

Static Analysis using Abstract Interpretation

Maxime Arthaud

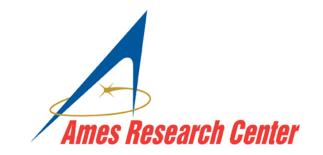




Table of contents

- 1. Introduction
- 2. IKOS
- 3. Abstract Interpretation

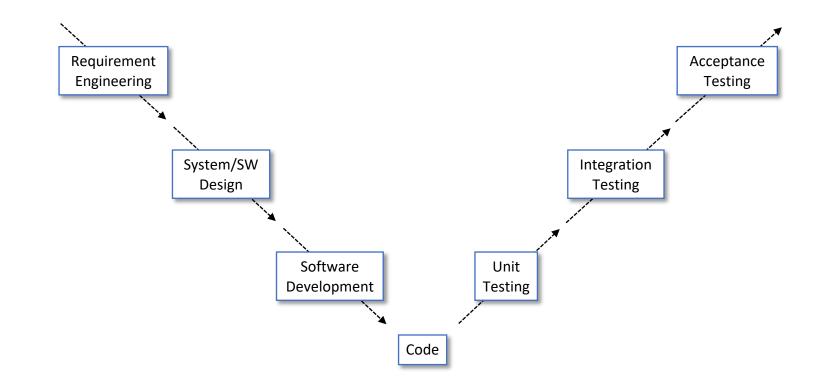
Table of contents

- 1. Introduction
 - A. Software development
 - B. Validation and Verification
 - C. Formal Verification
 - D. Static Analysis
- 2. IKOS
- 3. Abstract Interpretation

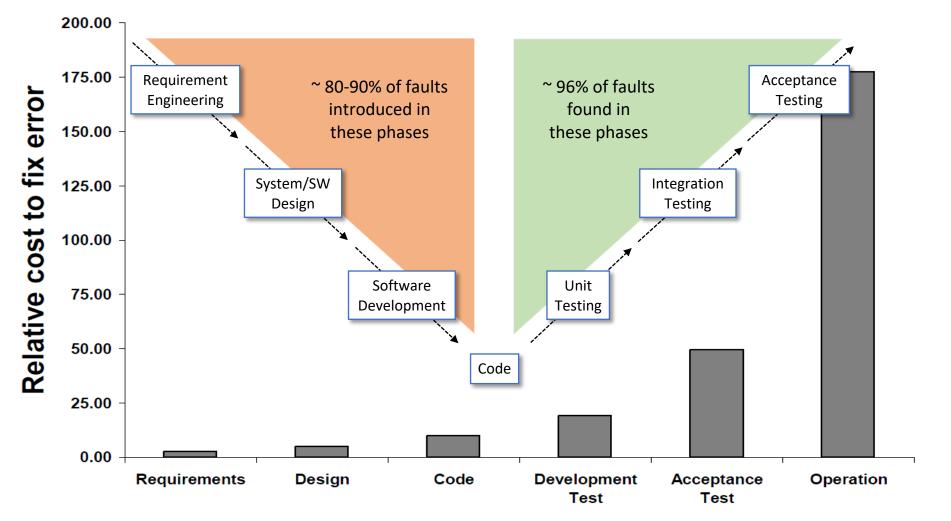
Software development

- Software represent more than half of the development cost of an aircraft
- Safety Critical : Failure is not an option
- Regulated by international standards : **DO-178 rev. B/C**
- Robust Software Engineering

V Model



Cost Analysis



Phase in which error was detected and corrected

Validation and Verification

• Validation:

The software meets the needs of the user

 \rightarrow Are we building the right thing?

• Verification:

The software **meets** the **specification**

 \rightarrow Are we building it right?

Formal Verification

• Formal Verification:

Prove the correctness of a program with respect to a **formal specification**

• Formal Specification:

Mathematical description of a software

Properties

• Safety property:

Something **bad** will **never** happen

• Liveness property:

Something good will eventually happen

Formal Methods

• Abstract Interpretation:

Compute an over approximation of all the reachable states

• Model Checking:

Explore all the reachable states

• Symbolic Execution:

Explore interesting paths with symbolic inputs

• Theorem Proving:

Prove properties manually or with heuristic algorithms

• Etc...

Static Analysis

• Static Analysis:

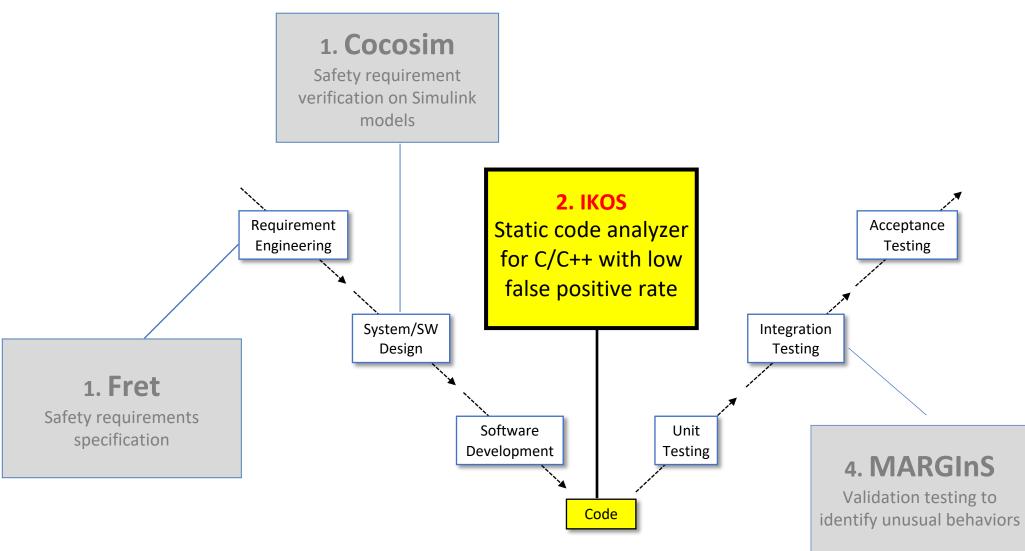
Analysis of a software **without** actually **executing** it

- Opposite of Dynamic Analysis
- Can be performed on the **source code** or **binary code**
- Objectives:
 - Find runtime errors
 - Measure metrics
 - Reverse engineering
 - Etc...

Table of contents

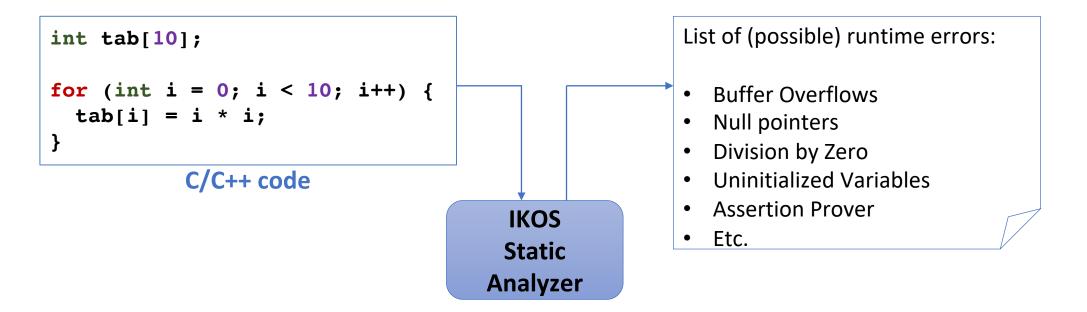
- 1. Introduction
- 2. IKOS
- 3. Abstract Interpretation

IKOS



IKOS

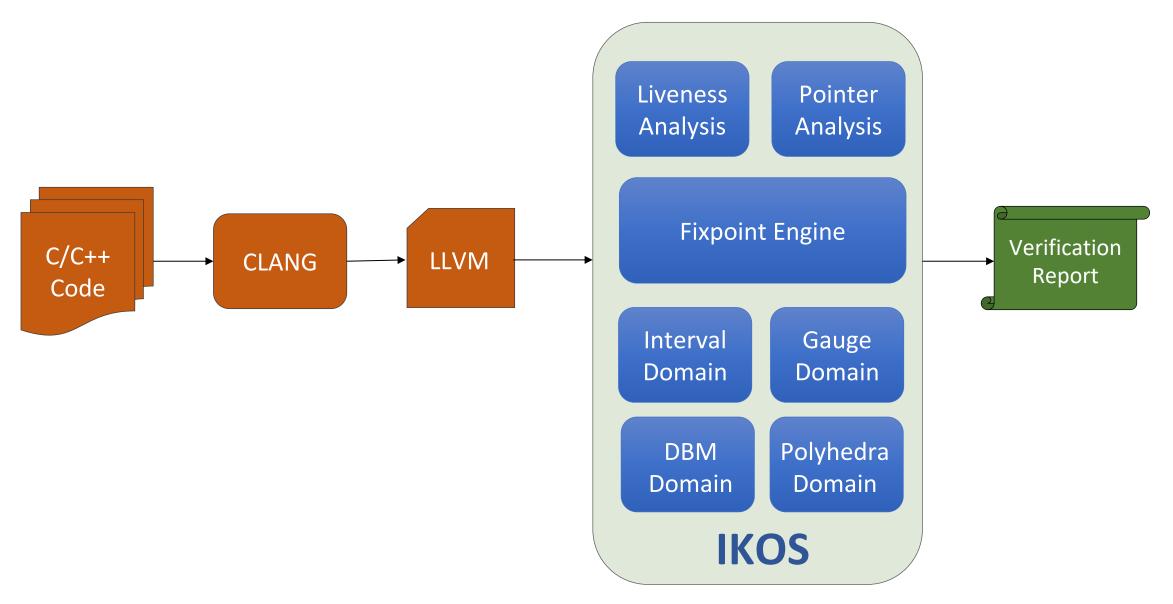
IKOS performs a **compile-time** analysis of a C/C++ source code. It can **detect** or **prove the absence** of **runtime errors**.



