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Vaporization
• At the appropriate temperature, all materials exhibit some degree of vaporization

• May be the limiting factor at high temperatures

• How does the amount of vaporization (net vapor flux) depend on the environment 
above the sample?
– Vacuum (e.g. heat treatment)
– Static Gas (e.g. heat treatment, processing)
– Flowing Gas (e.g. gas turbine)

• Laminar Flow
• Turbulent Flow

• Model SiO2 vaporization → SiO(g) + ½ O2(g)    (primary route)
→ SiO2(g)

• Model each with equations from kinetic theory, fluid flow
Flowing gases can also be modeled with Computational Fluid Dynamics (CFD)
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Quantify Vaporization

• Thermochemical:  Use partial pressure

• Focus on Vapor:  Use J, vapor flux (mole/unit area-unit time) or 
(weight/unit area-unit time)

– 𝐽𝐽𝑖𝑖 = ℎ𝑖𝑖
𝑅𝑅𝑅𝑅

𝑃𝑃𝑖𝑖,𝑠𝑠 − 𝑃𝑃𝑖𝑖,∞ ℎ𝑖𝑖 = Mass transfer coefficient   

• Focus on oxidation/corrosion issues of structural materials, use R, 
recession rate (unit length/unit time)

– 𝑅𝑅𝑖𝑖 = ∑𝑖𝑖 𝐽𝐽𝑖𝑖
𝜌𝜌

𝜌𝜌 = Density of oxide     
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Vaporization into a Vacuum, Static Gas, Flowing Gas

Also model with CFD
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Vaporization of Clean Surface into a Vacuum

• Derive flux from kinetic theory of gases
• J = αP/(2πMRT)0.5

• α = vaporization coefficient (kinetic 
factor)

• Fundamental models* of vaporization 
developed from these conditions

• Terrace-Ledge-Kink model
• Vaporizing species moves to smaller 

coordination number site
• A(s) → A(l) → A(a) → A(g)

*1, O. Knacke and I. N. Stranski, The mechanism of evaporation. In 
Progress in Metal Physics: 6, 1956 (181-235).
2. W. Hirschwald and I. Stranski, Theoretical considerations and 

experiments on evaporation of solids. In Condensation and Evaporation 
of Solids, Gordon & Breach, New York, 1964 (59-85).
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Vaporization from a SiO2 coupon in a Vacuum

𝐽𝐽 =
𝛼𝛼𝑃𝑃𝑒𝑒𝑒𝑒(𝑀𝑀𝑀𝑀)

2𝜋𝜋𝑀𝑀𝑅𝑅𝜋𝜋

• α(Pure metals) ~ 1   
• α(Oxides) 1 to 10-6 !
• α(SiO2) = (5 - 22) x 10-3

α = vaporization coefficient 
(kinetic factor)
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Vaporization into a Static Gas

• Inert Gas: Kinetic effect only
– Fick’s first law

𝐽𝐽𝑖𝑖 = −𝐷𝐷𝑖𝑖
𝑑𝑑𝑐𝑐𝑖𝑖
𝑑𝑑𝑑𝑑

=
−𝐷𝐷𝑖𝑖
𝑅𝑅𝜋𝜋

𝑑𝑑𝑃𝑃𝑖𝑖
𝑑𝑑𝑑𝑑

≈
−𝐷𝐷𝑖𝑖
𝑅𝑅𝜋𝜋

𝑃𝑃𝑜𝑜
𝑑𝑑

– Flux ∝ 1/x

• Reactive Gas
– Kinetic effect
– Thermodynamic Effect

• Suppress vaporization
–SiO2(s) = SiO(g) + ½ O2(g)

• Enhance vaporization
–Cr2O3(s) + 3/2 O2(g} = 2CrO3(g)
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Reactive Gas Over Pressure

Best shown with volatility diagrams  (Kellogg 1966)

• Plot of log P(MxOy(g)) vs log P(O2)

• Negative slope means: ↑ P(O2), ↓ P(MxOy)
• SiO2, Al2O3

• Positive slope means: ↑ P(O2), ↑ P(MxOy)
• Cr2O3

Kohl et al.,NASA TM-X-73682
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Flowing Gas: Developing Boundary Layer

• Velocity boundary layer: Edge at 99% of free stream velocity
• Turbulent region has steep gradient in velocity near surface: viscous sublayer
• Viscous sub-layer limits vapor flux; Flux in rapidly flowing inert gas = Flux in vacuum

• Laminar → Turbulent by increasing Reynolds number
• 𝑅𝑅𝑅𝑅𝑥𝑥 = ρ𝑉𝑉𝑉𝑉

µ Increases with increasing ρ, v, L
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Comparison of Fluxes for each Condition

J(vacuum with α = 1) > J(vacuum with α = 0.02, turbulent) > J(Laminar, static) 
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Computational Fluid Dynamics (CFD): Maria Kuczmarski

• Set up small cells around samples
• Conservation of mass, momentum, energy within each cell.
• Define the problem

– Coupon in a furnace: Model half the system to utilize symmetry

– Steady state, incompressible fluid, include thermal diffusion
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Laminar Flow CFD Results with Temperature Fixed:
Velocities and x(SiO), x(O2)

• Coupon disturbs flow: Boundary layer
• Distribution of SiO, O2 after coupon 
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Recession for Laminar Flow

10000 s

1000 s

100 s

10 s

Solid line: Analytic
Dashed line: CFD
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Turbulent Flow: CFD Results with Temperature Fixed
Velocities and x(SiO), x(O2)

• Coupon disturbs flow: Boundary layer
• Distribution of SiO, O2 after coupon
more localized 

Note boundary layer, flow changes
on trailing edge
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Recession for Turbulent Flow

Solid line: Analytic
Dashed line: CFD
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Summary and Conclusions: Effect of Gas Atmosphere on Vaporization

• Vacuum: HKL equation from kinetic theory; modified by vaporization 
coefficient

• Static over pressure
– Inert gas: Kinetic effect limits diffusion of vapor species, Fick’s first 

law
– Reactive gas:  May suppress or enhance reaction products
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Summary and Conclusions: Effect of Gas Atmosphere on Vaporization

• Use analytic and CFD approach for laminar and turbulent flow

– Both show more recession at leading edge; rates through turbulent 
flow approach rates through a vacuum

– Laminar flow CFD about ¼ of recession predicted with analytic 
methods

– Turbulent flow close near leading edge, but about an order of 
magnitude lower than that predicted with analytic methods

– Differences likely due to heat transfer issues
• We had to fix coupon temperature to avoid dramatic coupon 

cooling

• The analytical expressions provide good results which are easily 
obtained 

• CFD offers a more comprehensive model of the process
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