

High Temperature Vaporization into Different Environments

Nathan Jacobson, Maria Kuczmarski, and Benjamin Kowalski Materials and Structures Division NASA Glenn Research Center Cleveland, OH 44135

MS&T 2019 Thermodynamics of Materials in Extreme Environments October 2, 2019 Portland, OR

Vaporization

- At the appropriate temperature, all materials exhibit some degree of vaporization
- May be the limiting factor at high temperatures
- How does the amount of vaporization (net vapor flux) depend on the environment above the sample?
 - Vacuum (e.g. heat treatment)
 - Static Gas (e.g. heat treatment, processing)
 - Flowing Gas (e.g. gas turbine)
 - Laminar Flow
 - Turbulent Flow
- Model SiO₂ vaporization \rightarrow SiO(g) + ½ O₂(g) (primary route) \rightarrow SiO₂(g)
- Model each with equations from kinetic theory, fluid flow
 Flowing gases can also be modeled with Computational Fluid Dynamics (CFD)

Quantify Vaporization

- Thermochemical: Use partial pressure
- Focus on Vapor: Use *J*, vapor flux (mole/unit area-unit time) or (weight/unit area-unit time)

 $-J_i = \frac{h_i}{RT} \left(P_{i,s} - P_{i,\infty} \right)$ $h_i = \text{Mass transfer coefficient}$

• Focus on oxidation/corrosion issues of structural materials, use R, recession rate (unit length/unit time)

 $-R_i = \frac{\sum_i J_i}{\rho}$ $\rho = \text{Density of oxide}$

Vaporization into a Vacuum, Static Gas, Flowing Gas

Also model with CFD

Vaporization of Clean Surface into a Vacuum

- Derive flux from kinetic theory of gases
 - $J = \alpha P / (2\pi MRT)^{0.5}$
 - α = vaporization coefficient (kinetic factor)
- Fundamental models* of vaporization developed from these conditions
 - Terrace-Ledge-Kink model
 - Vaporizing species moves to smaller coordination number site
 - $A(s) \rightarrow A(l) \rightarrow A(a) \rightarrow A(g)$

*1, O. Knacke and I. N. Stranski, The mechanism of evaporation. In Progress in Metal Physics: 6, 1956 (181-235).
2. W. Hirschwald and I. Stranski, Theoretical considerations and experiments on evaporation of solids. In Condensation and Evaporation of Solids, Gordon & Breach, New York, 1964 (59-85).

Vaporization from a SiO₂ coupon in a Vacuum

$$J = \frac{\alpha P_{eq}(MO)}{\sqrt{2\pi MRT}}$$

 α = vaporization coefficient (kinetic factor)

- α (Pure metals) ~ 1
- α (Oxides) 1 to 10⁻⁶ !
- $\alpha(SiO_2) = (5 22) \times 10^{-3}$

Vaporization into a Static Gas

- Inert Gas: Kinetic effect only
 - Fick's first law

$$J_i = -D_i \ \frac{dc_i}{dx} = \frac{-D_i}{RT} \ \frac{dP_i}{dx} \approx \frac{-D_i}{RT} \frac{P_o}{x}$$

- Flux $\propto 1/x$

- Reactive Gas
 - Kinetic effect
 - Thermodynamic Effect
 - Suppress vaporization

 $-SiO_2(s) = SiO(g) + \frac{1}{2}O_2(g)$

• Enhance vaporization

 $-Cr_2O_3(s) + 3/2 O_2(g) = 2CrO_3(g)$

NASA

Reactive Gas Over Pressure

Best shown with volatility diagrams (Kellogg 1966)

- Plot of log $P(M_xO_y(g))$ vs log $P(O_2)$
- Negative slope means: ↑ P(O₂), ↓ P(M_xO_y)
 SiO₂, Al₂O₃
- Positive slope means: $\uparrow P(O_2)$, $\uparrow P(M_xO_y)$
 - Cr_2O_3

Kohl et al., NASA TM-X-73682

Flowing Gas: Developing Boundary Layer

- Laminar \rightarrow Turbulent by increasing Reynolds number
- $Re_x = \frac{\rho VL}{\mu}$ Increases with increasing ρ , v, L

- Velocity boundary layer: Edge at 99% of free stream velocity
- Turbulent region has steep gradient in velocity near surface: viscous sublayer
- Viscous sub-layer limits vapor flux; Flux in rapidly flowing inert gas = Flux in vacuum

Comparison of Fluxes for each Condition

J(vacuum with $\alpha = 1$) > J(vacuum with $\alpha = 0.02$, turbulent) > J(Laminar, static)

Computational Fluid Dynamics (CFD): Maria Kuczmarski

- Set up small cells around samples
- Conservation of mass, momentum, energy within each cell.
- Define the problem
 - Coupon in a furnace: Model half the system to utilize symmetry

- Steady state, incompressible fluid, include thermal diffusion

Laminar Flow CFD Results with Temperature Fixed: Velocities and $x(SiO), x(O_2)$

- Coupon disturbs flow: Boundary layer
- Distribution of SiO, O₂ after coupon

Recession for Laminar Flow

Increasing free stream

National Aeronautics and Space Administration Turbulent Flow: CFD Results with Temperature Fixed Velocities and $x(SiO), x(O_2)$

Note boundary layer, flow changes on trailing edge

- Coupon disturbs flow: Boundary layer
- Distribution of SiO, O₂ after coupon more localized

Recession for Turbulent Flow

Summary and Conclusions: Effect of Gas Atmosphere on Vaporization

- Vacuum: HKL equation from kinetic theory; modified by vaporization coefficient
- Static over pressure
 - Inert gas: Kinetic effect limits diffusion of vapor species, Fick's first law
 - Reactive gas: May suppress or enhance reaction products

Summary and Conclusions: Effect of Gas Atmosphere on Vaporization

- Use analytic and CFD approach for laminar and turbulent flow
 - Both show more recession at leading edge; rates through turbulent flow approach rates through a vacuum
 - Laminar flow CFD about ¼ of recession predicted with analytic methods
 - Turbulent flow close near leading edge, but about an order of magnitude lower than that predicted with analytic methods
 - Differences likely due to heat transfer issues
 - We had to fix coupon temperature to avoid dramatic coupon cooling
- The analytical expressions provide good results which are easily obtained
- CFD offers a more comprehensive model of the process