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ABSTRACT
As next-generation space exploration missions necessitate increas-
ingly autonomous systems, there is a critical need to better detect
and anticipate crewmember interactions with these systems. The
success of present and future autonomous technology in explo-
ration spaceflight is ultimately dependent upon safe and efficient
interaction with the human operator. Optimal interaction is partic-
ularly important for surface missions during highly coordinated
extravehicular activity (EVA), which consists of high physical and
cognitive demands with limited ground support. Crew functional
state may be affected by a number of variables including workload,
stress, and motivation. Real-time assessments of crew state that do
not require a crewmember’s time and attention to complete will
be especially important to assess operational performance and be-
havioral health during flight. In response to the need for objective,
passive assessment of crew state, the aim of this work is to develop
an accurate and precise prediction model of human functional state
for surface EVA using multi-modal psychophysiological sensing.
The psychophysiological monitoring approach relies on extracting
a set of features from physiological signals and using these features
to classify an operator’s cognitive state. This work aims to compile
a non-invasive sensor suite to collect physiological data in real-time.
Training data during cognitive and more complex functional tasks
will be used to develop a classifier to discriminate high and low
cognitive workload crew states. The classifier will then be tested in
an operationally relevant EVA simulation to predict cognitive work-
load over time. Once a crew state is determined, further research
into specific countermeasures, such as decision support systems,
would be necessary to optimize the automation and improve crew
state and operational performance.
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1 PROBLEM STATEMENT
Human exploration missions to the moon and Mars will challenge
crewmembers with never-before-seen physical and cognitive work-
loads. For journeys to Mars, communication latencies with Earth
will require many functions to be controlled by in-flight hardware,
software, and crewmembers. In addition, the frequency of extrave-
hicular activity (EVA), or spacewalks, for future surface exploration
operations will far exceed the hours of Apollo surface operations.
Next-generation missions will require increasingly autonomous
systems to lighten crewmembers’ heavy task loads and to facilitate
smooth operations with limited ground support. Safe and optimal
operations necessitate a better understanding of the human com-
ponent of the system. There is a critical need to characterize the
effects of physical and cognitive workload on crew functional state,
specifically during surface EVA. Operator functional state is de-
fined as the ability of an operator to complete a task at a moment
in time, and is affected by an operator’s cognition and affect. Moni-
toring functional state is especially important for crewmembers as
errors in spaceflight may have particularly drastic consequences.
EVA operations are highly coordinated events and require exten-
sive communication between the extravehicular and intravehicular
crewmembers. The physical and cognitive workloads vary between
these two positions. Through better characterization of these work-
loads, countermeasures such as decision support systems can be
optimized to assist crewmembers with limited ground support.
Ultimately, closing the loop between human and system with real-
time crew state monitoring and analysis would allow the system
to provide feedback, transfer control, and judge fitness for work,
enhancing the safety and reliability of human exploration missions.

The physical response of EVA has been well studied in simu-
lated and analog environments including simulations in the Active
Response Gravity Offload System (ARGOS) and trainings in the
Neutral Buoyancy Laboratory (NBL). Metabolic and heart rate data
are also available from flight operations. However, compared to
the current microgravity EVA on the International Space Station
(ISS), physiological profiles will differ for the altered gravity en-
vironments of the lunar and Martian surfaces with 1/6 and 1/3
of Earth’s gravity, respectively, and require further characteriza-
tion. The cognitive and interactive cognitive-physical responses
of EVA, on the other hand, have not been as well studied. Apollo
crewmembers have highlighted the importance of understanding
the cognitive load during surface EVA, "Consider mental and physi-
cal fatigue here separately, Although there was not a log of physical
fatigue [during the lunar activity], the mind was being used quite
a bit. You can sometimes wear your brain out before your body is
fatigued," [Scheuring et al. 2007]. Currently, cognitive and stress
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testing is performed on crewmembers using subjective measures,
such as visual analog scales, and objective measures, such as the
Psychomotor Vigilance Test (PVT) and the Cognition Test Battery
[Williams 2016]. While these standard measures provide valuable
metrics for assessing crew state, they require a crewmember’s time
and attention to complete and cannot assess real-time operations.
Additionally, flight surgeons closely watch and constantly assess
crewmembers on board the ISS. Every minute of work scheduled
beyond a crewmember’s allowable amount of work time must be
approved by the flight surgeon. This subjective decision is informed
by the flight surgeon’s collective knowledge of the crewmember’s
psychological and physical well-being. However, for future explo-
ration missions it will be extremely difficult for flight surgeons to
constantly assess crewmembers’ workloads due to communication
delays and distance from Earth. There is a need for a passive, ob-
jective tool to assess crew state in real-time in the increasingly
autonomous environments. A psychophysiological monitoring ap-
proach allows for real-time classification of an operator’s cognitive
state using features derived from non-invasive biosignals, with the
ultimate goal of adapting the system to fit the needs of the operator.

