blocks

Pebble bed reactor

Prismatic reactor

TRISO particle

Fuel Kernel (UCO, UO₂)

Porous Carbon Buffer

Inner Pyrolytic Carbon (IPyC)

Silicon Carbide

Outer Pyrolytic Carbon (OPyC)

TRISO Coated Particle Fuel in High-Temperature Gas-Cooled Reactors (HTGRs)
Benefits of NTP

- NTP can be used to provide flexible mission planning by trading objectives including:
 - Offers the most favorable combinations of lowest total mission mass and shortest mission durations compared to chemical or solar electric propulsion
 - Enables significantly shorter trip times than chemical propulsion systems
 - Reductions of 20% or more are achievable depending on mission architecture and vehicle design assumptions
 - Enables opposition-class (short stay) missions with significantly reduced overall trip time compared to conjunction class (long stay) missions
 - Reductions of several months are possible
 - Extends mission abort capability after trans-Mars injection to as much as a few months compared to a hours or a couple of days at most for chemical propulsion
 - Reduces the number of heavy-lift launches required to perform the mission compared to chemical propulsion
Mission: 2033 Fast Conjunction

Mission Times
- Earth-Mars: 160 days
- Mars Stay: 620 days
- Mars-Earth: 160 days

Earth Sphere of Influence
- Aggregation Orbit: NRHO
- Departure / Arrival Orbit: LDHEO

Mars Sphere of Influence
- Arrival / Departure Orbit: 1 SOL

NTP Primary Burns (4)
- TMI ΔV / Time: 622 m/s / 354 sec
- MOI ΔV / Time: 1,668 m/s / 823 sec
- TEI ΔV / Time: 1,352 m/s / 479 sec
- EO1 ΔV / Time: 581 m/s / 181 sec

*Primary burn ΔV values do not include 4% FPR

Earth Sphere of Influence ΔVs (RCS/OMS)
- Launch to NRHO: RCS: 10 m/s / OMS: 115 m/s
- NRHO to LDHEO: RCS: 95 m/s / OMS: 100 m/s
- LDHEO to NRHO: RCS: 46 m/s / OMS: 70 m/s

Mars Sphere of Influence ΔVs (RCS)
- Plane Changes, Apotwist: OMS: 250 m/s

Vehicle Concept Characteristics

Payload: Deep Space Habitat
- Gross Mass: 46,783 kg (At TMI)

Inline (each)
- Propellants: LH2 Main; NTO/Hydrazine RCS
- Main Usable Propellant*: 27,761 kg of LH2
- RCS Usable Propellant: 4,039 kg of NTO/Hydrazine
- Dry Mass: 10,696 kg
- Inert Mass*: 13,075 kg
- Gross Mass: 43,875 kg
- Stage Length: 11.1 m
- Stage Diameter: 7.5 m (7.0 m Tank Diameter)

Core
- Propellants: LH2 Main; NTO/Hydrazine RCS
- Main Usable Propellant*: 13,449 kg of LH2
- RCS Usable Propellant: 3,000 kg of NTO/Hydrazine
- Dry Mass: 26,180 kg
- Inert Mass*: 27,426 kg
- Gross Mass: 43,875 kg
- Stage Length: 19.2 m
- Stage Diameter: 7.5 m (7.0 m Tank Diameter)
- # of NTP Engines: 3
- NTP Engine Thrust: 25,000 lb
- NTP Engine Isp: 875 sec
- OMS Isp: 500 sec

*Main Usable Propellant does not include 4% FPR. Inert Mass does.