IKOS is **NOT** a code style checker

IKOS is **NOT** a compiler: It can detect errors that compilers cannot catch

IKOS Design



Verification Report

- Safe: The instruction is proven free of runtime errors
- Error: The instruction always produces a runtime error
- Warning:
 - The instruction can produce an error depending on the input
 - The instruction is safe but IKOS could not prove it (also called false positive)

Example

```
int tab[10];
for (int i = 0; i < 10; i++) {
  tab[i] = i * i;
}</pre>
```

• The analysis discovers program properties: $0 \le i \le 9$

Example

```
int tab[10];
for (int i = 0; i < 10; i++) {
   tab[i] = i * i;
}
Access within bounds?</pre>
```

- The analysis discovers program properties: $0 \le i \le 9$
- The verification uses the properties discovered:
 - Array-bound compliance
 - Check that array tab has at least 10 elements

IKOS Checks

- Buffer overflow
- Division by zero
- Null pointer dereference
- Assertion prover
- Unaligned pointer
- Uninitialized variable
- Integer overflow (signed, unsigned)
- Invalid bit shift
- Invalid pointer comparison
- Invalid function pointer call
- Dead code
- Double free and Invalid lifetime

IKOS Abstract Domains

Domain	Constraints	Complexity
Interval	x ∈ [a, b]	n
Congruence	$x \in aZ+b$	n
Gauge	$x \in [a^*i + b^*k +, a'^*i + b'^*k +]$	K*n
Difference Bound Matrices	x - y ∈ [a, b]	n³
APRON Octagon	$x \pm y \in [a, b]$	n³
APRON Polka Polyhedra	a*x + b*y + + c <= 0	Exponential
APRON PPL Polyhedra	a*x + b*y + + c <= 0	Exponential
Variable Packing of	•••	n

Live demo

IKOS Installation

- Supported platforms:
 - Mac OS
 - Linux
 - Windows (using *MinGW*)
- **Dependencies** can be installed with a **package manager** (brew, apt-get, yum, ..)
- Installation instructions for each platform available in: doc/install/
- Bootstrap script for non-admin installations: downloads and compiles all missing dependencies (*slow*)

IKOS Usage

- Analyze a single file: ikos file.c
 - Runs the analysis
 - Prints the results
 - Generates an output database containing the analysis results: output.db
- Analyze a whole project:
 - ikos-scan make
 - ikos program.bc
- Generate a report from an output database: ikos-report output.db
- Examine the results in a graphical interface: ikos-view output.db

IKOS-SCAN

- Analyze a whole project with: ikos-scan <command>
- It compiles all executables to LLVM bitcode: program.bc
- It runs IKOS on the LLVM bitcode: ikos program.bc
- Works with most build systems: Make, CMake, Autoconf, etc...
- Works by overriding environment variables: CC, CXX, LD

IKOS-SCAN

Live demo

Analyzing a library

- The analysis needs an **entry point** (i.e, main)
- Workaround: create a small program that uses the library
- Analyze a program with a specific entry point: ikos file.bc —e=MyMain

IKOS-VIEW

- Graphical interface to examine the analysis results
- Starts a **web server** in the terminal, opens the default **browser**
- ikos-view output.db

IKOS-VIEW

Live demo

IKOS Abstract Domains Guidelines

- Start with fast but imprecise domain
- Go towards **slow** but **precise** domain
- Stop when the analysis is too slow for your use case
- Recommended order:
 - Interval: -d=interval
 - Gauge + Interval + Congruence: -d=gauge-interval-congruence
 - Variable Packing DBM: -d=var-pack-dbm
 - Variable Packing Polyhedra: <a>-d=var-pack-apron-ppl-polyhedra

IKOS Assumptions

- The source code is compiled with Clang for the **host architecture**
- Clang defines:
 - The data model (size of types)
 - The memory layout (alignments)
 - The endianness
 - The semantic of floating points
 - Etc...

IKOS Assumptions

- The program is **single-threaded**
- The program does not receive signals or interrupts
- Unknown extern functions:
 - Do not update global variables
 - Can write on their pointer arguments
 - Do not call user-defined functions (no callbacks)
- Assembly code is treated as a call to an unknown extern function
- **Recursive functions** can update any value in memory

False positives

- False positive: invalid warning
- Objective: low rate of false positives
- Common source of false positives:
 - Unknown library functions
 - "Bad" code patterns
 - Imprecision of the analysis

Modeling library functions

- The analyzer does **not** require the **libraries** used by your program
- Unknown library functions will trigger a warning ("ignored call side effect" in ikos-view)
- Modeling library functions can reduce the number of warnings
- Write "stubs": fake implementations of library functions

Modeling library functions

IKOS Annotations

- Annotating your source code can reduce the number of warnings
- List of intrinsic functions: analyzer/include/ikos/analyzer/intrinsic.h
 - ___ikos_assert(condition)
 - ____ikos_assume(condition)
 - __ikos_nondet_int()
 - ____ikos_check_mem_access(ptr, size)
 - ____ikos_assume_mem_size(ptr, size)
 - __ikos_forget_mem(ptr, size)
 - __ikos_abstract_mem(ptr, size)
 - ____ikos_print_values(description, var)

IKOS Annotations

ret = talg->parse_algoid_params(buf, param_len, param);

IKOS Annotations

ret = talg->parse_algoid_params(buf, param_len, param);

```
int (*fun)(const u8*, u16, alg_param*) =
    talg->parse_algoid_params;
__ikos_assume(fun == parse_algoid_params_generic ||
    fun == parse_algoid_params_ecdsa_with ||
    fun == parse_algoid_params_ecPublicKey ||
    fun == parse_algoid_params_rsa);
ret = fun(buf, param_len, param);
```

Bad code pattern (1)

```
CommandResult = XXX();
if (CommandResult == TRUE) {
    FilenameState = YYY();
    if (FilenameState == FM NAME IS INVALID) {
        CommandResult = FALSE;
if (CommandResult == TRUE) {
    CommandResult = ZZZ();
if (CommandResult == TRUE) {
    // ...
return CommandResult;
```

Bad code pattern (1)

- Bad readability
- Prone to errors
- Hard for static analyzers
- Please use "early return on errors"

Bad code pattern (1)

```
CommandResult = XXX();
if (!CommandResult) {
    return FALSE;
CommandResult = YYY();
if (CommandResult == FM_NAME_IS_INVALID) {
    return FALSE;
CommandResult = ZZZ();
if (!CommandResult) {
    return FALSE;
return TRUE;
```

Bad code pattern (2)

Single global variable containing everything

```
AppData_t g;
typedef struct {
    PipeId_t CmdPipeId;
    uint16 usCmdPipeDepth;
    char cCmdPipeName[OS_MAX_API_NAME];
    int32 ulfd;
    uint32 uiRunStatus;
    // ...
    uint8 lastCmdBchErrorStatus;
} AppData_t;
```

Bad code pattern (2)

- Makes the buffer overflow analysis harder
- Please split it into different global variables

Bad code pattern (3)

• Small integers for loop counters

Bad code pattern (3)

• Small integers for loop counters

Integer promotion rules of C

```
void f(uint16_t n) {
   for (uint16_t i = 0;
        (unsigned int)i < (unsigned int)n;
        i = (uint16_t)((unsigned int)i + 1)) {
        // ...
   }
}</pre>
```

Bad code pattern (3)

- Creates temporary variables in the LLVM bitcode
- Leads to imprecision of the analysis
- Please use size_t (or int) for loop indexes

Imprecision

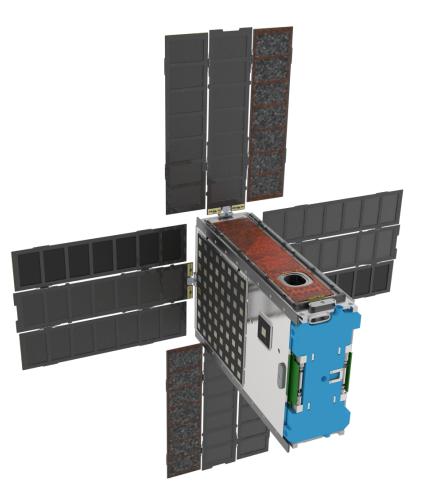
• Initialization functions returning an error code

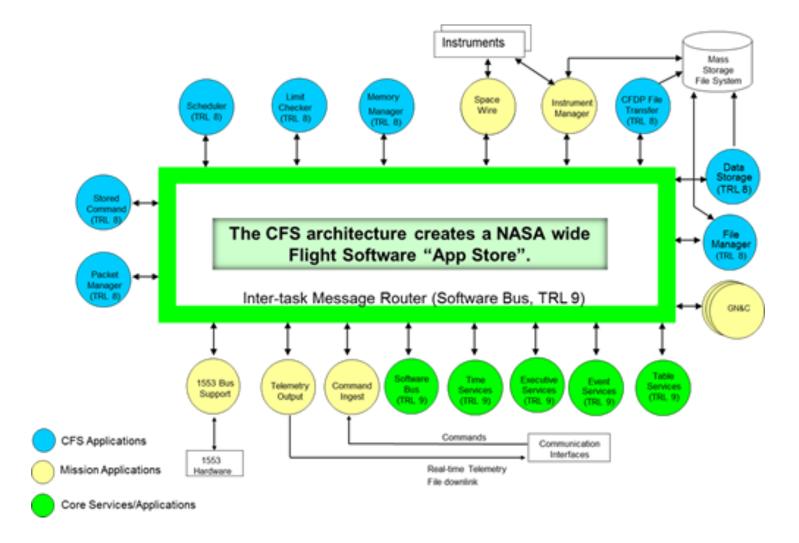
```
int Init(void) {
    int status = Register();
    if (status != SUCCESS) {
        return status;
    }
    status = InitEvent();
    if (status != SUCCESS) {
        return status;
    }
```

Imprecision

- Imprecision due to the abstract union in the analysis
- Analysis option: --partitioning=return

- Space biology mission
- CubeSat spacecraft
- Developed at NASA Ames, in collaboration with JPL, JSC, MSFC
- Flight software built on top of CFS





- Each application was analyzed with IKOS
- The CFE framework was modeled to improve the analysis (~ 1200 LOC)
- Low rate of warnings: 1.31% in average
- Found ~ 17 real bugs

Application	Abstract Domain	Time	Errors	Warnings	Warnings%	Checks
adio	var-pack-dbm	1 min 6.92 sec	0	1	0.07%	1334
brdio	var-pack-dbm	8.02 sec	0	8	0.97%	818
ci	var-pack-dbm	19.98 sec	0	6	0.65%	923
comio	var-pack-dbm	1 min 4.83 sec	0	4	0.26%	1494
epsio	var-pack-dbm	30.64 sec	0	5	0.42%	1181
letio	var-pack-dbm	24.33 sec	0	18	1.64%	1095
ms	interval	0.16 sec	0	0	0%	444
saio	var-pack-dbm	22.35 sec	0	8	0.64%	1246
sensio	var-pack-dbm	4.67 sec	0	79	9.56%	826
spe	interval	0.16 sec	0	0	0%	445
thrio	var-pack-dbm	19.33 sec	0	4	0.38%	1043
to	var-pack-dbm	2 min 18.32 sec	0	33	1.98%	1666
xactio	var-pack-dbm	22.18 sec	0	6	0.51%	1165

BioSentinel Bug (1)

warning: Possible buffer overflow, pointer '&FrameBuffer[0]' with offset 0
bytes points to global variable 'FrameBuffer' of size 4096 bytes

BioSentinel Bug (2)

warning: Possible buffer overflow, pointer '&cmd[n + 2]' accesses 1 bytes at offset between 8 and 16 bytes of local variable 'cmd' of size 16 bytes

```
uint8_t cmd[16];
uint8_t n;
// ...
switch(cmd_request) {
    case CMD_OPEN:
        n = CMD_OUT + CMD_OPEN; // 6 + 8 = 14
        break;
    // ...
}
// ...
cmd[n + 2] = 0; // 14 + 2 = 16
```

Guidelines

- Use a lightweight static analyzer first: cppcheck, clang-tidy, pvs-studio, etc.
- Use ikos-scan to generate the llvm bitcode (.bc): ikos-scan make
- Use ikos on the llvm bitcode (.bc): ikos program.bc
- Try different abstract domains: ikos —d=var-pack-dbm program.bc
- Use ikos-view to examine the results: ikos-view output.db
- (Optional) Model key library functions
- (Optional) Annotate the code
- (Optional) Avoid "bad" patterns
- (Optional) Add ikos in your continuous build system