2 RELATEDWORK
Physiological computing builds upon the field of psychophysiology
to classify psychological state from physiological signals in real-
time using data fusion methods. Physiological responses, primarily
autonomic nervous system (ANS), hemodynamic, and electrophysi-
ological responses, are recorded through physiological signals. Psy-
chophysiological features are then extracted from the physiological
signals to train a model.

The psychophysiological monitoring approach has been used
to predict stress and workload in many previous studies [Bonarini
et al. 2008; Das et al. 2017; Saha et al. 2017]. The United States Air
Force Research Laboratory has used psychophysiological features
to predict functional state during multiple flight tasks, including
the Multi-Attribute Task Battery (MATB) and an air traffic control
task [Christensen et al. 2012; Wilson and Russell 2003a,b]. Crew
state monitoring using multi-modal physiological sensing has also
been tested at NASA Langley Research Center in flight simula-
tion cockpits [Harrivel et al. 2016, 2017]. Specifically, the crew
state monitoring team was able to achieve an average multi-state
prediction accuracy of 88.6% using electroencephalography (EEG),
galvanic skin response (GSR), and heart rate variability (HRV) with
a subject-dependent model. A series of Attention-related Human
Performance Limiting States (AHPLS) defined the classes and were
trained by a set of benchmark tasks including the MATB. The crew
states were chosen in the experiment because they have been de-
termined to cause pilots to lose airplane state awareness.

Real-time physiological assessment is also of interest to the mil-
itary. The US Army created and tested a tool to assess physical
compensatory reserve in real-time, using machine learning and a
blood volume pulse (BVP) signal [Convertino et al. 2015]. From
an individual’s BVP signal, the system estimates physical reserve.
While this work focuses on physical state, similar machine learning
techniques may be used to classify cognitive state.

While there is a large body of literature on physiological comput-
ing, both cognitive and affective, a large knowledge gap remains in

applying these methods to an operationally-relevant surface EVA
scenario, particularly in a simulation with integrated performance
metrics to validate the labeled crew states.

3 METHODOLOGY
3.1 Compile Sensor Suite
Compilation of the sensor suite is largely completed. There are a
number of physiological signals that measure ANS response in-
cluding electrocardiography (ECG), photoplethysmography (PPG),
electrodermal activity (EDA), skin temperature, and respiration
measurements. Additionally, electroencephalography (EEG) pro-
vides a more direct measure of brain activity. To facilitate real-time,
continuous monitoring, this work will focus on non-invasive sens-
ing techniques. Commercially available devices such as the Inter-
axon Muse and Empatica E4 offer inexpensive, unobtrusive means
of measuring physiological signals. TheMuse is a four-lead dry EEG
system, capable of collecting an additional one-lead ECG. The E4 is
a wrist-worn device with EDA, PPG, and skin temperature sensors.
The Interaxon Muse and the Empatica E4 have been synchronized
in the sensor suite using the Lab Streaming Layer (LSL). LSL is
an open source system for unifying time series data collection in
research experiments. The commercial off-the-shelf (COTS) devices
provide potential to apply the findings of this work and the develop-
ment of the classification tool to other human-computer interaction
research. However, data quality is a concern and laboratory grade
equipment may also be tested. After collecting the physiological
signals, a set of psychophysiological features are extracted includ-
ing EEG bandpowers, heart rate variability (HRV) time-domain and
frequency-domain features, and phasic and tonic skin conductance
features from EDA. In addition to ANS and electrophysiological
responses, psychophysiological features may be extracted from po-
sition, velocity, and acceleration signals recorded by the body-worn
devices.

