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Motivation
• Electrically-powered autonomous vehicles are being 

increasingly considered to develop vehicles to 
transport packages critical material, inter/intra-city 
operation 

• Management of faults and component degradation is 
key 

• Incorporating safety as key parameter of measure
• Inclusion of autonomy raises the critical need for 

safety under autonomous operations
• Safe Flight under failure operating conditions.
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Background
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• Earlier research work presented 
focused on individual systems 
and components to implement 
prognostics methodologies. 

• Later approaches effects of 
component-level degradation on 
the system as a wholewere 
studied 

• The development of new models 
and integration with previous 
models enables to study and 
identify cascaded effects of 
degradation on connected 



Background
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• Functional Hazard analysis (FHA) of a given 
system is the first step in a process to 
assess any associated risk of failure in the 
system

• FMECA is a bottom-up, inferred analytical 
method which includes criticality analysis, 
used to map the probability of failure modes 
with the severity of their consequences

• Bayesian theorem approach implemented 
using quantitative as well as qualitative 
methods  



ELECTRICAL PROPULSION 
SYSTEM MODELING 

5



Battery Modeling
• Lumped-parameter, ordinary differential equations
• Capture voltage contributions from different sources

– Equilibrium potential àNernst equation with Redlich-Kister
expansion

– Concentration overpotential à split electrodes into surface 
and bulk control volumes

– Surface overpotential à
Butler-Volmer equation 
applied at surface layers

– Ohmic overpotential à
Constant lumped resistance 
accounting for current 
collector resistances, 
electrolyte resistance, 
solid-phase ohmic resistances
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Battery Model Validation
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Nominal 2A Discharge Curve“Open-Circuit” Discharge Curve

Rover Battery Discharge Curve

Model matches well for open-circuit, 
nominal discharge, and variable-load 
discharges on the rover.



Electronic Speed Control System 

• ESC is modeled as an ideal power inverter employing 
– sinusoidal pulse width modulation (SPWM) 
– half bridge drivers for each of three phases within a control block 

• F1, F2 and F3 are the outputs from the controlled block while 
vab, vbc, vca are the winding voltages between respective 
phases. 
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Motor System 

• The dynamic model of the motor describes a three-phase 
brushless DC motor, with wye-connected stator windings 
and a permanent magnet as the rotor. 

J is the inertia, B is the frictional coefficient, and Tl is the load torque on the rotor 

rotor position, θm, p (poles)

• The model only describes the mechanical device
– Assumes that the electronic speed controller provides a given input 

to the three-phase terminals
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Model Based Diagnostics 
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• Distributed diagnosis scheme does not use a centralized 
coordinator, 

• Each local diagnoser generates globally correct diagnosis results 
through local analysis, by only communicating a minimal number 
of measurements with other local diagnosers

• The diagnoser design creates a partition structure and local 
diagnosers simultaneously. 



Model Based Diagnostics 
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• For each local diagnoser, separate particle filter (PF) based 
inference algorithms for fault detection, isolation, and 
identification are implemented

• The quantitative diagnosis scheme is employed in combination 
with a qualitative fault isolation scheme to improve diagnosis 
efficiency



Prognostics Problem Formulation
• Prognostics goal

– Compute EOL = time point at which component no longer meets 
specified performance criteria

– Compute RUL = time remaining until EOL
• System model

• Define threshold                             from performance specs that is 
1 when system is considered failed, 0 otherwise

• EOL and RUL defined as
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Compute                            and/or

State Input Process Noise

Output Sensor Noise

Parameters



Fault Detection 
Isolation & 

Identification

Damage 
Estimation Prediction

uk p(EOLk|y0:k)
System

yk p(xk,θk|y0:k)

p(RULk|y0:k)

F

Prognostics

Model-Based Architecture
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System receives 
inputs, produces 

outputs
Identify active 

damage mechanisms

Estimate current 
state and parameter 

values

Predict EOL and 
RUL as probability 

distributions

1 2

3 4

Estimation Prediction



Uncertainty Representation 

• Un-modeled physical phenomena and states of the system 
ignored by the model contribute to uncertainty in the 
monitored state variables and model parameters 

• The state variables 
– un-observable,
– therefore estimators from available sensor data of such hidden 

states are necessary to characterize the current condition of the 
system

• Tools and sensors utilized to measure the observable 
quantities are themselves affected by limited accuracy and 
precision, which may also depend on environmental 
conditions, aleatory in nature 
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Uncertainty in the Battery model

• Two independent variables
– amount of Li-ions on the positive side of the 

surface qs,p and bulk qb,p of the cell, respectively.
– derived quantities - random variables because of 

their relationship to qs,p and qb,p. 

– The perturbations are represented by σqs,p r1, 
σqb,p r2, where ri, i = {1, 2} are random 
realizations from a standard normal distribution
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Uncertainty in the ESC model 
• PWM signals may slowly decrease as time passes by because of 

MOSFET degradation 
• Uncertainty represented by a monotonic behavior of the PWM 

carrier frequency 
• Modeled using a negative, log-Normally distributed rate of change 

• Degradation is expected to be slow, and its effect likely to be 
negligible in a single flight. 

• Switch matrix failures represented using typical reliability analysis, 
• Using time- dependent failure rates λ(t), mean time between-

failures
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Discussion
• FMECA based Qualitative Bayesian approach with 

Diagnostics and Prognostics framework 
• Identify essential sub-systems components which have a 

high probability failure rate 
• Diagnoser tool to identify and isolate systems in case of any 

failure or degradation 
• Prognoser is instantiated to estimate remaining useful life 

and further take decisions based on operational 
requirements 

• Minimum Computational power requirement on-board 
– systematically identified sub-system and components are monitored 

instead of the whole set 

17



Future Work

• A combined qualitative and quantitative approach for e-UAV 
• Evaluate the developed FEMCA to quantitative failure rates 

and probabilities
– Bayesian Approach 
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