IKOS at a glance

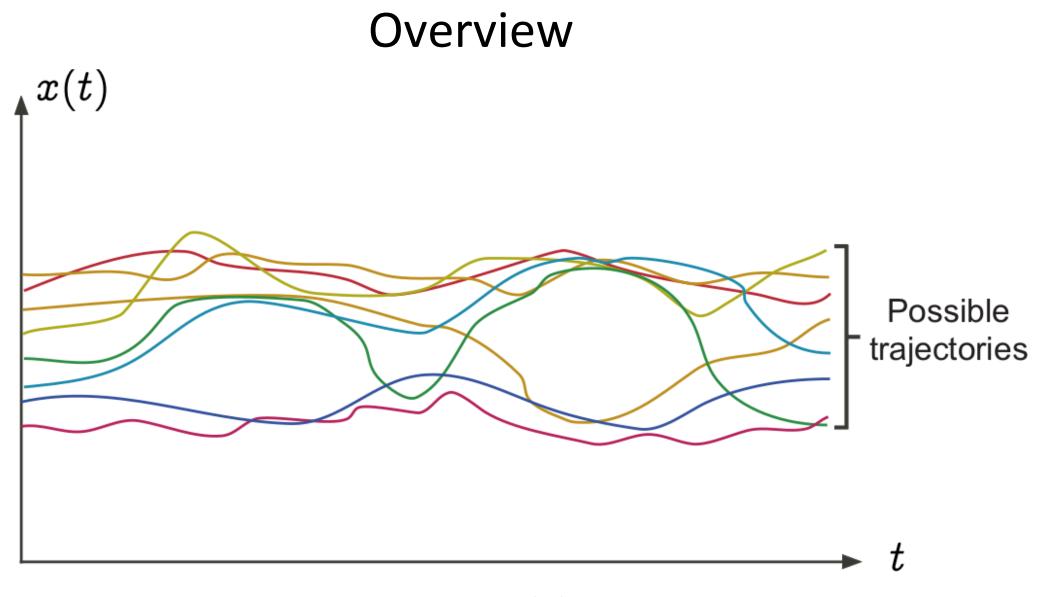
- IKOS is a **static analyzer** for **C/C++** targeting **safety critical** software
- IKOS is **open source**: https://github.com/NASA-SW-VnV/ikos
- Contact: ikos@lists.nasa.gov

Table of contents

- 1. Introduction
- 2. IKOS
- 3. Abstract Interpretation
 - A. Overview
 - B. Concrete semantic
 - C. Abstract semantic
 - D. Interval domain
 - E. Convergence Acceleration

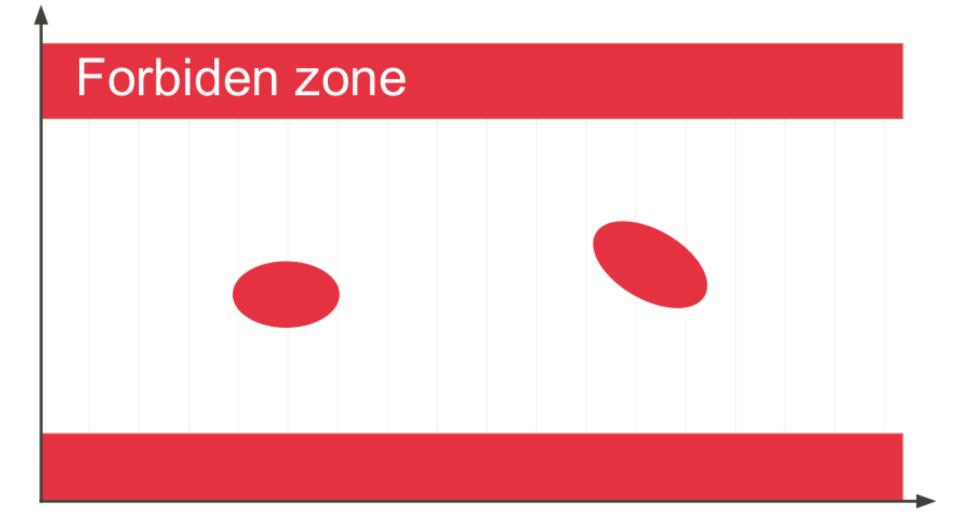
Abstract Interpretation

- Mathematical framework
- Approximation of the reachable states of a program
- Fully automated: No user interaction
- Sound: Cannot miss a bug
- Formalized by Patrick and Radhia Cousot in the late 1970s



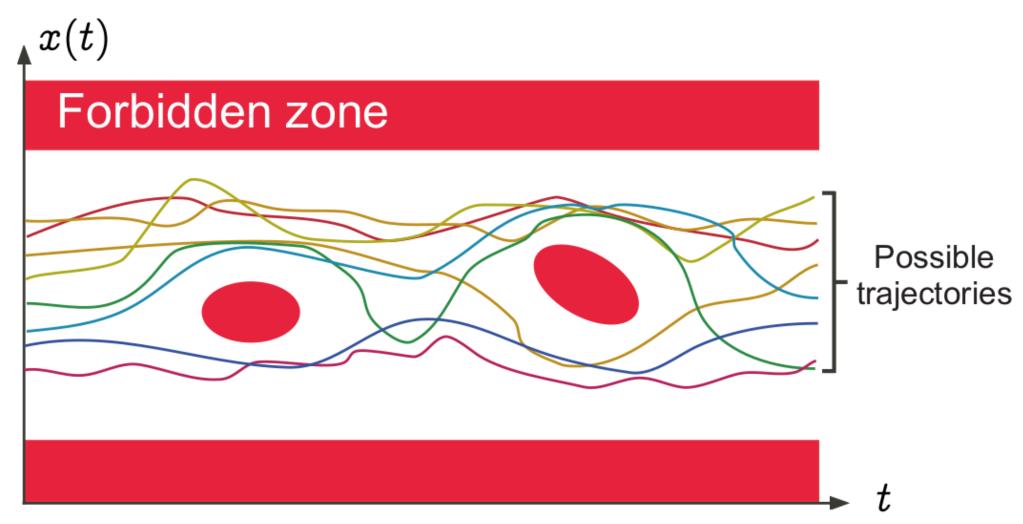
Semantics(P)

Overview

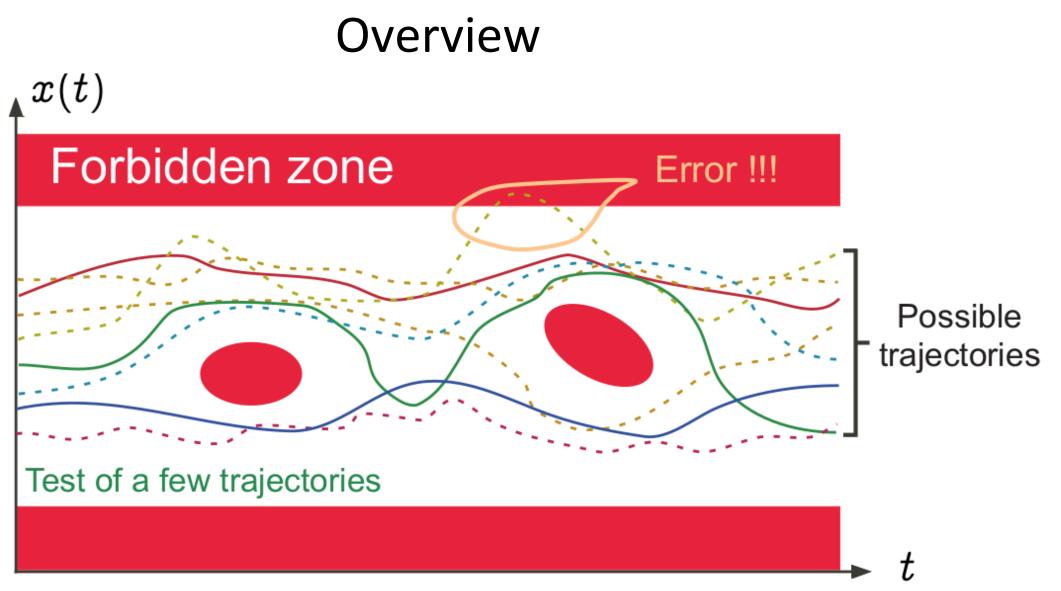


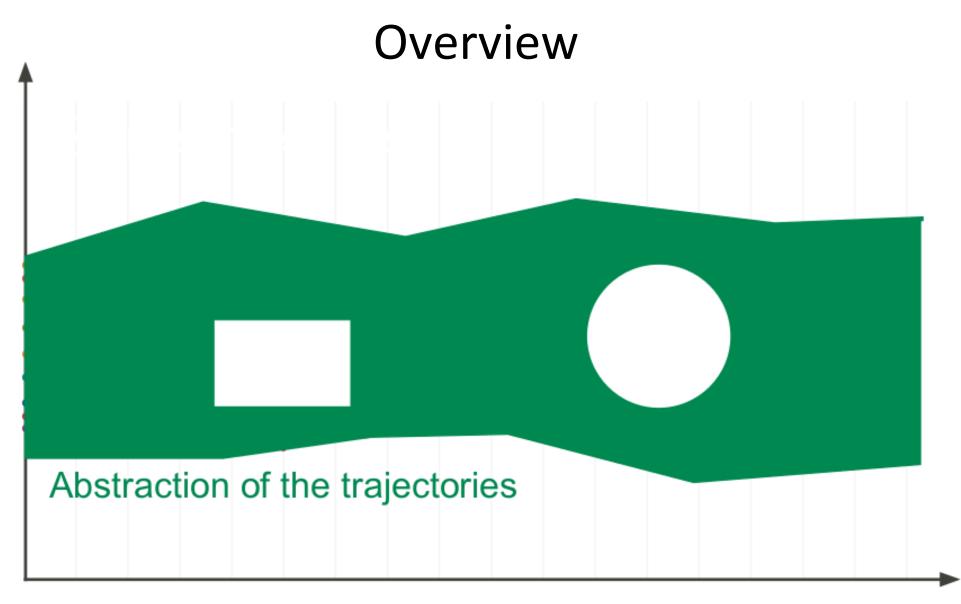
Specification(P)

Overview



Semantics(P) \subseteq Specification(P) \bigcirc

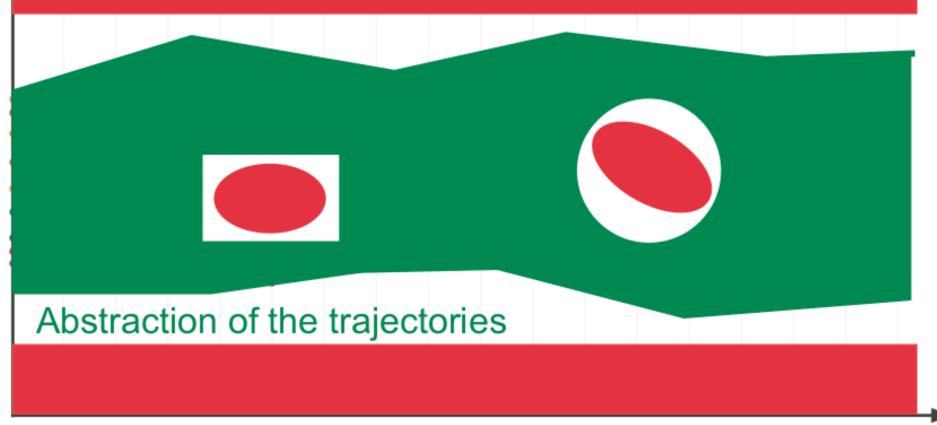




Abstraction(P)

Overview

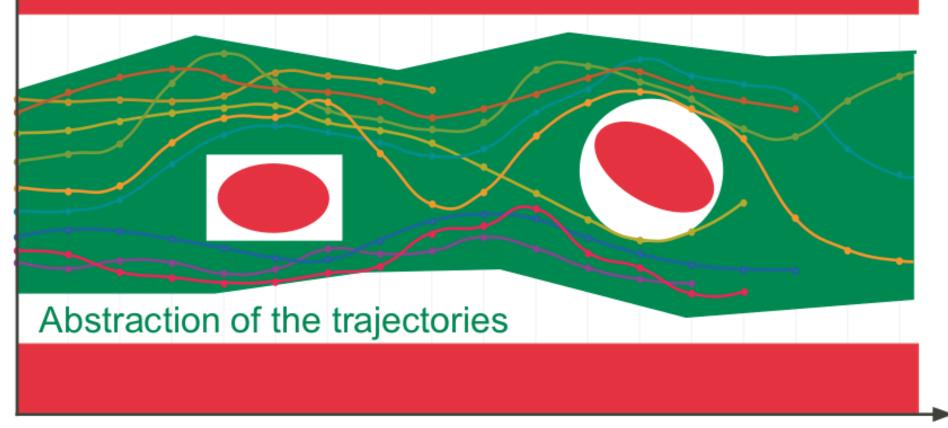
Forbidden zone



Abstraction(P) \subseteq Specification(P)

