

TACP - Transformational Tools & Technologies Project

Modeling of the Influence of a Damaged Thermally Grown Oxide (TGO) Layer in an Environmental Barrier Coating System

Subodh K. Mital The University of Toledo, Toledo, OH 43606

<u>Steven M. Arnold</u>, Trenton M. Ricks, Bryan J. Harder NASA Glenn Research Center, Cleveland, OH

American Society of Composites (ASC) 34th Technical Conference, Atlanta, GA Sep. 23-25, 2019

CMCs for Gas Turbine Engines

Courtesy of GE Aircraft Engines

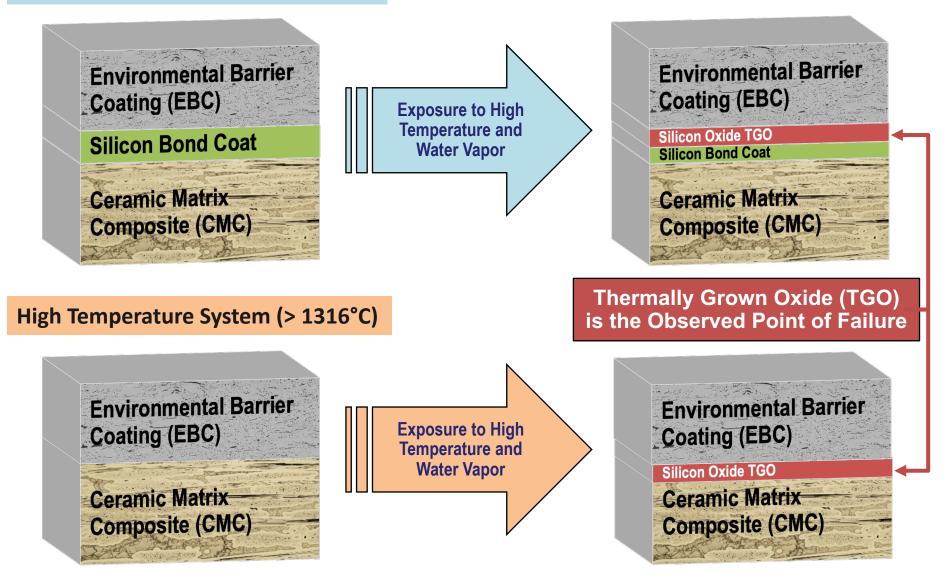
Benefits:

- Enabling for high OPR engines (high turbine inlet temperatures)
 - 200 to 500+ °F temperature advantage over metals
 - Reduce cooling air
 - Reduce fuel burn (up to 6%) CO₂ emissions
- Weight 1/3 of metals and 1/2 titanium aluminides
- CMC combustor liner and first stage turbine vane reduce NO_X
- An external environmental barrier coating (EBC) made of layers of oxides/silicates is required to achieve long-term stability and component life.

Environmental Barrier Coating (EBC) Systems

TACP - Transformational Tools & Technologies Project

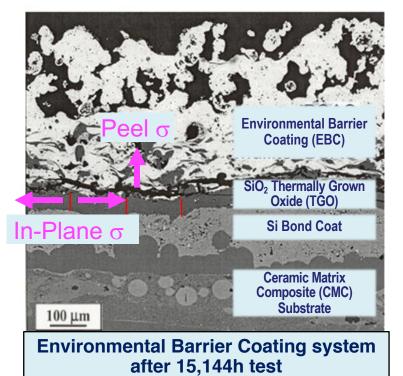
EBCs have various failure modes. Ist Gen of EBCs were developed in 1990s under NASA's HSCT-EPM Synergies between extrinsic (High Speed Civil Transport – failure modes determine EBC lifetime and design requirements **Enabling Propulsion Materials**) EBC program consisting of mullite and SiO₂(TGO) EBC **EBC Intrinsic Requirements BSAS** materials. CTE match, isotropic CTE Phase stability **Steam Oxidation** 2nd Gen EBCs were developed **Erosion and FOD No EBC/CMC interaction** under NASA's UEET (Ultra **Efficient Engine Technology**) H_2O program in early 2000s. Most of the current EBCs are some CMAS EBC EBC variation of 2nd Gen EBCs. Hydroxide Thermomechanical **CMAS Attack** Formation/Recession Durability & Infiltration


