

Mitigating Interference from Urban Air Mobility Vehicles on Satellite Communication Links by Using Vortex Radiometry

Dr. Peter J. Schemmel National Aeronautics and Space Administration Glenn Research Center

25th Ka and Broadband Communications Conference Sorrento, Italy 2019

Outline

- Urban air mobility
- UAM communication needs
- Potential for disaster
- Fusilli pasta solution
- Vortex radiometry
 - Simulation
 - Prototype

Urban Air Mobility

- Major transportation disruption
 - Package delivery
 - Air taxis
 - Emergency services
- Thousands of vehicles
 - Autonomy required
 - Fully autonomous
 - Remotely piloted
- Communications
 - Secure, reliable and resilient?

UAM communication needs

- Disruption to SATCOM industry
 - Massive number of users
 - Constantly using network
 - All high priority links
- Requires
 - Equally massive increase in satellite assets
 - Seamless integration with terrestrial assets
 - Autonomy ("Cognition")

Potential for disaster

- UAM link fades result in...
 - Vehicle loss
 - Destruction of infrastructure
 - Erosion of public trust
- Cognitive algorithms predict fades
 - Most rely on active link statistics
 - Even a millisecond fade can result in disaster
- Prediction is not reliable enough for UAM

A thought experiment

- Remotely piloted air metro
 - Primary SATCOM link
- Autonomous package delivery vehicle
 - Idents metro as cellular base station
 - Receives no response
 - Cognitive algorithm sees poor link
 - Increases TX power
- Results in an interference fade
 - Loss of remote pilot control
 - Vehicle crashes

Fade arrival detection

- Need an early warning system
- Concentric ring concept
 - Measure interference at known positions
 - Calculate source velocity, size and time of arrival
- Estimate
 - When a fade will occur
 - How long a fade persist for
 - How intense a fade will be

Annular beams: The fusilli solution

- Orbital angular momentum
 - Higher-order Gaussian beams
 - Azimuthal phase variation
 - Central phase dislocation
 - Spiral phase plates, phased arrays...
- Vortex Radiometer
 - Multiple OAM beams
 - Different azimuthal mode numbers
 - Measure received power vs time
 - Estimate interfering properties

Spiral Phase Plate Phase Magnitude -Mode Mode 2

Mode 3

Vortex Radiometry: Example

• Effective radius 5 m

Vortex Radiometry: Results

Vortex Radiometer: Trials

Conclusion

NASA

- UAM is coming
- Prediction based on active link statistics is not resilient enough for UAM
- Measure fades before occurrence
- Orbital angular momentum enabled vortex radiometer
 - When a fade will happen
 - How long a fade will persist for
 - How intense a fade will be

