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Abstract. Object and template matching becomes

difficult when an image lacks detail. This is particu-

larly worrisome when typical matching techniques, cross-

correlation, log-polar mapping, and key point matching

fail. Work herein describes a formulation that identifies

objects of interest, estimates the affine transformation be-

tween a template object and scene using Principal Com-

ponent Analysis (PCA), and provides a fit value for the

objects and template incorporating Hu’s Moments. The

algorithm presented is tested on synthetic images and im-

ages obtained from the OSIRIS-REx mission while the

spacecraft was approaching its target, Bennu. Results for

the current formulation show that, with the presence of

large-scale variations and rotation, the fitting scheme per-

forms well when compared with other techniques.

Introduction. In certain areas of digital image pro-

cessing, it is beneficial to match an image or object tem-

plate to a given scene. Typically this is done by al-

gorithms such as a standard cross-correlation technique,

log-polar mapping, or key point matching using SIFT or

SURF.1–5 However, all these forms typically breakdown

when images and templates lack sufficient object features,

details, or have large-scale differences. Such scenarios oc-

cur in space missions where the spacecraft is arriving at

a target body. These scenarios may be a flyby or ren-

dezvous required for planetary defense missions or science

missions, such as the OSIRIS-REx mission to the asteroid

Bennu. There is a time during approach, when captur-

ing images, where the target body is an extended source

on the image but only appears as a fuzzy shape, lacking

sufficient surface features or details.

During approach, along with proximity operations, it

is advantageous to have the knowledge of the target’s

size and relative orientation with the observing device

(rotation about boresight specifically). However, there

may be situations where the scale, camera orientation,

and object’s position are not well known. In the case

of the OSIRIS-REx mission, an initial shape model and

state of Bennu were generated by information from the

Arecibo observatory, lightcurve data, and the Goldstone

tracking station.6 Currently, it is not published how

well the initial shape model fit with the actual shape

of Bennu. Work herein describes a new process using

Principal Component Analysis (PCA), which determines

the scale, rotation, and translation of a template object

compared to a scene. Additionally, a fitness value is

developed, which indicates the match of the template to

the scene target.

Methodology. Since both the template and the scene

object lack sufficient detail, a new process is created, in-

corporating ideas from object silhouettes and blob detec-

tion. Scenarios presented in this paper assume that a

predicted template is available. A multi-level threshold

algorithm is applied to both the template and image to

create binary blobs. Each blob is then analyzed to find

its centroid, eigen axes, and edge interest points (EIP)s.

After a blob has been analyzed, it then undergoes a mini-

mization, calculating the best fit affine transformation for

centroid and EIP matching between the scene and tem-

plate. Once the transformation is estimated, the template

is mapped to the scene and a fitness value is calculated.

An overall workflow can be seen in Fig. 1.

Figure 1. Overall workflow of algorithm

Blob Detection. As is done in traditional scale-

invariant feature descriptors, the algorithm begins by

building an image pyramid for both the template and the

image by convolving Gaussian kernels of varying standard

deviations. At each stage, a multi-level threshold is

completed on the template and image. This is done

by implementing Otsu’s method.7 Once each level is

determined (generally a starting number of levels is six) a

process of merging levels is completed. Doing so involves

calculating outliers, using median formulation, of the

number of pixels in each level. In general, the background

makes up the majority of the pixels in the first threshold

level, while the top level (6) and surrounding levels (4

and 5) hold objects of interest. If a lower amount of
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levels is desired, for example four, then the top two to

three levels hold objects of interest, usually. However, if

the image is “noisy”, only the top level should be used.

The noise can create false objects of interest. After the

image is split up into background levels and objects of

interest levels, the levels that contain background values

are merged, and the threshold value is used create a

binary image. Each image is then converted into a binary

image after the suitable level threshold is determined.

Thereafter, image segmentation is completed to identify

objects in the scene and template. A sub-image is

created for each binary blob, creating a “local” image to

be compared with the template.

Principal Component Analysis. Eigen axes are com-

puted for each object in the scene and template.8 How-

ever, the eigenvectors, mathematically, can have a posi-

tive or negative direction depending on the formulation.