K. N. Lee, "Environmental Barrier Coatings for CMC's"; in *Ceramic Matrix Composites*, Wiley, New York (2015) K. N. Lee, J Am Ceram Soc. 2019:1507-1521

Environmental Barrier Coating (EBC) Systems

TACP - Transformational Tools & Technologies Project

Low Temperature System (< 1316°C)

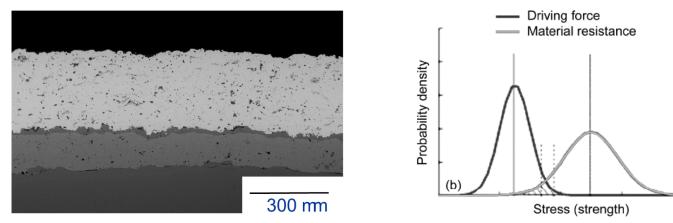


Environmental Barrier Coating (EBC) Systems

TACP - Transformational Tools & Technologies Project

- Although durable, EBC systems must survive for 10,000+ hours
- Lifetime of EBC/CMC systems is limited by the formation of a thermally grown oxide (TGO)
 - SiO₂ TGO can grow on either silicon bond coat or SiC substrate
- Observed failures
 - Vertical Cracks (~10 μm spacing at failure).
 - Horizontal Cracks (Delamination)
- EBC fails when TGO reaches some critical thickness (~ 20 microns)
 - Can vary due to exposure temperature, microstructure, composition, etc.

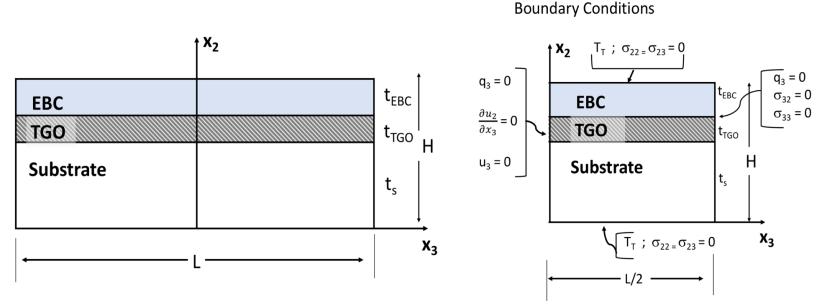
Ultimate Goal: Predict the durability of EBC/CMC system when subjected to harsh environments



Current Study Objective

TACP - Transformational Tools & Technologies Project

- Perform **finite element analyses** to examine the influence of uniformly and nonuniformly grown oxide layers on the associated driving forces leading to mechanical failure (spallation) of EBC layer when subjected to isothermal loading
- Assess the effect of damage in the TGO layer in the form of vertical cracks for both uniform and non-uniform TGO layers.
 - Ignore residual stresses due to processing, cyclic loading effects, growth rate of TGO as well as any time dependent behavior (creep/relaxation)
 - Qualitative not quantitative study
 - What influences critical TGO thickness
- Examined 3 layer and 4 layer systems



TACP - Transformational Tools & Technologies Project

With Geometry And Applied Thermal And Mechanical Boundary Conditions

- Global loading is cool-down from 1482 °C to 38.7 °C (2700 °F to 102 °F)
- Applied in one step since material assumed to be linearly elastic
- Stress state is generated due to geometry and mismatch in constituent material properties

Two-dimensional finite element analyses are performed using ABAQUS finite element program.

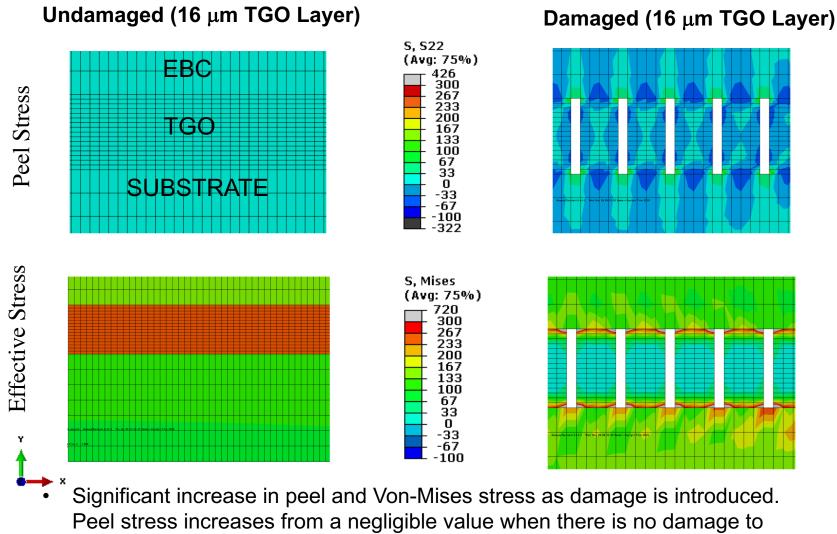
TACP - Transformational Tools & Technologies Project