Overview

Forbidden zone



Semantics(P) \subseteq Abstraction(P) \subseteq Specification(P) \checkmark

Toy language - Syntax

stmt ::=	v = expr;	
	stmt stmt	
	<pre>if (expr > 0) { stmt }</pre>	
	else { stmt }	$\mathbb V$ set of v
	<pre>while (expr > 0) { stmt }</pre>	${\mathbb Z}$ set of i
expr ::=	$v \in \mathbb{V}$	_
	$n \in \mathbb{Z}$	<pre>rand(a,</pre>
	<pre>rand(a, b)</pre>	integer b
	expr + expr	(simulate
	expr - expr	X
	expr * expr	
	expr / expr	

variables integers

b) represents an between **a** and **b** e an input)

Toy language - Example

```
x = rand(0, 12);
y = 42;
while (x > 0) {
    x = x - 2;
    y = y + 4;
}
```

An execution: (values at the beginning of the loop)

x | 7 5 3 1 -1 y | 42 46 50 54 58

Toy language - Example

```
x = rand(0, 12);
y = 42;
while (x > 0) {
    x = x - 2;
    y = y + 4;
}
```

An execution:

(values at the beginning of the loop)

x | 7 5 3 1 -1 y | 42 46 50 54 58

Notes:

- A very **simple** language, no functions, no arrays, ...
- But it is an imperative language like C
- It is actually a subset of C
- It can compute everything Turing complete

Toy language - Semantic

- We need to define the semantic of our language
- Also called Formal Specification
- **Collective** semantic:

Mathematical definition of the reachable states of a given program

Control flow graph

A *control flow graph* is a triplet (*L*, *O*, *A*) with a set of program points *L*, an entry point $O \in L$ and a set of edges $A \subseteq L \ge C$ and $X \subseteq L \ge C$ with:

command ::= | v = expr | expr > 0

Control flow graph

A *control flow graph* is a triplet (*L*, *O*, *A*) with a set of program points *L*, an entry point $O \in L$ and a set of edges $A \subseteq L \ge C$ and $A \subseteq L \ge C$ with:

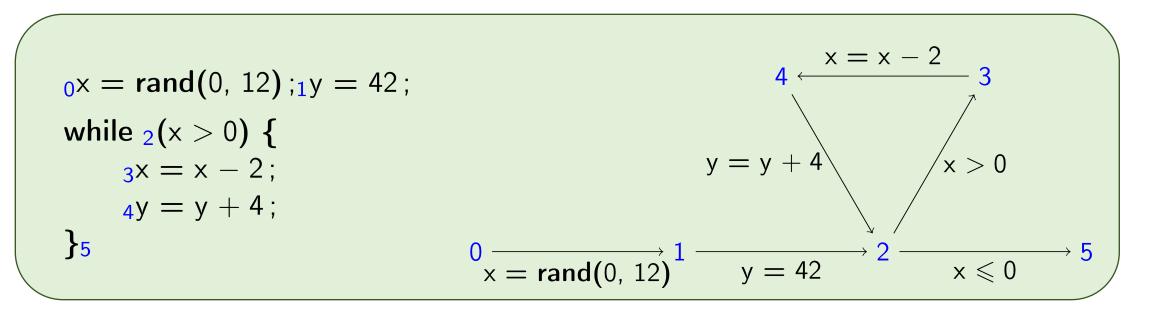
command ::= | v = expr | expr > 0

```
_{0}x = rand(0, 12);_{1}y = 42;
while _{2}(x > 0) \{
_{3}x = x - 2;
_{4}y = y + 4;
}
```

Control flow graph

A *control flow graph* is a triplet (*L*, *O*, *A*) with a set of program points *L*, an entry point $O \in L$ and a set of edges $A \subseteq L \ge C$ and $A \subseteq L \ge C$ with:

command ::= | v = expr | expr > 0



Semantic of Expressions

Semantic of expressions: $\llbracket e \rrbracket_{E} : (\mathbb{V} \to \mathbb{Z}) \to \mathcal{P}(\mathbb{Z})$

. . .

Semantic of Expressions

Semantic of expressions: $\llbracket e \rrbracket_{\mathrm{E}} : (\mathbb{V} \to \mathbb{Z}) \to \mathcal{P}(\mathbb{Z})$

. . .

An environment ρ is a function $\mathbb{V} \to \mathbb{Z}$ that associates a value to each variable

Notes on errors:

We can reach 2 kind of errors during the execution:

Notes on errors:

We can reach 2 kind of errors during the execution:

• rand(n_1 , n_2) with $n_1 > n_2$: $[[rand(n_1, n_2)]]_E = \{x \in \mathbb{Z} \mid n_1 \leq x \leq n_2\} = \emptyset;$

Notes on errors:

We can reach 2 kind of errors during the execution:

- rand(n_1 , n_2) with $n_1 > n_2$: $[[rand(n_1, n_2)]]_E = \{x \in \mathbb{Z} \mid n_1 \leq x \leq n_2\} = \emptyset;$
- Division by zero :

 $\llbracket e/0 \rrbracket_{\rm E} = \emptyset.$

Notes on errors:

We can reach 2 kind of errors during the execution:

- rand(n_1 , n_2) with $n_1 > n_2$: $[[rand(n_1, n_2)]]_E = \{x \in \mathbb{Z} \mid n_1 \leq x \leq n_2\} = \emptyset;$
- Division by zero :

 $\llbracket e/0 \rrbracket_{\mathrm{E}} = \emptyset.$ We assume the program aborts on errors.

Semantic of commands

Semantic of commands: $\llbracket c \rrbracket_{\mathrm{C}} : \mathcal{P}(\mathbb{V} \to \mathbb{Z}) \to \mathcal{P}(\mathbb{V} \to \mathbb{Z})$

$$\llbracket \mathbf{v} = \mathbf{e} \rrbracket_{\mathrm{C}}(R) = \{ \rho [\mathbf{v} \mapsto \mathbf{n}] \mid \rho \in R, \mathbf{n} \in \llbracket \mathbf{e} \rrbracket_{\mathrm{E}}(\rho) \}$$
$$\llbracket \mathbf{e} > \mathbf{0} \rrbracket_{\mathrm{C}}(R) = \{ \rho \mid \rho \in R, \exists \mathbf{n} \in \llbracket \mathbf{e} \rrbracket_{\mathrm{E}}(\rho), \mathbf{n} > \mathbf{0} \}$$

Semantic of commands

Semantic of commands: $\llbracket c \rrbracket_{\mathrm{C}} : \mathcal{P}(\mathbb{V} \to \mathbb{Z}) \to \mathcal{P}(\mathbb{V} \to \mathbb{Z})$

$$\llbracket \mathbf{v} = \mathbf{e} \rrbracket_{\mathrm{C}}(R) = \{ \rho [\mathbf{v} \mapsto n] \mid \rho \in R, n \in \llbracket \mathbf{e} \rrbracket_{\mathrm{E}}(\rho) \}$$
$$\llbracket \mathbf{e} > 0 \rrbracket_{\mathrm{C}}(R) = \{ \rho \mid \rho \in R, \exists n \in \llbracket \mathbf{e} \rrbracket_{\mathrm{E}}(\rho), n > 0 \}$$

Note that $e \leq 0$ can be rewritten as 1 - e > 0 (syntactic sugar)

Semantic of programs

Semantic of programs: $\llbracket (L, A) \rrbracket : L \to \mathcal{P}(\mathbb{V} \to \mathbb{Z})$

For each program point, it gives the set of environments

Semantic of programs

Semantic of programs: $\llbracket (L, A) \rrbracket : L \to \mathcal{P}(\mathbb{V} \to \mathbb{Z})$

For each program point, it gives the set of environments

It is the smallest solution (in term of inclusion) of the following system:

$$\begin{cases} R_0 = \mathbb{V} \to \mathbb{Z} \\ R_{I'} = \bigcup_{(I,c,I') \in A} \llbracket c \rrbracket_{\mathrm{C}}(R_I) & I' \neq 0 \end{cases}$$

Semantic of programs

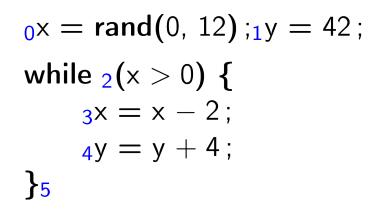
Semantic of programs: $\llbracket (L, A) \rrbracket : L \to \mathcal{P}(\mathbb{V} \to \mathbb{Z})$

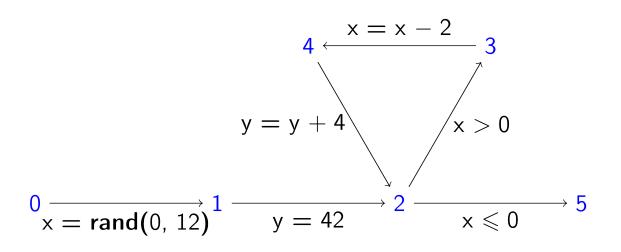
For each program point, it gives the set of environments

It is the smallest solution (in term of inclusion) of the following system:

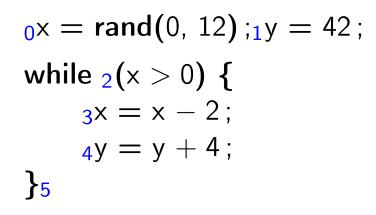
$$\begin{cases} R_0 = \mathbb{V} \to \mathbb{Z} \\ R_{I'} = \bigcup_{(I,c,I') \in A} \llbracket c \rrbracket_{\mathrm{C}}(R_I) & I' \neq 0 \end{cases}$$

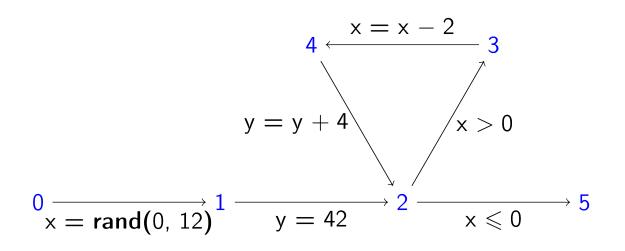
The theorem of Knaster-Tarski tells us that the solution always exists!