This direction ambiguity of the axis is remedied by incor-

porating data analysis. An inner product of the points

within the binary object and the eigen axes is computed.

si =

n∑
k=1

uixk |uixk| (1)

where s is the the scalar value to be used to determine

the eigenvector sign, i is the ith eigenvector, n is num-

ber of interest points, ui is the ith 2x1 eigenvector, and

xk is the kth 1x2 interest point coordinates. If s < 0,

then the ith eigenvector is multiplied by −1. Otherwise,

the eigenvector’s direction does not need to be reversed.

Similar techniques have been investigated for single value

decomposition.9

An EIP is found by determining a point in the blob

that is farthest away from the center-of-mass along a

given eigen axis or rotated eigen axis. This point does

not need to have integer coordinates, which pertains to

an image pixel location. If the EIP locations were to

be integer values, they might result is suitable locations

for EIP point matching between the template and scene

object.

Interest Point Determination. After the eigen axes are

computed, a set of axes is also determined by rotating the

computed eigen axes. These rotated axes can be at any

angle or be of any number. An example of the eigen axis

and subdivisions can be seen in Figs. 2 and 3. Along each

axis, an EIP is found. Fig. 3 shows binary objects, both

from the template and image, showing the eigen axes,

rotated axes (set of 2), centroid, and EIPs.

The collection of EIPs is important to the overall shape

and orientation of an object. In essence, the EIPs create

boundary points that have an orientation referenced to

an eigen axis. This reference of the points gives the ini-

tial guess for scale and orientation. If the incorrect eigen

axes are matched, it could result in an object that has

incorrect rotation, scale, and translation. Simply obtain-

Figure 2. Binary object with EIPs, eigen axes, and

10 rotated axis sets (eigen axes are solid lines)

ing the boundary of an object will not suffice. Boundary

points are not referenced to an eigen axis, which causes

the inability to provide an initial scale and rotation esti-

mate.

Figure 3. Binary objects (scene object left and tem-

plate right) with EIPs along the eigen axes and ro-

tated axes (eigen axes are solid lines)

Affine Transformation Estimation. Since EIPs and the

centroid have been determined, the affine transformation

between the template and scene object points can be es-

timated. This is done by minimizing the squared differ-

ences of the transformed template EIPs and the scene

object EIPs. The expression for minimization is given by

the following equation

G =

n∑
i=1

[TPTi
−PSi

]T[1x2] [TPTi
−PSi

][2x1] (2)

where G is the value to minimize, n is the number of

EIPs, i is the index of the EIPs, PT is a matrix (3 x

n) containing the x and y pairs for the EIPs correspond-

ing to the template with the third row being unity, and

PS is a matrix (2 x n) containing the x and y pairs for

the EIPs corresponding the scene. The matrix T is the

transformation (2 x 3 matrix) given by

T =

[
Kcos(θ) −Ksin(θ) TX
Ksin(θ) Kcos(θ) TY

]
(3)
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where K is the scale, θ is the rotation about the center-

of-brightness, TX is the horizontal translation, and TY
is the vertical translation. These four variables are what

change in the minimization scheme. Initial conditions can

be computed by using a comparison between scene and

template centroids as well as one EIP. The translation

initial condition is found by taking the difference between

the template and scene object centroid; the initial scale is

found by the ratio of the principle axis EIP magnitudes

corresponding to the template and scene object; the initial

rotation is determined by calculating the angle between

the principal axes of the template and scene object.

After T is estimated, the scene with respect to the

object is reconstructed from the template, and another

minimization is completed to better refine the transfor-

mation matrix. The minimization attempts to minimize

the following function

J =
∑
ij

−1

1 +
(
Rij − Lij

)2 (4)

where i and j are the columns and rows of the cut

template, R is the ith and jth element of the template

sub-image, and L is the interpolated value from the image

at the ith and jth element of the template sub-image.

Transformation Fit Value. To determine if the object

and image reconstruction are correctly matched, a fitness

value is computed based on cross-correlation, normalized

summed square differences, and normalized absolute dif-

ferences of the image and template’s Hu’s moments.10,11

The normalized summed square difference is computed by

cd =

∑
((M−R) ◦ (M−R))

n
(5)

where ◦ is the Hadamard product (matrix or vector

element-wise multiplication), M is the image resulting

from the Hadamard product of the object sub-image and

object blob sub-image, and R is the template resulting

from the Hadamard product of the template sub-image

and template blob sub-image. The blob sub-images, for

both object and template, are represented by zeros and

ones. Creating M and R through this multiplication elim-

inates any noise that is outside the object (“cookie cut-

ting” the object based on its blob representation) and

helps in the correlation coefficient calculation.