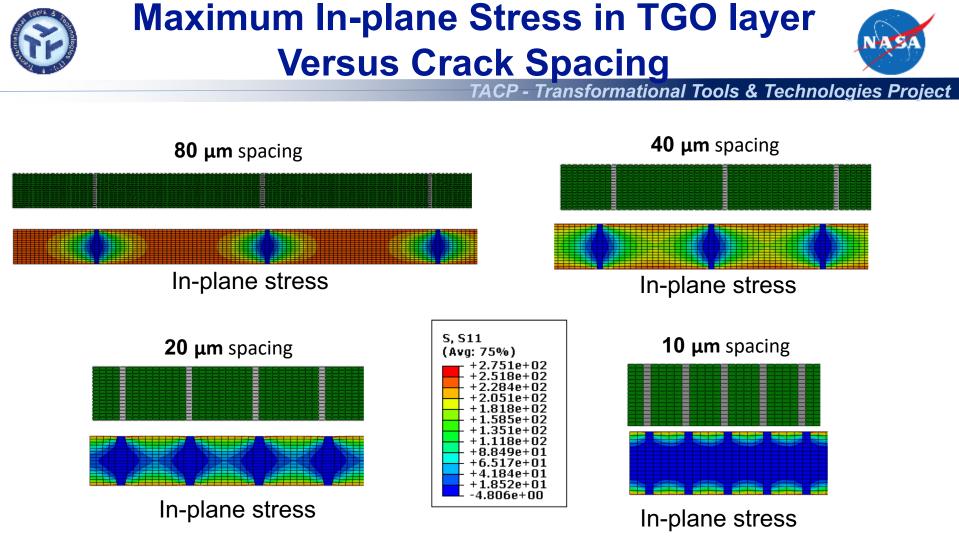
Assume isotropic thermoelastic properties

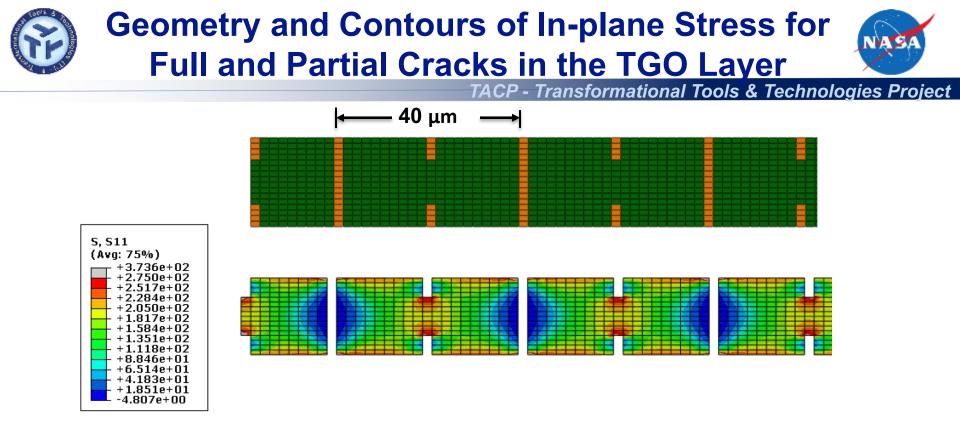
Material	Thickness (mm)	Modulus (GPa)	Poisson Ratio	CTE (x10 ⁻⁶ K ⁻¹)	Strength (MPa)
Yb ₂ Si ₂ O ₇ (EBC)	0.175	200	0.27	4.5	45-65 (?)
SiO ₂ (TGO)	0.001 0.002 0.004 0.008 0.016	35	0.17	10	45-75 (?) (200)
Si ** (Bond Coat)	0.075	97	0.21	4.5	40-55 (?)
Hexoloy SiC (Substrate)	3.000*	400	0.17	5.25	380-550

