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Vaporization @

» At the appropriate temperature, all materials exhibit some degree of vaporization
* May be the limiting factor at high temperatures

 How does the amount of vaporization (net vapor flux) depend on the environment
above the sample? AAAAAN

— Vacuum (e.g. heat treatment)
— Static Gas (e.g. heat treatment, processing) | %
— Flowing Gas (e.g. gas turbine)

o Laminar Flow

» Turbulent Flow

* Model SiO, vaporization — SiO(g) + %2 O,(g) (primary route)
— SiO,(Q)

 Model each with equations from kinetic theory, fluid flow
Flowing gases can also be modeled with Computational Fluid Dynamics (CFD)
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Quantify Vaporization

e Thermochemical: Use partial pressure

* Focus on Vapor: Use J, vapor flux (mole/unit area-unit time) or
(weight/unit area-unit time)

- Ji = % (P,s —P,) h; = Mass transfer coefficient

* Focus on oxidation/corrosion issues of structural materials, use R,
recession rate (unit length/unit time)

Xili

- R; = -

p = Density of oxide
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Vaporization into a Vacuum, Static Gas, Flowing Gas

General limit
= 3
Vacuum Static over pressure Laminar flow LR&= 23X10°<| 1\ hient flow
T . y A ing Products swept away;
/,’vaf 4 “4‘4/71 Y ;'féii?;r;?tyre‘fe stream Vacuum equivalent
TN A,
e,
& -~ -
TIA APAL v
Increasing free stream gas velocity, v,
1
HKL equation Fick's first law Laminar flow Turbulent flow
av[Peq(MO)] D P D; (p; _ . 33 DiP;
p = W J _ﬁ S;Tf J; = 0.665(Re)S (56)0.33‘(+‘f5) J; = 0.0365 (Re)%8(5¢)° 33m

Also model with CFD
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Vaporization of Clean Surface into a Vacuum

» Derive flux from kinetic theory of gases
e J=0oP/(2rMRT)%>

K *" o = vaporization coefficient (kinetic

‘ . factor)

! Alom absorbed on surface (n = 3}] | Atom absorbed on ledge (n = 5) l

|"-¢'g’ ."‘:ﬂ- .,’F- :
;m#ﬁb
I.“J‘ #’l ."

 Fundamental models* of vaporization
developed from these conditions
« Terrace-Ledge-Kink model
* Vaporizing species moves to smaller
coordination number site
o« A(s) > A() > A(a) »> A(g)

Kink atom (n = 6) [ Atom in surface (n = 9) [ Atom in ledge {n = 7) ]

*1, O. Knacke and I. N. Stranski, The mechanism of evaporation. In
Progress in Metal Physics: 6, 1956 (181-235).

2. W. Hirschwald and I. Stranski, Theoretical considerations and
experiments on evaporation of solids. In Condensation and Evaporation
of Solids, Gordon & Breach, New York, 1964 (59-85).
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Vaporization from a SiO, coupon in a Vacuum @
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Vaporization into a Static Gas

* Inert Gas: Kinetic effect only
— Fick’s first law

]. —_p dCl' _Di dPl N _Di PO
i =

{dx  RT dx RT x

— Flux oc 1/x

» Reactive Gas
— Kinetic effect
— Thermodynamic Effect
e Suppress vaporization
—Si0,(s) = SiO(g) + Y2 O,(9)
 Enhance vaporization
—Cr,05(s) + 3/2 O,(g} = 2CrO4(9)
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Best shown with volatility diagrams (Kellogg 1966)
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Flowing Gas: Developing Boundary Layer

 Laminar — Turbulent by increasing Reynolds number

* Re, = % Increases with increasing p, v, L

Fluid flow —»

Free stream 1 Laminar Transition | Tubulent
velocity, v, i boundary layer region i boundary layer Yy o

Tubulent
region

<
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___ Viscous
 ~ sub-layer

4
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hSolid oxide

Recession or vapor flux

QSoIid oxide |

* Velocity boundary layer: Edge at 99% of free stream velocity
* Turbulent region has steep gradient in velocity near surface: viscous sublayer
* Viscous sub-layer limits vapor flux; Flux in rapidly flowing inert gas = Flux in vacuum
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J(kg/m2-s)

Comparison of Fluxes for each Condition
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Computational Fluid Dynamics (CFD): Maria Kuczmarski

o Set up small cells around samples
e Conservation of mass, momentum, energy within each cell.
» Define the problem

— Coupon

Inlet
Mass flow inlet

1.076 E-5 kg/sec
298 K

L

z

in a furnace: Model half the system to utilize symmetry

Flow direction g
Outlet

Pressure outlet
% 101325 Pa

208 K

Apply temperature profile Coupon

Apply temperature profile
o to outside wall
YL

X

— Steady state, incompressible fluid, include thermal diffusion
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Laminar Flow CFD Results with Temperature Fixed:
Velocities and x(SiO), x(O,)
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(b)

o Coupon disturbs flow: Boundary layer
 Distribution of SiO, O, after coupon
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Natonal aeronauties and spece aaministal T r Ry lent Flow: CFD Results with Temperature Fixed
Velocities and x(SiO), x(0O,)
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(b)
o Coupon disturbs flow: Boundary layer
 Distribution of SiO, O, after coupon
more localized
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Recession for Turbulent Flow 51
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Summary and Conclusions: Effect of Gas Atmosphere on Vaporization

General limit
= 3
Vacuum Static over pressure Laminar flow [SR&= 28X10%<] 1 1ent flow
> N - \\ [ . Products swept away;
i 4 AN 41\‘ Increasing free stream Vacuum equivalenty
XA 4 XYl gas velocity, v,
- /7 ( - \\ '\* ’
P v A A
d— =K Y
& e
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- , G &b s
Increasing free stream gas velocity, v, L L

! ; >

« Vacuum: HKL equation from kinetic theory; modified by vaporization
coefficient

» Static over pressure

— Inert gas: Kinetic effect limits diffusion of vapor species, Fick’s first
law

— Reactive gas: May suppress or enhance reaction products
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Summary and Conclusions: Effect of Gas Atmosphere on Vaporization

» Use analytic and CFD approach for laminar and turbulent flow

— Both show more recession at leading edge; rates through turbulent
flow approach rates through a vacuum

— Laminar flow CFD about ¥4 of recession predicted with analytic
methods

— Turbulent flow close near leading edge, but about an order of
magnitude lower than that predicted with analytic methods

— Differences likely due to heat transfer issues

* We had to fix coupon temperature to avoid dramatic coupon
cooling

» The analytical expressions provide good results which are easily
obtained

» CFD offers a more comprehensive model of the process
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