The cross-correlation if calculated by

cr =

∑(
M′ ◦R′

)√
(
∑

(M′ ◦M′)) (
∑

(R′ ◦R′))
(6)

where M′ is the sub-image, M, subtracted by its own

mean value, and R′ is the template sub-image, R, sub-

tracted by its own mean value.

A third variable required by the overall fit value involves

the computation of Hu’s moments. Once the object mo-

ments are calculated, the final component required for the

fit value can be computed as

cH =
∑

(|HM −HR| � |HM |) (7)

where || denotes absolute value of each vector component,

� is the Hadamard division (matrix or vector element-

wise division), HM is the Hu’s moments vector (1 x 7)

of the scene sub-image M, and HR is the Hu’s moments

vector (1 x 7) of the template sub-image R.

Combining the three calculated components allows for

a final fitness value. This value is given by

c = 100 cH cd (1− cr)2 (8)

The closer the fitness value is to zero, the more likely the

template affine transformation and template match the

scene object.

Preliminary Results. By following the above pro-

cess, a collection of scenarios is analyzed. These scenar-

ios are based on images generated for and taken from the

OSIRIS-REx mission. To understand the presented re-

sults, a few definitions and clarifications must be made.

The scale value indicates how much larger the actual

object is compared to the template object (a value of 2.0

indicates that the scene object is 2 times larger than the

template or that the template is 0.5 times as large as the

scene). Furthermore, the vertical and horizontal trans-

lation for the actual value is estimated based on center-

of-brightness differences between the template and scene

object, much like how cross-correlation works. When the

rotation is different than zero degrees, the method de-

veloped herein does not match with the actual value of

translation. This is due to the formulation and represen-

tation of the affine transformation, a translation from the

scaled and rotation template. Additionally, rotation is de-

fined by how many degrees the template must be rotated

to be aligned with the scene object.

All results are broken up into two main portions.

The first subsection is initial testing using synthetic

images, and the second subsection uses images take

from the OSIRIS-REx spacecraft. Images used in the

“Bennu:<date>” notation were taken using OSIRIS-

REx’s PolyCam during the Approach phase of the

spacecraft’s arrival at Bennu.12,13

Figure 4. Cropped scene (left) compared with tem-

plate (right) (image not to scale)

2nd RPI Space Imaging Workshop. Saratoga Springs, NY.

28-30 October 2019

3



Synthetic Images. For an initial test, a scenario was

created that used fully synthetic images. This was used

to initially test if the method developed would result in

reasonable values. As it can be seen in Fig. 4, the scene

sub-image and template have generally the same shape.

Also, the shapes are unique to an asymmetric body and

high phase angle. When objects are symmetric and/or

being illuminated so that the shape is symmetric about

either one of the eigen axes, there can still be a rotation

ambiguity. In particular, imagine approaching a spherical

object that is being fully illuminated. Scale and transla-

tion can be found, but there is no uniqueness to a blob’s

silhouette/shape.

Figs. 4 and 5 are an image and template comparison

as well as a scene object reconstruction. However, due

to the image resolution (1944 x 2592 pixels), Fig. 4 is

not to scale. Table 1 shows the estimated values for

the transformation and the fitness value computed. The

reconstruction matches the shape well. However, detail

is lacking in both images. Due to such a blurry template,

the method was only able to find the scale and rotation

within 0.064 and 1.75◦ of the actual scene and template

difference. With the difference in scale and rotation, it is

not surprising that the translation does not match well

either. Further results will consider images taken from

the Approach phase of the OSIRIS-REx mission.

Figure 5. Image reconstructed: scene object (left)

and template (right)

Table 1. Transformation and Fitness Values

Fitted Actual This Cross Log Matlab

variable Value Work Corr. Polar SURF

Scale (K) 1.6 1.5442 - x x

Rot. (θ) 0 1.7481 - x x

Horz. (TX) 1162.7 1158.5 1163 x x

Vert. (TY ) 1302.5 1297.8 1301 x x

Fitness (c) - 2.79e-05 - - -

Bennu: 2018-10-21 Epoch . On October 21st, 2018, the

OSRISIS-REx spacecraft was able to take images, using

its PolyCam, in which Bennu reached about 10 pixels

in diameter on the detector array. A cropped image of

Bennu can be seen in Fig. 6. There is not much detail

on the body. In fact, Bennu barely has a distinguishable

shape. Additionally, the shape almost seems symmetric,

and the phase angle is nearly zero.