* Initial thickness assuming no TGO, bond coat

** If present

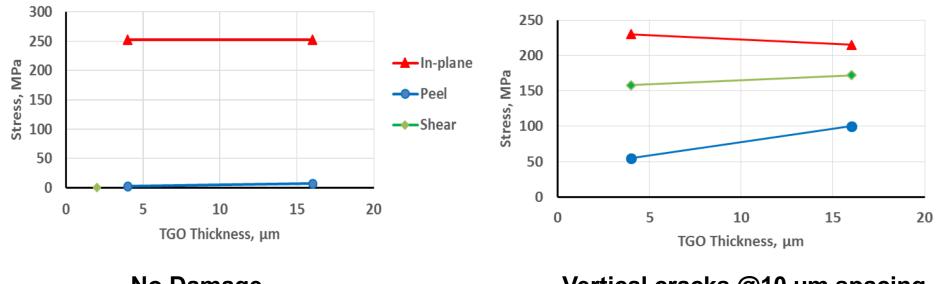

Two TGO thicknesses (4 and 16 µm) have been analyzed here with both uniform and non-uniform TGO layer thickness.


Results: Uniform 3 Layer System


TACP - Transformational Tools & Technologies Project

~100 MPa at EBC/TGO interface when damage is present.

- TGO has a Uniform thickness of 16 μm
- Elements representing cracks are shown in gray
- Current idealization suggests that strength of pristine TGO material should be ~ 200 MPa

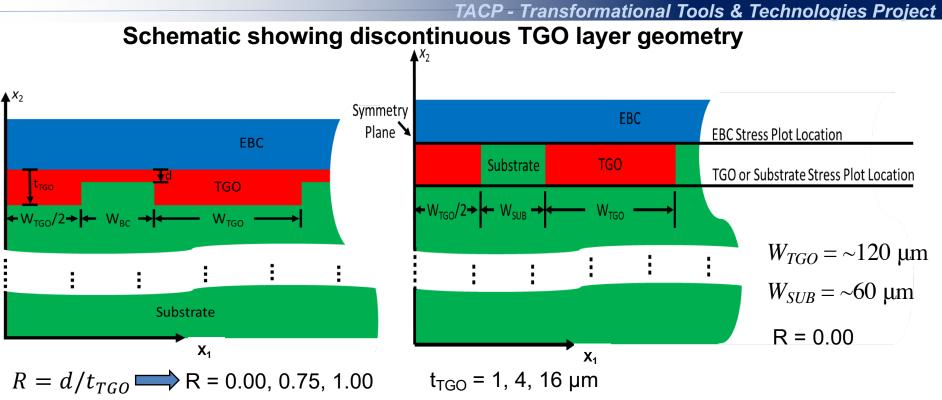


 In-plane stress at the tip of the partial cracks is very high (> 300 MPa), suggesting that partial cracks are likely to propagate and coalesce into a full vertical crack almost instantaneously.

(Reference) Maximum Stresses in Uniform TGO Layer

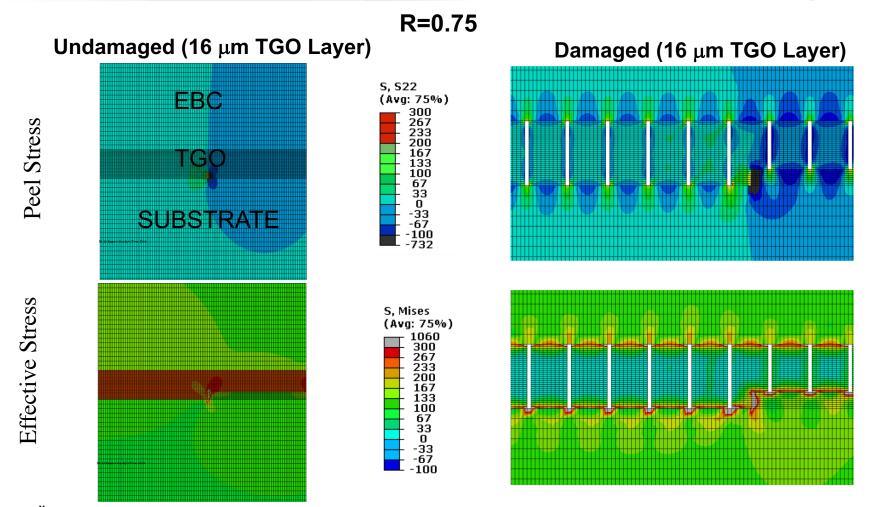
TACP - Transformational Tools & Technologies Project