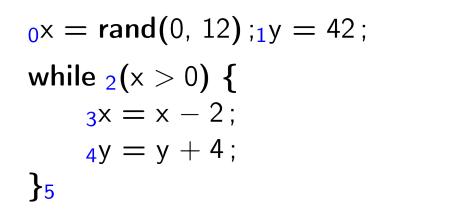


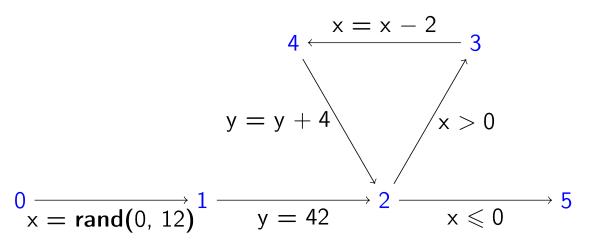
 $R_0 = \{ x \in \mathbb{Z}, y \in \mathbb{Z} \}$





$$R_0 = \{ x \in \mathbb{Z}, y \in \mathbb{Z} \} \\ R_1 = \{ x \in [[0, 12]], y \in \mathbb{Z} \}$$

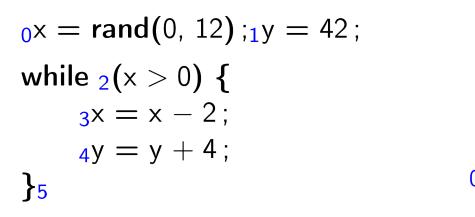


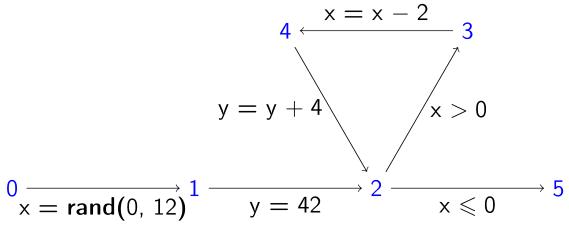


$$R_{0} = \{ x \in \mathbb{Z}, y \in \mathbb{Z} \}$$

$$R_{1} = \{ x \in [[0, 12]], y \in \mathbb{Z} \}$$

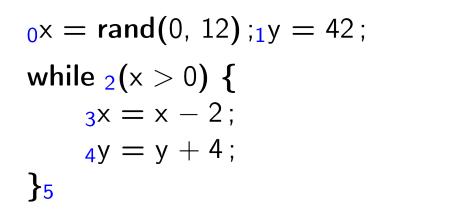
$$R_{2} = R_{1}[y \mapsto 42] \cup R_{4}[y \mapsto y + 4]$$

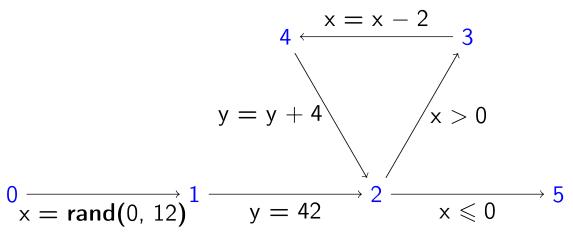




$$R_{0} = \{ x \in \mathbb{Z}, y \in \mathbb{Z} \} \\ R_{1} = \{ x \in [[0, 12]], y \in \mathbb{Z} \} \\ R_{2} = R_{1}[y \mapsto 42] \cup R_{4}[y \mapsto y + 4]$$

 $R_3=R_2\cap\{x>0,y\in\mathbb{Z}\}$





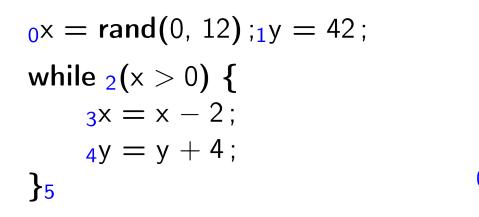
$$R_{0} = \{ x \in \mathbb{Z}, y \in \mathbb{Z} \}$$

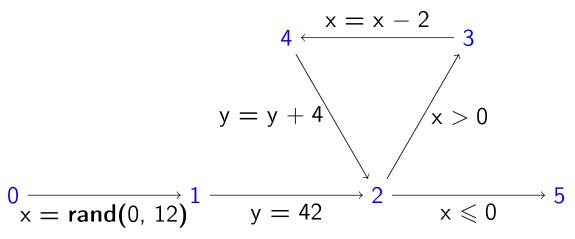
$$R_{1} = \{ x \in [[0, 12]], y \in \mathbb{Z} \}$$

$$R_{2} = R_{1}[y \mapsto 42] \cup R_{4}[y \mapsto y + 4]$$

$$R_{3} = R_{2} \cap \{ x > 0, y \in \mathbb{Z} \}$$

$$R_{4} = R_{3}[x \mapsto x - 2]$$





$$R_{0} = \{ x \in \mathbb{Z}, y \in \mathbb{Z} \}$$

$$R_{1} = \{ x \in [[0, 12]], y \in \mathbb{Z} \}$$

$$R_{2} = R_{1}[y \mapsto 42] \cup R_{4}[y \mapsto y + 4]$$

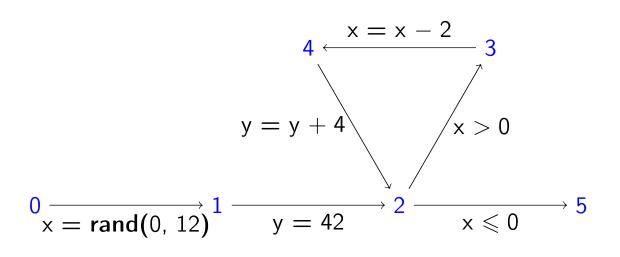
$$R_{3} = R_{2} \cap \{ x > 0, y \in \mathbb{Z} \}$$

$$R_{4} = R_{3}[x \mapsto x - 2]$$

$$R_{5} = R_{2} \cap \{ x \leqslant 0, y \in \mathbb{Z} \}$$

$$_{0}x = rand(0, 12);_{1}y = 42;$$

while $_{2}(x > 0) \{$
 $_{3}x = x - 2;$
 $_{4}y = y + 4;$
}



Smallest Solution:

$$\begin{aligned} R_{0} &= \{ x \in \mathbb{Z}, y \in \mathbb{Z} \} \\ R_{1} &= \{ x \in \llbracket 0, 12 \rrbracket, y \in \mathbb{Z} \} \\ R_{2} &= R_{1}[y \mapsto 42] \cup R_{4}[y \mapsto y + 4] = \{ x \in \llbracket -1, 12 \rrbracket, y \in \llbracket 42, 66 \rrbracket \cap 4\mathbb{Z} + 2 \\ &= \{ x \in \llbracket -1, 12 \rrbracket, y \in \llbracket 42, 66 \rrbracket \cap 4\mathbb{Z} + 2 \\ &= \{ x \in \llbracket 1, 12 \rrbracket, y \in \llbracket 42, 66 \rrbracket \cap 4\mathbb{Z} + 2 \\ &= \{ x \in \llbracket 1, 12 \rrbracket, y \in \llbracket 42, 66 \rrbracket \cap 4\mathbb{Z} + 2 \\ &= \{ x \in \llbracket 1, 12 \rrbracket, y \in \llbracket 42, 66 \rrbracket \cap 4\mathbb{Z} + 2 \\ &= \{ x \in \llbracket -1, 10 \rrbracket, y \in \llbracket 42, 66 \rrbracket \cap 4\mathbb{Z} + 2 \\ &= \{ x \in \llbracket -1, 10 \rrbracket, y \in \llbracket 42, 66 \rrbracket \cap 4\mathbb{Z} + 2 \\ &= \{ x \in \llbracket -1, 10 \rrbracket, y \in \llbracket 42, 66 \rrbracket \cap 4\mathbb{Z} + 2 \\ &= \{ x \in \llbracket -1, 0 \rrbracket, y \in \llbracket 42, 66 \rrbracket \cap 4\mathbb{Z} + 2 \\ &= \{ x \in \llbracket -1, 0 \rrbracket, y \in \llbracket 42, 66 \rrbracket \cap 4\mathbb{Z} + 2 \\ &= \{ x \in \llbracket -1, 0 \rrbracket, y \in \llbracket 42, 66 \rrbracket \cap 4\mathbb{Z} + 2 \\ &= \{ x \in \llbracket -1, 0 \rrbracket, y \in \llbracket 42, 66 \rrbracket \cap 4\mathbb{Z} + 2 \\ &= \{ x \in \llbracket -1, 0 \rrbracket, y \in \llbracket 42, 66 \rrbracket \cap 4\mathbb{Z} + 2 \\ &= \{ x \in \llbracket -1, 0 \rrbracket, y \in \llbracket 42, 66 \rrbracket \cap 4\mathbb{Z} + 2 \\ &= \{ x \in \llbracket -1, 0 \rrbracket, y \in \llbracket 42, 66 \rrbracket \cap 4\mathbb{Z} + 2 \\ &= \{ x \in \llbracket -1, 0 \rrbracket, y \in \llbracket 42, 66 \rrbracket \cap 4\mathbb{Z} + 2 \\ &= \{ x \in \llbracket -1, 0 \rrbracket, y \in \llbracket 42, 66 \rrbracket \cap 4\mathbb{Z} + 2 \\ &= \{ x \in \llbracket -1, 0 \rrbracket, y \in \llbracket 42, 66 \rrbracket \cap 4\mathbb{Z} + 2 \\ &= \{ x \in \llbracket -1, 0 \rrbracket, y \in \llbracket 42, 66 \rrbracket \cap 4\mathbb{Z} + 2 \\ &= \{ x \in \llbracket -1, 0 \rrbracket, y \in \llbracket 42, 66 \rrbracket \cap 4\mathbb{Z} + 2 \\ &= \{ x \in \llbracket -1, 0 \rrbracket, y \in \llbracket 42, 66 \rrbracket \cap 4\mathbb{Z} + 2 \\ &= \{ x \in \llbracket -1, 0 \rrbracket, y \in \llbracket 42, 66 \rrbracket \cap 4\mathbb{Z} + 2 \\ &= \{ x \in \llbracket -1, 0 \rrbracket, y \in \llbracket 42, 66 \rrbracket \cap 4\mathbb{Z} + 2 \\ &= \{ x \in \llbracket -1, 0 \rrbracket, y \in \llbracket 42, 66 \rrbracket \cap 4\mathbb{Z} + 2 \\ &= \{ x \in \llbracket -1, 0 \rrbracket, y \in \llbracket 42, 66 \rrbracket \cap 4\mathbb{Z} + 2 \\ &= \{ x \in \llbracket -1, 0 \rrbracket, y \in \llbracket 42, 66 \rrbracket \cap 4\mathbb{Z} + 2 \\ &= \{ x \in \llbracket -1, 0 \rrbracket, y \in \llbracket 42, 66 \rrbracket \cap 4\mathbb{Z} + 2 \\ &= \{ x \in \llbracket -1, 0 \rrbracket, y \in \llbracket 42, 66 \rrbracket \cap 4\mathbb{Z} + 2 \\ &= \{ x \in \llbracket -1, 0 \rrbracket, y \in \llbracket 42, 66 \rrbracket \cap 4\mathbb{Z} + 2 \\ &= \{ x \in \llbracket -1, 0 \rrbracket, y \in \llbracket 42, 66 \rrbracket \cap 4\mathbb{Z} + 2 \\ &= \{ x \in \llbracket -1, 0 \rrbracket, y \in \llbracket 42, 66 \rrbracket \cap 4\mathbb{Z} + 2 \\ &= \{ x \in \llbracket -1, 0 \rrbracket, y \in \llbracket 42, 66 \rrbracket \cap 4\mathbb{Z} + 2 \\ &= \{ x \in \llbracket -1, 0 \rrbracket, y \in \llbracket 42, 60 \rrbracket \cap 4\mathbb{Z} + 2 \\ &= \{ x \in \llbracket -1, 0 \rrbracket, y \in \llbracket 42, 60 \rrbracket \cap 4\mathbb{Z} + 2 \\ &= \{ x \in \llbracket 42, 60 \rrbracket \cap 4\mathbb{Z} + 2 \\ &= \{ x \in \llbracket 42, 60 \rrbracket \cap 4\mathbb{Z} + 2 \\ &= \{ x \in \llbracket 42, 60 \rrbracket \cap 4\mathbb{Z} + 2 \\ &= \{ x \in \llbracket 42, 60 \rrbracket \cap 4\mathbb{Z} + 2 \\ &= \{ x \in \llbracket 42, 60 \rrbracket \cap 4\mathbb{Z} + 2 \\ &= \{ x \in \llbracket 42, 60 \rrbracket \cap 4\mathbb{Z} + 2 \\ &= \{ x \in \llbracket 42, 60 \rrbracket \cap 4\mathbb{Z} + 2 \\ &= \{ x \in \llbracket 42, 60 \rrbracket$$