Table 2 shows the results of the four methods being

tested for scale, rotation, and translation. This initial

result corresponds to a scale factor of 1 and a rotation

of 0◦. The considered method estimated the scale and

rotation well for such a small object. However, the

cross-correlation was able to estimate a more correct

translation.

Figure 6. Cropped image of Bennu taken on 2018-

10-21 using PolyCam

Table 2. Initial Transformation and Fitness Val-

ues for Template Rotation of 0◦ at Image Epoch of

2018-10-21

Fitted Actual This Cross Log Matlab

variable Value Work Corr. Polar SURF

Scale (K) 1.0 0.96 - 0.56 0.97

Rot. (θ) 0 1.2 - 30 0.57

Horz. (TX) 502.8 504.2 503 505.5 391.1

Vert. (TY ) 510.2 511.3 510 509.6 409.5

Fitness (c) - 9.6e-06 - - -

Rotation -30◦: To see how the method works with

different scale errors and rotation, the template is shrunk,

enlarged, and rotated. Here specifically, the template is

rotated -30◦ from the scene object. A scale estimation

of 2.0 indicates that the template is smaller by a factor

of two than actual object (here 5 pixels wide). At this

width of pixels, the object may appear as if it symmetric

or even a point source. However, when the scale factor is

0.1, the template is 10 times larger than that of the scene

object (≈100 pixels wide).

Table 3 shows the results of changing the scale of the

template when it is rotated -30◦ from the scene object.

Shrinking the template by a factor of 2 created too small

of an object to see much of any blob detail. The template

can be seen in Fig. 7. An object, such as this, lacks any

sufficient detail for rotation and possibly shape. This can
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Table 3. Transformation and Fitness Values for

Template Rotation of -30◦ at Image Epoch of 2018-

10-21

Fitted Actual This Cross Log Matlab

variable Value Work Corr. Polar SURF

Scale (K) 2.0 1.8 - 1.0 x

Rot. (θ) 30 0.0 - 180 x

Horz. (TX) 504.9 502.1 505 505.2 x

Vert. (TY ) 513.6 510.9 514 506.1 x

Fitness (c) - 0.0062 - - -

Scale (K) 1.0 0.97 - 0.76 x

Rot. (θ) 30 27.3 - 66 x

Horz. (TX) 502.3 507.3 503 502.2 x

Vert. (TY ) 510.3 509 510 510.2 x

Fitness (c) - 6.51e-05 - - -

Scale (K) 0.5 0.51 - 0.68 x

Rot. (θ) 30 27.7 - 16.4 x

Horz. (TX) 495.1 506 -6 497.7 x

Vert. (TY ) 503.3 507.9 -8 504.3 x

Fitness (c) - 0.0003 - - -

Scale (K) 0.1 0.104 - 0.081 x

Rot. (θ) 30 28.8 - -89.4 x

Horz. (TX) 448.8 503.3 -19 395.6 x

Vert. (TY ) 452.9 501.8 -29 314.4 x

Fitness (c) - 0.133 - - -

be seen within the table. With such a small template,

the demonstrated method was unable to correctly find

the rotation. However, the approximation of the scale is

within 10 percent of the actual scale, and the translation

is only a few pixels off, due the scale and rotation error.

When examining the other scales, the method herein is

able to estimate the scale accurately (less than 4 percent

error) and the rotation within 9 percent. Note, the trans-

lation does not match the centroid compared translation.

This is due to the method estimating the translation of

the rotated and scaled object, not just pure translation

between centers-of-brightness.

Figure 7. Template generated for Bennu on 2018-

10-21, with a scale factor 0.5 and rotation of -30◦

Cross-correlation performs well for finding the trans-

lation. However, once the template becomes too large,

cross-correlation fails to find a reasonable translation

solution. The Log-Polar formulation is able to estimate

the translation well, until the template scale becomes too

large. Furthermore, the SURF method fails to find any

key-points and is unable to predict any parameters.