No Damage


Vertical cracks @10 µm spacing

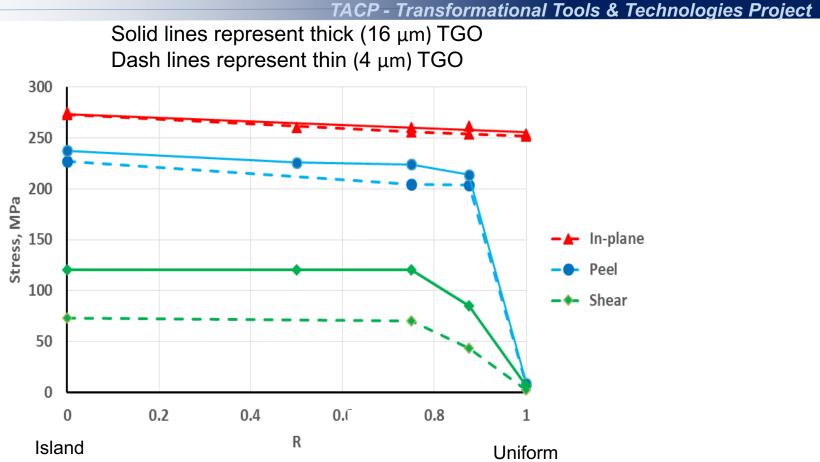
- TGO thickness has no significant (< 1%) effect on the resulting stress state in the system when there is no damage. Only significant stresses are inplane stresses that cause vertical cracks
- When **damage is present**, *peel and shear stresses increase with increase in TGO layer thickness*

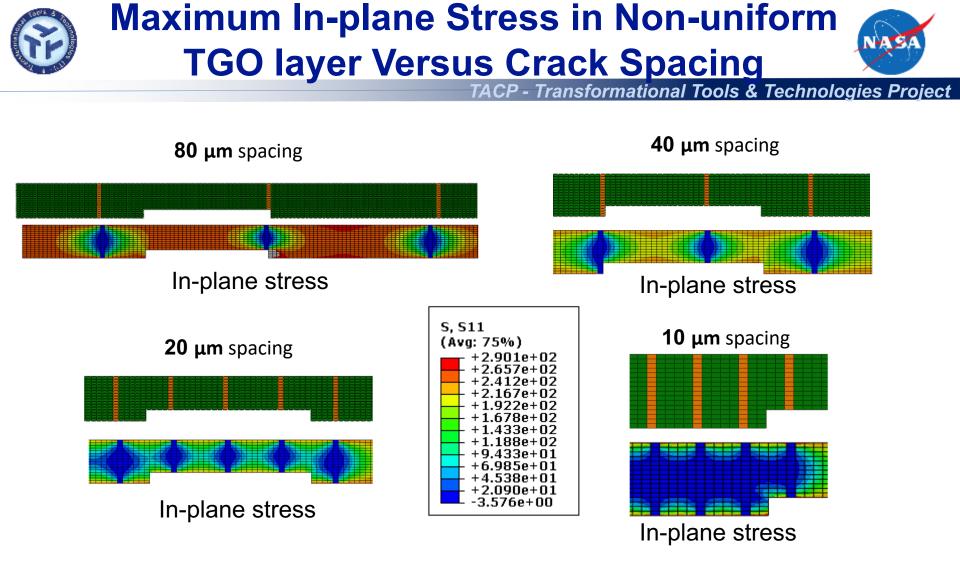
Nonuniform Layer Idealization



- EBC, TGO, and CMC substrate involving only the first ~550 μ m out of 5000 μ m (*L*/2) in the x_1 -direction
- Discontinuous TGO "islands" inserted between the substrate and EBC interface
- Severity of nonuniformity considered by adjusting R factor
- Initial TGO island width was set to half its full width (symmetry boundary conditions)