Order and Supremum

An *order* \sqsubseteq is a binary relation:

- Reflexive : $\forall x, x \sqsubseteq x$
- Transitive : $\forall x, y, z, (x \sqsubseteq y \land y \sqsubseteq z) \Rightarrow x \sqsubseteq z$
- Antisymmetric : $\forall x, y, (x \sqsubseteq y \land y \sqsubseteq y) \Rightarrow x = y$

Order and Supremum

An *order* \sqsubseteq is a binary relation:

- Reflexive : $\forall x, x \sqsubseteq x$
- Transitive : $\forall x, y, z, (x \sqsubseteq y \land y \sqsubseteq z) \Rightarrow x \sqsubseteq z$
- Antisymmetric : $\forall x, y, (x \sqsubseteq y \land y \sqsubseteq y) \Rightarrow x = y$

The *supremum* $[: \mathcal{P}(S) \to S$ associates to each subset *S'* of *S* its smallest upper bound:

• $\forall x \in S', x \sqsubseteq \bigsqcup S'$ • $\forall y \in S, (\forall x \in S', x \sqsubseteq y) \Rightarrow \bigsqcup S' \sqsubseteq y$

Complete Lattice

A set **S** equipped with an order \sqsubseteq is a *complete lattice* if it has a supremum $| : \mathcal{P}(S) \rightarrow S$

Complete Lattice

A set **S** equipped with an order \sqsubseteq is a *complete lattice* if it has a supremum $| : \mathcal{P}(S) \rightarrow S$

A *complete lattice* automatically has:

• An *infimum* (greatest lower bound):

$$\neg S' = \bigsqcup \{ x \mid \forall y \in S', x \sqsubseteq y \}$$

- A smallest element (*bottom*): $\bot = \bigsqcup \emptyset = \bigsqcup S$
- A greatest element (*top*): $\top = \bigsqcup S = \bigsqcup \emptyset$

 \mathbb{Z} is not a complete lattice : \mathbb{Z} does not exist

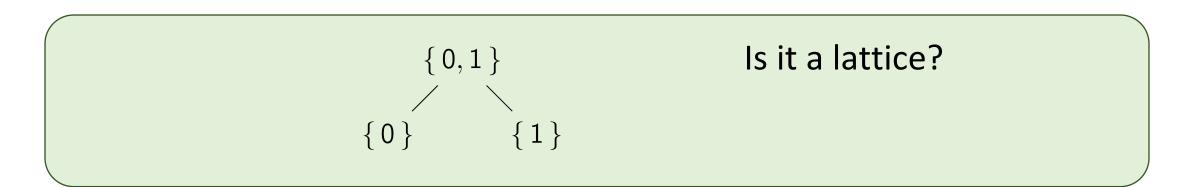
 \mathbb{Z} is not a complete lattice : \mathbb{Z} does not exist

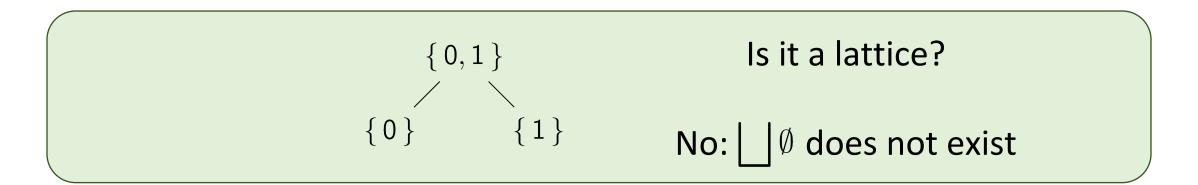
 $ar{\mathbb{Z}} = \mathbb{Z} \cup \{-\infty, +\infty\}$ is a complete lattice

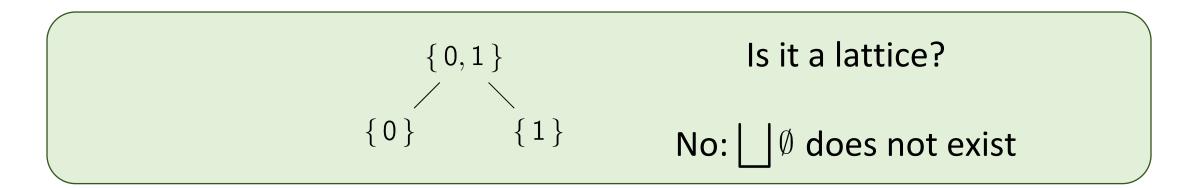
 \mathbb{Z} is not a complete lattice : \mathbb{Z} does not exist

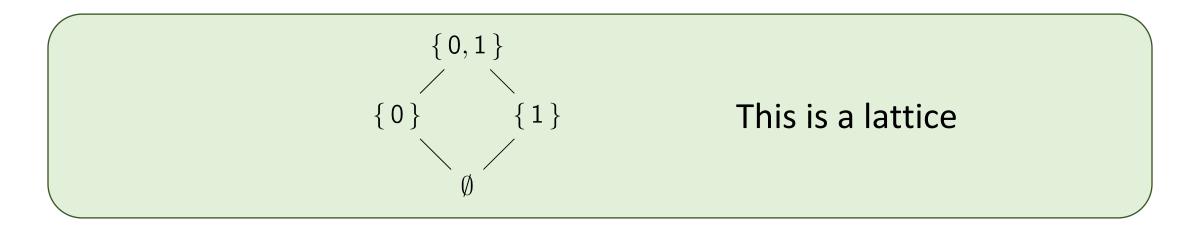
 $ar{\mathbb{Z}} = \mathbb{Z} \cup \{-\infty, +\infty\}$ is a complete lattice

- What is T ?
- What is \perp ?









Monotonic Function

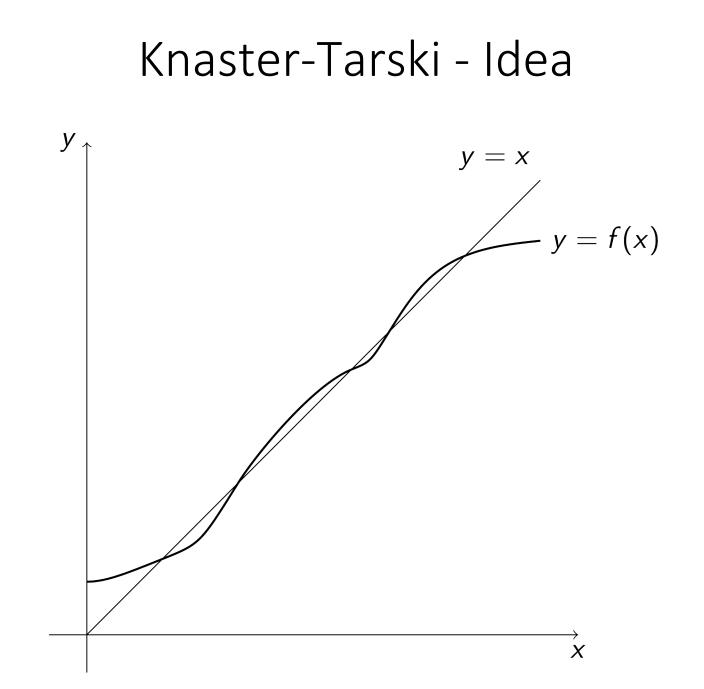
A function **f** on a complete lattice is **monotonic** if and only if: $\forall x, y \in S, x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y)$

Knaster-Tarski

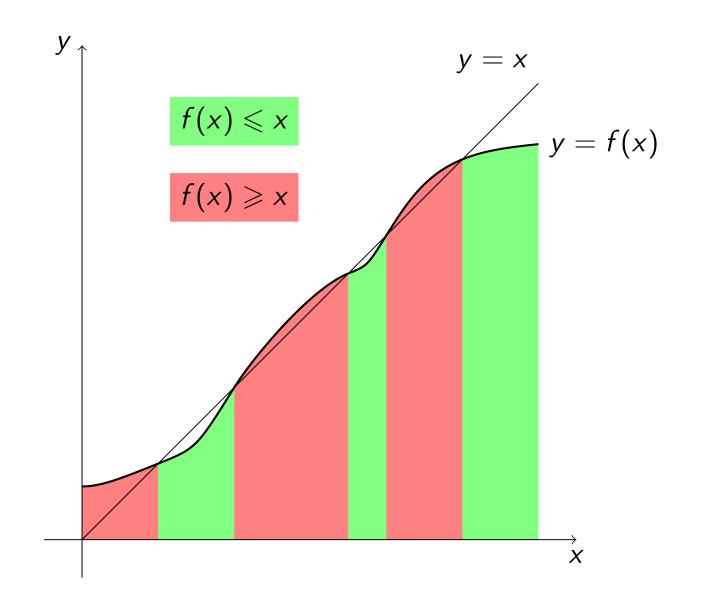
Theorem of Knaster-Tarski:

If **S** is a complete lattice and **f** is a monotonic function on this lattice, then **f** has a *least fixed point*:

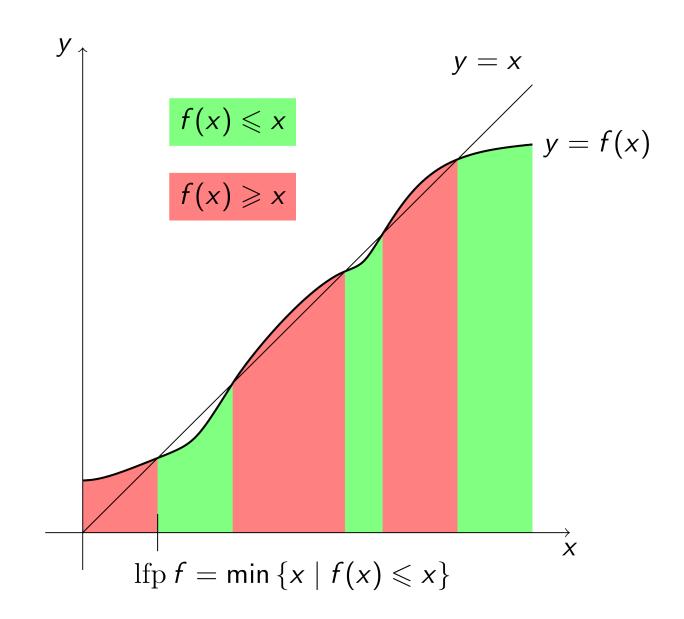
$$\operatorname{lfp} f = \bigcap \{x \in S \mid f(x) \sqsubseteq x\}$$



Knaster-Tarski - Idea



Knaster-Tarski - Idea



Semantic

• $L \to \mathcal{P}(\mathbb{V} \to \mathbb{Z})$ is a complete lattice

• Let
$$F: (L \to \mathcal{P}(\mathbb{V} \to \mathbb{Z})) \to (L \to \mathcal{P}(\mathbb{V} \to \mathbb{Z}))$$

$$F(R) = \left\{egin{array}{cccc} 0 & \mapsto & (\mathbb{V}
ightarrow \mathbb{Z}) \ I' & \mapsto & igcup_{(I,c,I') \in A} \llbracket c
ight
ceil_{\mathrm{C}}(R(I)) \end{array}
ight.$$

- **F** is monotonic
- Thus *Ifp F* exists Knaster-Tarski

Semantic

• *Ifp F* is also the smallest solution to our system:

$$\begin{cases} R_0 = \mathbb{V} \to \mathbb{Z} \\ R_{I'} = \bigcup_{(I,c,I') \in A} \llbracket c \rrbracket_{\mathrm{C}}(R_I) & I' \neq 0 \end{cases}$$

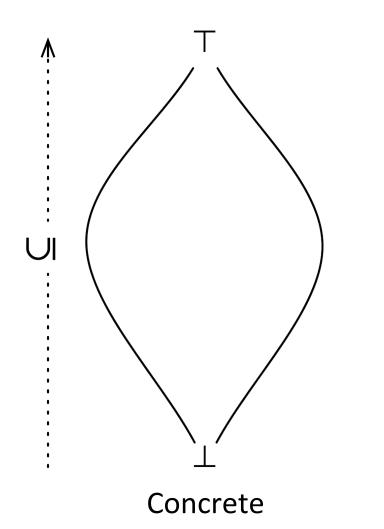
• Thus our semantic is well defined!