Bennu: 2018-10-25 Epoch . As the OSRIS-REx space-

craft continued to approach Bennu, the object filled more

pixels on the sensor array. At this time, Bennu appeared

to be approximately 20 pixels in diameter. A cropped im-

age can be seen in Fig. 8. Shown in the figure, the object

Bennu is starting to have more detail compared to what

it was just four days prior. Similarly, a test case is con-

ducted to see how all the methods fair with no rotation

and scale difference. The results are given in Table 4.

Figure 8. Cropped image of Bennu taken on 2018-

10-25 using PolyCam

All methods other than SURF give a solution.

Cross-correlation, as expected, finds exactly (to the

nearest pixel) the correct translation from the original

image. Log-Polar is able to determine a correct scale but

does not provide a correct rotation and gives a slightly

different translation value. The method described herein

has a 1 percent error in scale, calculates a rotation of

1.8◦, and has a similar translation to the true value.

Reasons for the difference in translation are due to the

slight difference in scale and the small calculated rotation.

Rotation 60◦: To test the scale and rotation estima-

tion given a more detailed object and template, the tem-

plate is rotated by 60◦ and is subjected to the same scale

changes as is done in the previous case. Note, when the

scale is 0.1, the template object is approximately 200 pix-

els in diameter.

Table 5 provides the results from the rotation and

scale tests. Cross-correlation is unable to determine

the correct translation, except for when there is no

scale difference between the template and scene object.
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Table 4. Initial Transformation and Fitness Val-

ues for Template Rotation of 0◦ at Image Epoch of

2018-10-25

Fitted Actual This Cross Log Matlab

variable Value Work Corr. Polar SURF

Scale (K) 1.0 0.99 - 1 x

Rot. (θ) 0 1.8 - 18 x

Horz. (TX) 492.9 494.5 493 489.5 x

Vert. (TY ) 509.2 510 509 505.6 x

Fitness (c) - 1.2e-05 - - -

Surprisingly, Log-Polar is able to determine a scale that

is similar to the actual value, but fails to provide suitable

rotations and, in instances other than when the scale is

1.0 case, translations. SURF is not able to register any

key points. However, the method herein is able to find a

solution for all cases. The largest scale difference is the

first case in the table, where it also has the largest error

in rotation, which is 4.3◦. Otherwise, scale and rotation

are estimated very well. Rotation estimates when the

template is the size of Bennu or larger are less than

1.6◦, and the scales have errors less than 2.1 percent,

respectively.

Table 5. Transformation and Fitness Values for

Template Rotation of 60◦ at Image Epoch of 2018-

10-25

Fitted Actual This Cross Log Matlab

variable Value Work Corr. Polar SURF

Scale (K) 2.0 1.91 - 1.7 x

Rot. (θ) 300 304.3 - 0 x

Horz. (TX) 498.8 489.8 1026 493 x

Vert. (TY ) 515.6 527.7 -3 511 x

Fitness (c) - 0.0015 - - -

Scale (K) 1.0 0.979 - 1.0 x

Rot. (θ) 300 298.4 - -90 x

Horz. (TX) 494.7 492.5 495 495.2 x

Vert. (TY ) 510.2 527.7 510 510.9 x

Fitness (c) - 8.48e-06 - - -

Scale (K) 0.5 0.4998 - 0.52 x

Rot. (θ) 300 299.1 - -168.3 x

Horz. (TX) 486.5 494.5 990 489.3 x

Vert. (TY ) 499.3 525.6 -8 508.4 x

Fitness (c) - 0.0001 - - -

Scale (K) 0.1 0.1003 - 0.14 x

Rot. (θ) 300 299.9 - 179.8 x

Horz. (TX) 419.8 509.9 868 37.9 x

Vert. (TY ) 409.7 517 -39 612.3 x

Fitness (c) - 0.066 - - -

Bennu: 2018-10-28 Epoch. At this particular date dur-

ing approach, the asteroid Bennu extended approximately

50 pixels in diameter. Fig. 9 gives a cropped image

of what Bennu looked like on the image plane. Bennu

started to show some surface features, and a large boul-

der could be seen on the lower left portion of the image.

Surface shadows were even able to be seen.