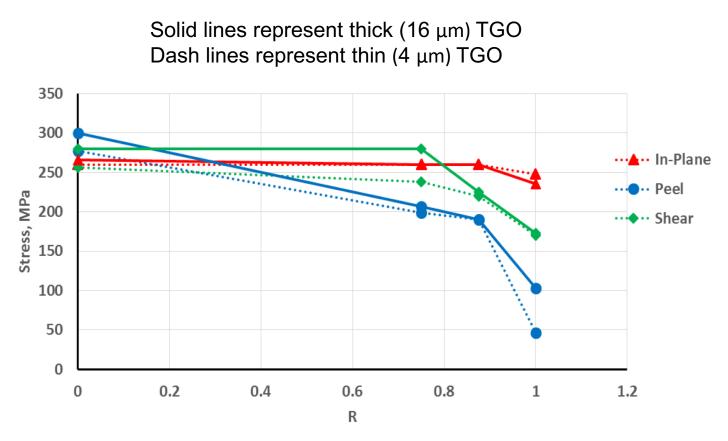
Results: Non-Uniform 3 Layer System


TACP - Transformational Tools & Technologies Project

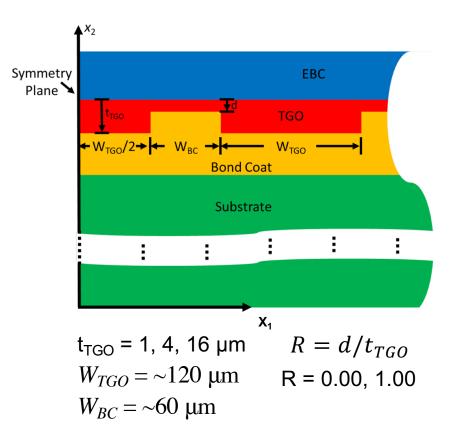

Significant increase in peel and Von-Mises stress as damage is introduced.
Peel stress at undulation is similar to crack tips. TGO/Sub interface higher values than TGO/EBC interface.

Maximum Stresses in TGO Layer with No Damage 📈

- Significant peel and shear stresses develop even with slight non-uniformity.
- Magnitude of stress is independent of the severity of non-uniformity
- As the TGO thickness grows, peel and shear stresses will cause initiation and propagation of delamination/horizontal cracking leading to EBC spallation.
- Change in shear is greater than peel with TGO growth


- Elements representing cracks are shown in gray
- TGO has a Non-uniform thickness of 16 µm; R=0.75
- At 10 µm crack spacing observed experimentally, maximum in-plane stress in the TGO material is ~ 190 MPa

Maximum Stresses in Non-uniform TGO Layer Vertical Cracks @ 10 µm Spacing

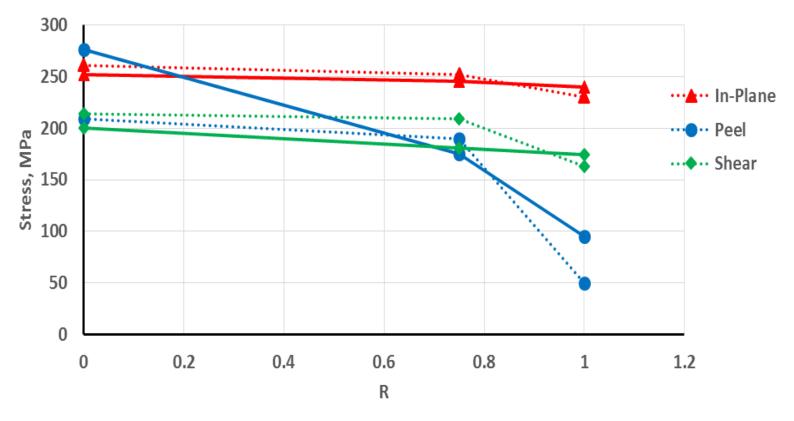

TACP - Transformational Tools & Technologies Project

 In the presence of damage and non-uniformity, there are significant shear and peel stresses for delamination to initiate and propagate causing spallation of the coating (particularly when the TGO becomes thick, e.g., 16 μm (solid curves).