Semantic

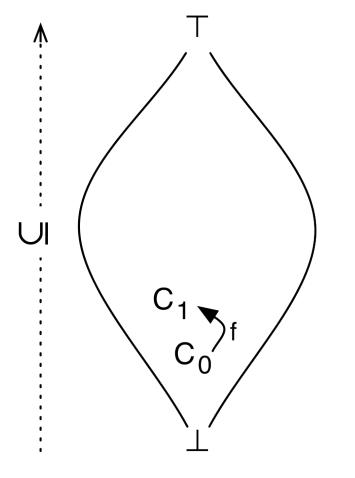
- Unfortunately, the concrete semantic cannot be calculated
- We will compute an over-approximation!

Abstract Interpretation

Abstract Interpretation is a constructive theory of sound approximation of fixed points of monotonic functions on complete lattices.

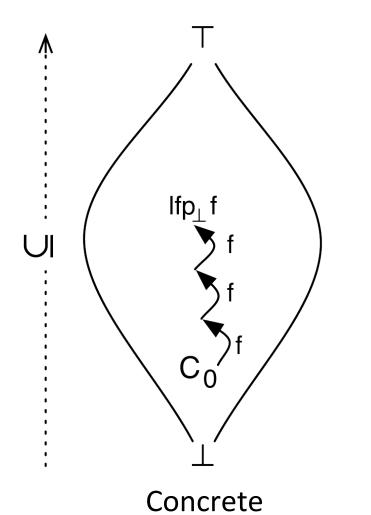


Method of computing a fixed point: x, f(x), f(f(x)), f(f(f(x))), ...



Method of computing a fixed point: x, f(x), f(f(x)), f(f(f(x))), ...

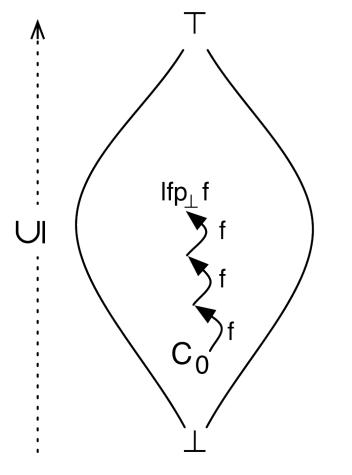
Start with a point C₀



Method of computing a fixed point: x, f(x), f(f(x)), f(f(f(x))), ...

Start with a point C₀

 $f^{n}(\mathbf{x}) = f^{n+1}(\mathbf{x}) \Rightarrow \mathbf{lfp} \mathbf{f}$ found!



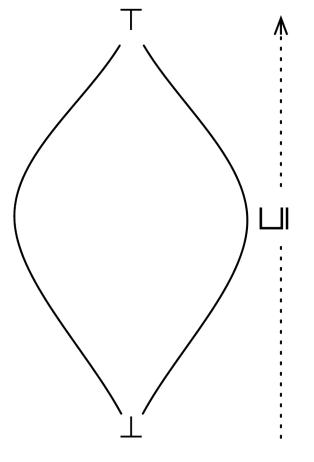
Method of computing a fixed point: x, f(x), f(f(x)), f(f(f(x))), ...

Start with a point C₀

 $f^{n}(\mathbf{x}) = f^{n+1}(\mathbf{x}) \Rightarrow \mathbf{lfp} \mathbf{f}$ found!

Problem: Computing *lpf f* is undecidable

Abstraction

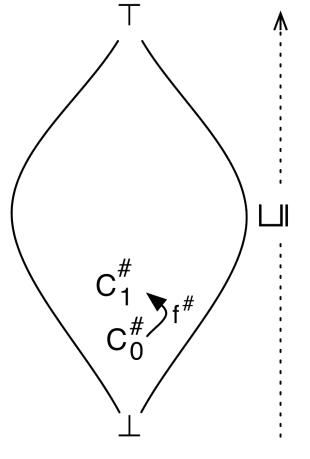


Idea:

- Use a different *complete lattice*
- Abstract the monotonic function: *f*[#]
- Abstract the entry point: $C_0^{\#}$

Abstract

Abstraction

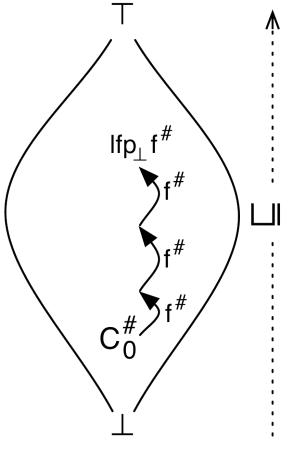


Idea:

- Use a different *complete lattice*
- Abstract the monotonic function: *f*[#]
- Abstract the entry point: $C_0^{\#}$

Abstract

Abstraction

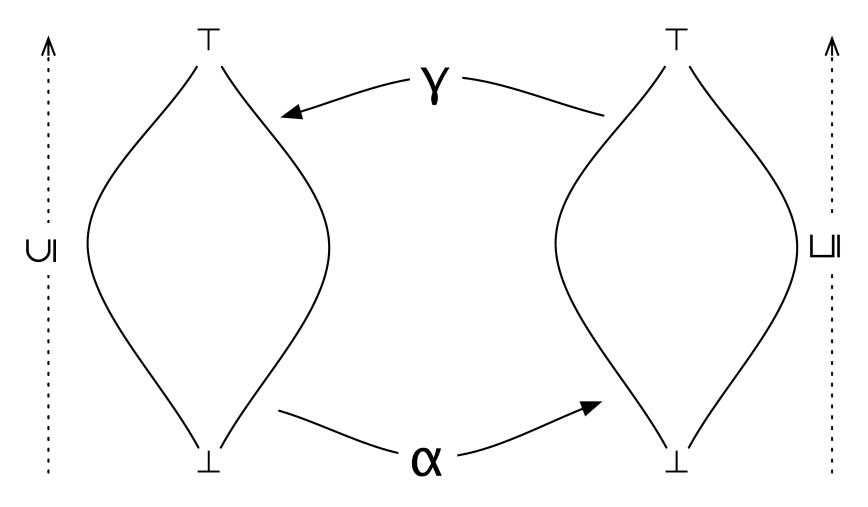


Idea:

- Use a different *complete lattice*
- Abstract the monotonic function: *f*[#]
- Abstract the entry point: $C_0^{\#}$

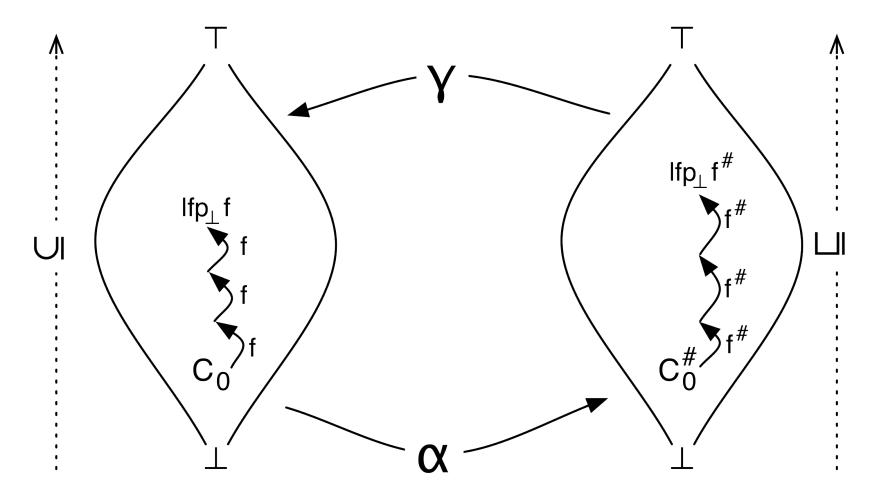
Abstract

Galois Connection



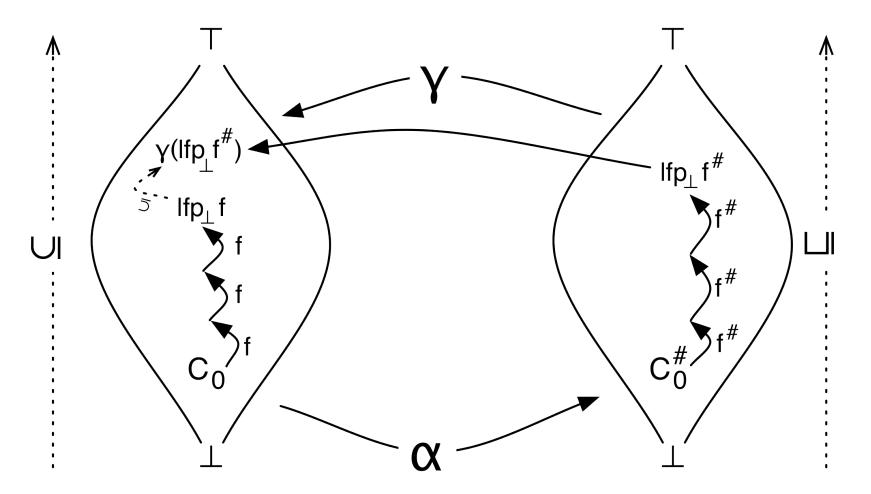
Abstract

Galois Connection



Abstract

Galois Connection



Abstract

• Goal: Abstract $L \to \mathcal{P}(\mathbb{V} \to \mathbb{Z})$

- Goal: Abstract $L \to \mathcal{P}(\mathbb{V} \to \mathbb{Z})$
- *L* : finite set of program points keep

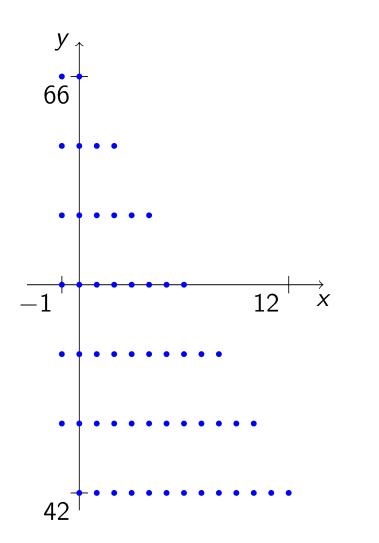
- Goal: Abstract $L \to \mathcal{P}(\mathbb{V} \to \mathbb{Z})$
- L : finite set of program points keep
- \mathbb{V} : finite set of variables keep

- Goal: Abstract $L \to \mathcal{P}(\mathbb{V} \to \mathbb{Z})$
- *L* : finite set of program points keep
- \mathbb{V} : finite set of variables keep
- \mathbb{Z} : infinite set of integers abstract!