3.2 Propose Target Crew States for
Classification

One of the challenges in crew state monitoring is defining a suitable
set of target states. The ideal classifier for human functional state
in operational environments has many characteristics. First and
foremost, the ideal classifier classifies cognitive workload using
psychophysiological features in real-time. There are many variables
that can affect cognitive workload, including stress and motivation.
Therefore, the ideal classifier is also able to account for emotional
state. Ideally, a target state is generalizable across time, subjects,
and situations [Haynes and Rees 2006]. However, subtle contextual
differences may alter mental states. This requires classification al-
gorithms to maintain a degree of flexibility and ignore irrelevant
differences between mental states. For this project, the target crew
states for classification are high and low cognitive workload. Perfor-
mance metrics and subjective assessments will be used to validate
the low and high cognitive workload target crew states for specific
tasks. In addition, timeline analysis will be used to estimate work-
load percentage over time based on the average number of tasks per
unit time. The quantifiable performance metrics, subjective assess-
ments, and timeline analysis estimates will be extremely important
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to characterize the binary, discrete labels of high and low cognitive
workload used to train the supervised machine learning models.

3.3 Collect Training Data
Physiological signals will be recorded using the non-invasive sensor
suite during a set of benchmark tasks to train the model. Benchmark
tasks include high and low workload cognitive and functional tasks.
The Paced Stroop Test (PST) will be used as the simple cognitive task
to train the model. The PST is a widely used neuropsychological
test designed to assess the ability to inhibit cognitive interference.
Color-words (i.e. blue) are presented in either congruent or in-
congruent conditions and participants are required to name the
color of the word rather than reading the word. The incongruent
condition, in which the color-word and color of the word do not
match, requires participants to inhibit cognitive interference and
represents the high cognitive workload condition. The congruent
condition represents low cognitive workload. In addition to the
PST, the Multi-Attribute Task Battery (MATB) will be used as a
more complex, functional benchmark task. The MATB is a desk-
top flight simulator in which operators simultaneously control a
joystick and a mouse. The MATB is a well-validated tool complete
with system monitoring, tracking, resource management, and com-
munications tasks that can be adjusted in frequency and difficulty
to simulate high and low workload flight events [Comstock and
Arnegard 1992]. Both the PST and the MATB have been used in
previous psychophysiological monitoring studies [Das et al. 2017;
Harrivel et al. 2016; Saha et al. 2017; Wilson and Russell 2003b]. As
mentioned previously, subjective assessments, namely the NASA
Task Load Index (TLX), and performance metrics of speed and ac-
curacy from the PST and MATB trials will be used to validate the
high and low workload labels. Preliminary data has been collected
from nine subjects completing the high and low workload MATB
events.

3.4 Develop Classifiers
The first step to develop a classifier from the training data is to
extract psychophysiological features. Ideally, these features are
then normalized and reduced. From the preliminary MATB data
collection using the Muse, a total of 26 features were extracted
from the EEG and ECG signals in 10-second 50% overlap windows,
including relative bandpowers from the four EEG channels and time-
domain and frequency-domain HRV features from the ECG signal.
The bandpowers included delta (1-4 Hz), theta (4-8 Hz), alpha (7.5-
13 Hz), beta (13-30 Hz), and gamma (30-44 Hz). The HRV features
included mean R-R intervals, standard deviation of R-R intervals,
square root of mean squared difference of successive R-R intervals,
low frequency power (0.04-0.15 Hz), high frequency power (0.15-0.4
Hz), and low to high frequency power ratio. The features were
normalized using three techniques including subtracting baseline
features, dividing baseline features, and adding baseline features to
the feature set as a baseline matrix.

Nine different binary classification models have been evaluated
on the preliminary MATB-Muse dataset, including Logistic Regres-
sion (LR), Linear Discriminant Analysis (LDA), K-Nearest Neighbor
(KNN), Classification and Regression Tree (CART), Random Forests
(RF), Naive Bayes (NB), Support Vector Machines linear (SVML),

SVM Gaussian kernel (SVMG), and SVM sigmoid kernel (SVMS).
Subject-specific and population-based training schemes were eval-
uated for the preliminary dataset. While population-based training
is more generalizable, creating a participant-specific model would
still be useful for the application area as there is a small sample
of crewmembers. The binary (high/low workload) classifiers were
cross-validated with five, stratified folds. The subject-dependent
logistic regression model performed the best on the preliminary
dataset. Average logistic regression accuracy across the 5-folds
varied between 51% and 88% for the nine subjects. Principal Com-
ponent Analysis (PCA) was used to visualize the high dimensional
dataset.