🛞 Non-uniform Idealization – 4 Layer System 🐼

TACP - Transformational Tools & Technologies Project

- Discontinuous TGO "islands" inserted between the substrate and EBC interface
- Severity of nonuniformity considered by adjusting R factor

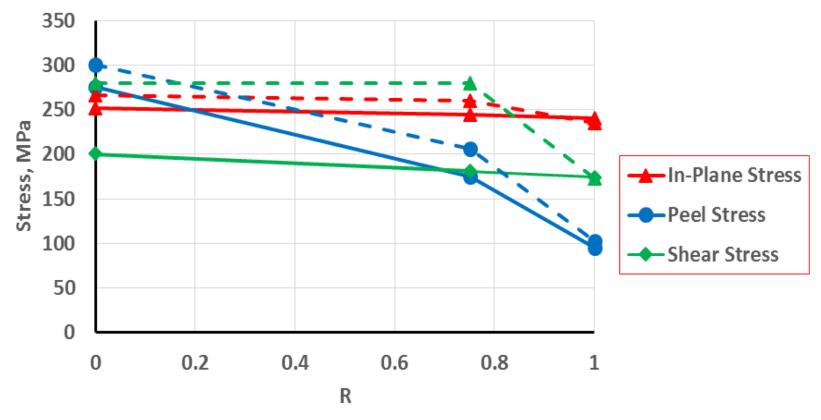


Maximum Stresses in Damaged TGO Layer 10 μm Spaced Cracks

TACP - Transformational Tools & Technologies Project

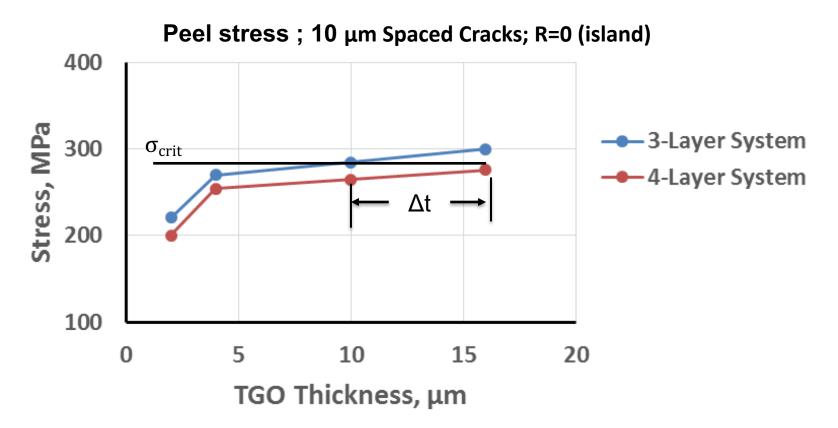
Solid lines represent **thick** (16 μ m) TGO Dash lines represent **thin** (4 μ m) TGO

- Uniform (R=1), damaged system has nonzero peel and shear stresses
- Peel increases with increasing TGO
- Shear decreases with increasing TGO



Comparison of Max Stresses in 3 and 4 Layer Damaged Systems; 16 μm TGO Layer, 10 μm Cracks

TACP - Transformational Tools & Technologies Project


Solid lines represent **4 layer** EBC system (Low Temp System) Dash lines represent **3 layer** EBC system (High Temp System)

- Stresses are lower overall for damaged 4 layer system compared to 3 layer
 - Shear stresses significantly lower (~30%)
 - Peel stresses lower (~10%)

Presence of Si Bond Coat Reduces Driving Forces

TACP - Transformational Tools & Technologies Project

- Decrease in peel stress when bond coat added
- Given critical failure stress, Si bond coat (i.e., four layer system) enables thicker TGO layer prior to failure
- Suggests bond strength between EBC and TGO >290 (MPa)
- Shear stresses similar but reduction in magnitude larger !

- A three layer (EBC/TGO/Substrate) and a few cases of four layer (EBC/TGO/Bond coat/Substrate) were analyzed subjected to an isothermal cooldown.
- The influence of damage in the TGO layer in the form of vertical cracks and two thicknesses for both uniform and non-uniform TGO layer were examined.

Uniform TGO layers

- With no damage, the stress state is independent of TGO layer thickness.
- When damage was introduced in the form of vertical cracks, significant peel and shear stresses developed.
- Given an average experimentally observed crack spacing in the TGO layer of 10 μm; analyses suggest that the tensile strength of the pristine TGO material should be around 200 MPa.