For preliminary testing purposes, all methods at-

tempted to provide information when there is neither

rotation nor scale differences. These results can be seen in

Table 6. As expected, cross-correlation finds the proper

translation. SURF fails to find any matching key points,

resulting in no parameters being estimated. Log-Polar

is able to solve for all parameters. However, only the

translation is close to the actual value. Considering the

method herein, it is able to determine the scale within

0.1 percent, find the correct rotation (significant figure

rounding), and estimate a translation that is within 1

pixel in either dimension.

Figure 9. Cropped image of Bennu taken on 2018-

10-28 using PolyCam

Table 6. Initial Transformation and Fitness Val-

ues for Template Rotation of 0◦ at Image Epoch of

2018-10-28

Fitted Actual This Cross Log Matlab

variable Value Work Corr. Polar SURF

Scale (K) 1.0 1.001 - 0.82 x

Rot. (θ) 0 0 - 57.9 x

Horz. (TX) 458.4 459.4 458 454.5 x

Vert. (TY ) 467.2 467.8 467 469.4 x

Fitness (c) - 1.21e-05 - - -

Rotation 0◦: In interest of testing capabilities, this

scenario only scales the template; no rotation is intro-

duced. When the template has a scale of 0.1, the object

is approximately 500 pixels in diameter.

Table 7 shows the results for different template scales.

The herein method estimates the scale well. However,
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the rotation does not match well when the template is 10

times larger than the actual Bennu, having a difference

of 3.75◦. Regardless, this method was able to outperform

all other methods tested (except for cross-correlation in

the scale factor of 1.0 case).

Looking further into the cause of the rotation error

for the last case, the template being 10 times larger, it

was discovered that some of the initial Gaussian kernel

standard deviations, rotated axes, and blob detection

level numbers needed to be adjusted. However, no better

solution was found when changing these values after the

reported value in Table 7.

Table 7. Transformation and Fitness Values for

Template Rotation of 0◦ at Image Epoch of 2018-

10-28

Fitted Actual This Cross Log Matlab

variable Value Work Corr. Polar SURF

Scale (K) 2.0 1.996 - 1.53 x

Rot. (θ) 0 359.7 - 88.7 x

Horz. (TX) 472.5 458.5 -6 464 x

Vert. (TY ) 483.7 470.5 -8 483 x

Fitness (c) - 0.004 - - -

Scale (K) 1.0 1.001 - 0.82 x

Rot. (θ) 0 0 - 57.9 x

Horz. (TX) 458.4 459.4 458 454.5 x

Vert. (TY ) 467.3 467.8 467 469.4 x

Fitness (c) - 1.21e-05 - - -

Scale (K) 0.5 0.504 - 0.516 1.18

Rot. (θ) 0 359.6 - -101.7 150.2

Horz. (TX) 429.9 459.4 -17 456 454.7

Vert. (TY ) 434 463.8 -31 463 595.6

Fitness (c) - 0.0012 - - -

Scale (K) 0.1 0.10001 - 0.212 x

Rot. (θ) 0 356.25 - 119.5 x

Horz. (TX) 201.6 455.7 -92 387.9 x

Vert. (TY ) 167.8 425.7 -155 395.2 x

Fitness (c) - 0.0036 - - -

Bennu: 2018-11-02 Epoch. The final scenario investi-

gated occurs on November 2, 2018. Here, Bennu is ap-

proximately 200 pixels wide on PolyCam’s sensor array.

Fig. 10 shows what Bennu looked like. Surface shadow-

ing, boulders, craters, and other features could be dis-

cerned at this time. However, these are not the finest

resolution images taken by the OSIRIS-REx mission.

As with the other scenarios, the zero rotation and

scale factor of 1.0 is applied for initial comparison. Table

8 gives the determined values from all four methods.

Cross-correlation agrees very well with the actual value

for translation. Log-Polar fails to find a solution. In this

initial look, SURF is able to find a reasonable solution.

The scale is within 3.0 percent; the rotation only has

an error of 0.57◦; translation values are only a few

pixels different than the actual value. Considering the

method described in this paper, scale error is only 0.2

Figure 10. Cropped image of Bennu taken on 2018-

11-02 using PolyCam

percent, rotation differs by 0.02◦, and either translation

component is within 1.1 pixels.