The approach used on the preliminary dataset from the Muse
device alone will be expanded in future studies to include other
devices, including the E4. The process of feature extraction, normal-
ization, and reduction will be repeated with future datasets. The
algorithm development is expected to iterate over time.

3.5 Test Classifiers in EVA Simulation
To apply the knowledge gained in the model development, the clas-
sifier will be tested on an operationally relevant EVA simulation. A
typical surface EVA may be divided into three parts, overhead activ-
ity such as exiting an airlock, translation activity such as ambulating
to a destination, and station activity such as deploying a science
instrument [Miller et al. 2017]. The translation activity will be the fo-
cus of this work. Specific measures and metrics of performance will
be embedded into the simulated surface EVA translation task. The
cognitive demands of the task will be mapped to specific macrocog-
nitive functions and cognitive constructs. The cognitive demands
will be manipulated to simulate high and low cognitive workload
conditions, with workload percentage estimated using timeline
analysis. Physiological data, performance metrics, and subjective
assessments will be recorded from participants completing the high
and low cognitive workload translation tasks to validate the two
workload conditions. The population-based and subject-dependent
crew state models trained on the PST and MATB benchmark tasks
will be used to predict workload during the translation tasks.

4 EVALUATION
In terms of data analysis, the models are ultimately limited by
the quality of the data from the wearable devices. In part, better
understanding the limits of the devices is included in the research
objectives. However, the main goal is not to validate the devices
but to validate the psychophysiological features. The assumption
is that the signal quality will continue to improve with new and
better technology.

The crew state classification model will be evaluated during the
training phase with cross-validation and during the testing phase
using the simulated EVA environment. The performance of the
classifiers will be assessed by multiple metrics including accuracy,
precision, recall, and F1 score of the test data. The workload will be
estimated using timeline analysis and validated with performance
metrics and subjective assessments, supporting the ground truth
labels of crew functional state.
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The human subject population is a limitation of this work. Crewmem-
bers are highly trained individuals, whereas participants in the pro-
posed studies may not be as experienced with piloting and surface
EVA tasks. Of course, future exploration missions will undoubtedly
challenge crewmembers will unforeseen tasks, as it is impossible
to prepare for every situation. Training trials will be included in all
of the studies to mitigate effects of learning and experience. In ad-
dition to training, the level of cognitive workload and performance
on the tasks is highly influenced by motivation. An extremely high
level of performance is demanded in every spaceflight mission to
ensure the success of the mission and the safety of the crew. It is
difficult to simulate this level of pressure in the laboratory.

5 EXPECTED CONTRIBUTION
Compiling the sensor suite will result in a robust, non-invasive set of
sensors to collect accurate and precise physiological measurements.
The exact set of sensors used for classification is subject to change
depending on the test environment and the results of the dimension
reduction. The goal is to use the training data collection with the
benchmark tasks to prepare for the more EVA-relevant simulations.
Iteration will be important to build the classification algorithm.

Training and testing the model will provide a continuous classifi-
cation variable of crew functional state. Trends in the physiological
data during high and low cognitive workload tasks will be evaluated.
Population-based and subject-specific models will be compared.

Using this continuous variable of crew state, future research
could assess the means and efficacy of altering the automation
to provide feedback, transfer control, and make judgments about
’fitness for work’. Overall, these strategies have been proposed
and tested to various extents in operationally-relevant environ-
ments. However, each of these strategies rely on information of
crew cognitive state in real-time. Given an estimate of crew func-
tional state, increasingly autonomous systems could be employed
to train crewmembers on the ground and assist them on future sur-
face EVAs on the moon and Mars. In addition to training and aiding
crewmembers, general knowledge of crew functional state could be
used to test and evaluate new systems, such as heads-up-displays
(HUDs), and to better understand the phenomena behind the oc-
currence of sub-optimal crew state. In this way, the engineering
and design community, as well as, the scientific community would
benefit from the real-time, objective assessment of crew cognitive
state and performance.
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