Non-uniform TGO layers

- Even a slight non-uniformity in the TGO thickness resulted in significant peel and shear stresses increasing the possibility of delamination and spallation of EBC when a critical thickness is reached.
- When damage is introduced, there was an increase in peel and shear stresses.
- The presence of damage (vertical cracks caused by in-plane stresses) enhances the stresses that are present due to non-uniformity. However, the presence of non-uniformity itself is still the main factor influencing the magnitude of peel and shear stresses.

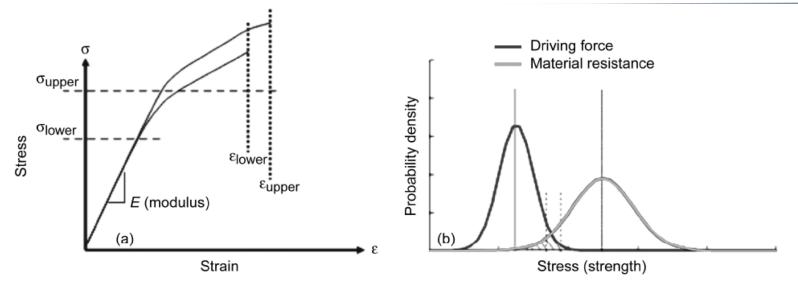
Summary (contd.)

TACP - Transformational Tools & Technologies Project

- As TGO thickness increases with exposure time; peel and/or shear stresses will exceed the material resistance (strength) and lead to EBC failure. That is a critical thickness will be reach whereupon delamination/spallation will occur.
- Presence of a bondcoat layer reduces the driving forces. For a given critical failure stress, silicon bondcoat in four layer system enables a thicker critical TGO and thus increased life prior to failure.

Future Work

- Material behavior (e.g. creep/relaxation), TGO growth rate
- Constituent material and interfacial bond strength


Thank You For Your Attention

TACP - Transformational Tools & Technologies Project

Email: Steven.M.Arnold@nasa.gov

Modeling Philosophy: Trade Offs

roiect

Actuality both driving force (applied loads and local architecture) and material resistance (dependent upon both local architecture and processing methodology) are spatially varying throughout a given component/specimen.

- 1) Assume <u>a fixed (pristine)</u> architecture (Driving Forces) with specific architectural parameters that can be varied (e.g., tow spacing, tow shape, etc.) to obtain a statistical distribution of resulting stresses. These stresses then can be compared with statically and spatially varying material strength values (Resistance).
- Alternatively, one can analyze local architecture (e.g., ply shifting, ply rotation, nesting, etc.) and the flaw and porosity distribution in great detail using high-fidelity numerical analyses to obtain detailed local stresses (i.e., driving forces). These stresses can be compared with <u>a fixed</u> value of material strength (resistance).

Prior Study Results related to Thermally Induced Stresses in TBC-Protected Plate

ACP - Transformational Tools & Technologies Project

- Effect of geometry on free-edge interlaminar stresses: no effect of L/H, significant effect of t_{BC}/H
- Effect of bond coat properties on free-edge interlaminar stresses: significant effect of α_{BC} and E_{BC} , small effect of κ_{BC}
- Effect of top coat properties on free-edge interlaminar stresses: smaller effect of α_{TC} and E_{TC} relative to α_{BC} and E_{BC}
- Effect of substrate properties on free-edge interlaminar stresses: relatively small effect of α_s and E_s along TC/BC interface, with substantially greater effect along BC/S interface
- Effect of through-thickness thermal gradient on free-edge interlaminar stresses: the magnitude of the gradient has significant effect
 - Change in sign of the peel stress with increasing gradient from tension to compression

TACP - Transformational Tools & Technologies Project

- <u>Type of Analysis</u>: Compared 2-D plain stress, 2-D generalized plain strain and full 3-D analyses. All analyses gave comparable results. 2-D plain stress and 2-D plain strain can bound the problem.
- <u>Mesh Density</u>: Results are sensitive to mesh density. Size of the element is governed by the case with smallest undulations (when considering non-uniform layers). One should maintain the same element size for subsequent analyses.
- <u>Modeling of Corners</u>: When modeling non-uniform layers, results were compared with models with sharp corners to those where corners were rounded off. The difference in resulting stresses was not significant.
- <u>Size of the Model</u>: Symmetry was used with appropriate boundary conditions. If the edges are constrained appropriately, the size of the model can be reduced.