Table 8. Initial Transformation and Fitness Val-

ues for Template Rotation of 0◦ at Image Epoch of

2018-11-02

Fitted Actual This Cross Log Matlab

variable Value Work Corr. Polar SURF

Scale (K) 1.0 0.998 - x 0.97

Rot. (θ) 0 0.018 - x 0.57

Horz. (TX) 386.7 387.8 387 x 391.1

Vert. (TY ) 404.9 405.7 405 x 409.5

Fitness (c) - 3.38e-05 - - -

Rotation 90◦: In this final scenario, the template is

rotated 90◦ from Bennu’s actual orientation along the

boresight direction. Scale variations range from two times

smaller (100 pixels wide) to 10 times larger (2000 pixels

wide) than Bennu’s PolyCam size. A representation of

the scale and rotation error for the 10 times scale case

can be seen in Fig. 11.

Case results are found in Table 9. In the scenario, Log-

Polar is able to find reasonable results in all cases. How-

ever, the estimated rotation for the 0.5 scale case differs

greatly. Again, when the scale of the template deviates

too much from the 1.0 scale scenario, cross-correlation

is unable to determine the proper translation. SURF

is unsuccessful in determining correct parameters. The

method developed matches very well to scale and rota-

tion. For this 90◦ rotation case, the estimated transla-

tion components vary greatly. This is due the translation

of the scaled and rotated object. As it can be seen, the
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values for the vertical component are much larger than

that of the horizontal component. These differences are

thought to be due to the 90◦ rotation.

Table 9. Transformation and Fitness Values for

Template Rotation of 90◦ at Image Epoch of 2018-

11-02

Fitted Actual This Cross Log Matlab

variable Value Work Corr. Polar SURF

Scale (K) 2.0 2.009 - 2.09 4.1

Rot. (θ) 270 269.7 - -87.0 155.2

Horz. (TX) 444 389.3 450 374 642

Vert. (TY ) 461.3 630.3 517 394 984.6

Fitness (c) - 7.79e-06 - - -

Scale (K) 1.0 1 - 0.98 3.24

Rot. (θ) 270 270 - -89.2 -80.7

Horz. (TX) 390 390.7 389 388.9 610.1

Vert. (TY ) 405.7 628.3 404 406.8 173.9

Fitness (c) - 5.96e-06 - - -

Scale (K) 0.5 0.5004 - 0.54 6.4

Rot. (θ) 270 270.01 - -4.39 160.3

Horz. (TX) 283 393.6 642 390.3 160.3

Vert. (TY ) 295.5 626.4 -67 394.7 2367.8

Fitness (c) - 0.0001 - - -

Scale (K) 0.1 0.1001 - 0.108 2.27

Rot. (θ) 270 270.08 - -91.4 41.3

Horz. (TX) -581.4 407.6 -494.3 -385.6 -1395

Vert. (TY ) -593.2 616.1 -455.5 -389.8 1510

Fitness (c) - 0.003 - - -

Figure 11. Image (left) and generated template

(right) at 90◦ rotation and template 10 times larger

than the image object

To have a visual sense of the described method’s

performance, Fig. 12 shows what the reconstructed

image looks like for the 10 times scale difference case.

The result of the reconstruction measures well when

compared with the actual image. This is to be expected,

since the amount of detail in Bennu matches well with

the template.

Future Work. Future work involves further inves-

tigation into blob development and their bounders as

well as blurring levels of the image. This will help create

more unique shapes when the template or image objects

Figure 12. Image (left) and reconstructed object

(right) from the scenario in Fig. 11

are small (less than 10 pixels in diameter). Implementing

edge detection might help in reducing scenarios where

the Gaussian filter eliminates true boundaries due to

too large of a sigma value. Further research into better

estimating rotation is also required. Finally, it is also

desired to increase the speed at which the method

executes.

Conclusion. A new formulation for image and

template scale, rotation, and translation estimation

is given. Scenarios involving real images from the

OSIRIS-REx mission are included. This method is

suitable for space mission imaging when an image and

or template lack sufficient detail, have large boresight

rotation, and/or involve large-scale errors. The method

described outperforms more common techniques when

large-scale errors and rotations are introduced. Further

work needs to be done to investigate better ways to

represent the bounders of blobs.
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