• Goal: Abstract $\mathcal{P}(\mathbb{V} o \mathbb{Z})$

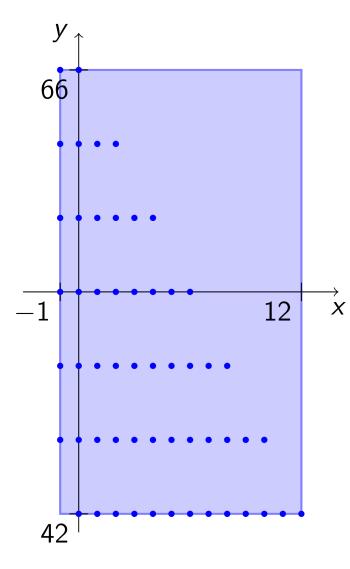
- Goal: Abstract $\mathcal{P}(\mathbb{V} o \mathbb{Z})$
 - Non-relational : $\mathbb{V} o \mathcal{P}(\mathbb{Z})$ then $\mathbb{V} o \mathcal{D}^{\sharp}$

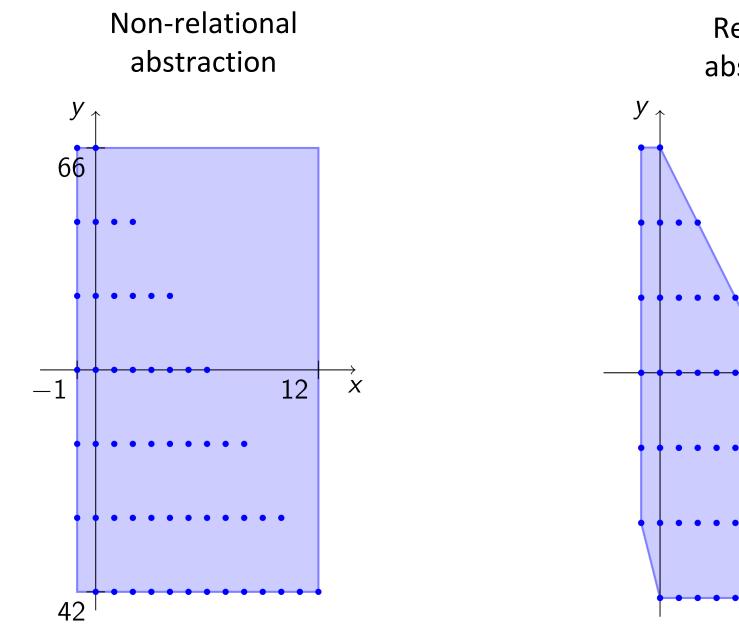
- Goal: Abstract $\mathcal{P}(\mathbb{V} o \mathbb{Z})$
 - Non-relational : $\mathbb{V} o \mathcal{P}(\mathbb{Z})$ then $\mathbb{V} o \mathcal{D}^{\sharp}$
 - Relational : \mathcal{D}^{\sharp}

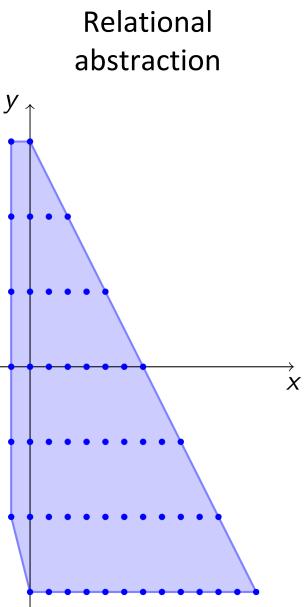


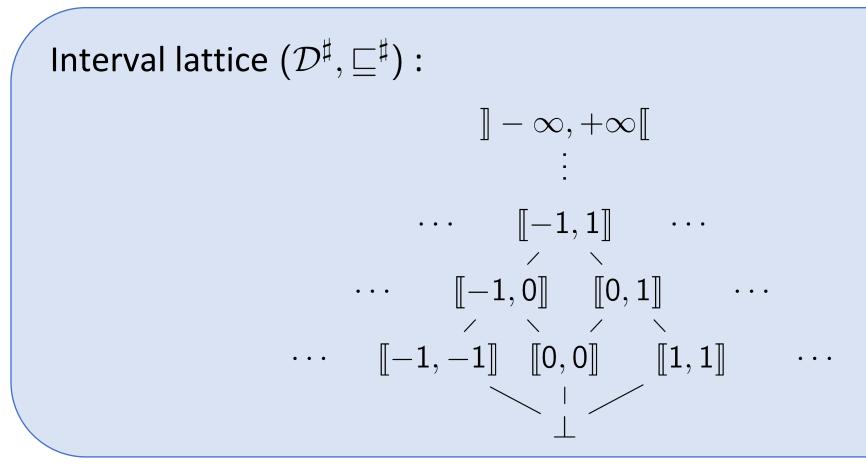
Reachable states at program point 2

Non-relational abstraction









We first need to make sure it is a *complete lattice*

Concretization function:

$$\begin{split} \gamma(\llbracket -\infty, +\infty\llbracket) &= \llbracket -\infty, +\infty\llbracket\\ \gamma(\llbracket -\infty, n\rrbracket) &= \rrbracket -\infty, n\rrbracket\\ \gamma(\llbracket n, +\infty\llbracket) &= \llbracket n, +\infty\llbracket\\ \gamma(\llbracket n_1, n_2\rrbracket) &= \llbracket n_1, n_2\rrbracket\\ \gamma(\bot) &= \emptyset \end{split}$$

Abstraction function:

$$\alpha(S) = \begin{cases} [n_1, n_2] & \text{with} & n_1 = \min S \text{ and } n_2 = \max S \\ \bot & \text{if} & S = \emptyset \end{cases}$$

 (α, γ) is a Galois connection

Semantic of expressions: $\llbracket e \rrbracket^{\sharp}_{\mathrm{E}} : (\mathbb{V} \to \mathcal{D}^{\sharp}) \to \mathcal{D}^{\sharp}$

Semantic of expressions: $\llbracket e \rrbracket_{\mathrm{E}}^{\sharp} : (\mathbb{V} \to \mathcal{D}^{\sharp}) \to \mathcal{D}^{\sharp}$

. . .

Abstract operators:

 $n^{\sharp} = \alpha(\{ n \}) = \llbracket n, n \rrbracket$

Abstract operators:

$$n^{\sharp} = \alpha(\lbrace n \rbrace) = \llbracket n, n \rrbracket$$

rand^{\phi}(n₁, n₂) = $\alpha(\llbracket n_1, n_2 \rrbracket) = \begin{cases} \llbracket n_1, n_2 \rrbracket & \text{si } n_1 \leqslant n_2 \\ \bot & \text{si } n_1 > n_2 \end{cases}$

Abstract operators:

. . .

$$n^{\sharp} = \alpha(\lbrace n \rbrace) = \llbracket n, n \rrbracket$$

$$\operatorname{rand}^{\sharp}(n_{1}, n_{2}) = \alpha(\llbracket n_{1}, n_{2} \rrbracket) = \begin{cases} \llbracket n_{1}, n_{2} \rrbracket & \operatorname{si} n_{1} \leqslant n_{2} \\ \bot & \operatorname{si} n_{1} > n_{2} \end{cases}$$

$$x^{\sharp} +^{\sharp} y^{\sharp} = \alpha \left(\left\{ x + y \mid x \in \gamma(x^{\sharp}), y \in \gamma(y^{\sharp}) \right\} \right) = \begin{cases} \llbracket a + c, b + d \rrbracket & \operatorname{avec} x^{\sharp} = \llbracket a, b \rrbracket \text{ et } y^{\sharp} = \llbracket c, d \rrbracket$$

$$\int_{\bot}^{\blacksquare} \sum_{x \neq 1}^{\Box} \sum_{x \neq 1}^{\Box} \sum_{x \neq 2}^{\Box} \sum_{x \neq 1}^{\Box} \sum_{x \neq 2}^{\Box} \sum_{x \neq 2}^{\Box}$$

Abstract operators:

$$\begin{aligned} x^{\sharp} -^{\sharp} y^{\sharp} &= \alpha \left(\left\{ x - y \ \middle| \ x \in \gamma(x^{\sharp}), y \in \gamma(y^{\sharp}) \right\} \right) = \\ \left\{ \begin{array}{l} \left[a - d, b - c \right] \\ \bot \end{array} \right. & \text{avec } x^{\sharp} = \left[a, b \right] \text{ et } y^{\sharp} = \left[c, d \right] \\ \text{si } x^{\sharp} = \bot \text{ ou } y^{\sharp} = \bot \end{aligned}$$

Abstract operators:

$$x^{\sharp} - {}^{\sharp} y^{\sharp} = \alpha \left(\left\{ x - y \mid x \in \gamma(x^{\sharp}), y \in \gamma(y^{\sharp}) \right\} \right) = \left\{ \begin{array}{l} \left[a - d, b - c \right] & \text{avec } x^{\sharp} = \left[a, b \right] \text{ et } y^{\sharp} = \left[c, d \right] \\ \bot & \text{si } x^{\sharp} = \bot \text{ ou } y^{\sharp} = \bot \end{array} \right.$$
$$x^{\sharp} \times {}^{\sharp} y^{\sharp} = \alpha \left(\left\{ x \times y \mid x \in \gamma(x^{\sharp}), y \in \gamma(y^{\sharp}) \right\} \right) = \left\{ \begin{array}{l} \left[\min(ab, ac, ad, bd), \max(ab, ac, ad, bd) \right] & \text{avec} \dots \\ \bot & \text{si} \dots \end{array} \right.$$

Semantic of commands

Semantic of commands: $\llbracket c \rrbracket^{\sharp}_{\mathrm{C}} : (\mathbb{V} \to \mathcal{D}^{\sharp}) \to (\mathbb{V} \to \mathcal{D}^{\sharp})$

Semantic of commands

Semantic of commands: $\llbracket c \rrbracket^{\sharp}_{\mathrm{C}} : (\mathbb{V} \to \mathcal{D}^{\sharp}) \to (\mathbb{V} \to \mathcal{D}^{\sharp})$

$$\begin{bmatrix} \mathbf{v} = \mathbf{e} \end{bmatrix}_{\mathrm{C}}^{\sharp} (\rho) = \rho \begin{bmatrix} \mathbf{v} \mapsto \llbracket \mathbf{e} \rrbracket_{\mathrm{E}}^{\sharp} \rho \end{bmatrix}$$
$$\begin{bmatrix} \mathbf{e} > \mathbf{0} \rrbracket_{\mathrm{C}}^{\sharp} (\rho) = \begin{cases} \rho \begin{bmatrix} \mathbf{v} \mapsto \rho(\mathbf{v}) & \sqcap^{\sharp} \alpha \left(\llbracket \mathbf{1}, +\infty \llbracket \right) \end{bmatrix} & \text{si } \mathbf{e} = \mathbf{v} \\ \rho & \text{sinon} \end{cases}$$

Semantic of programs

Semantic of programs: $\llbracket (L, A) \rrbracket^{\sharp} : L \to (\mathbb{V} \to \mathcal{D}^{\sharp})$

Semantic of programs

Semantic of programs: $\llbracket (L, A) \rrbracket^{\sharp} : L \to (\mathbb{V} \to \mathcal{D}^{\sharp})$

It is the smallest solution (in term of inclusion) of the following system:

$$\begin{cases} R_0^{\sharp} = \mathbb{V} \to \top \\ R_{I'}^{\sharp} = \bigsqcup_{(I,c,I') \in A}^{\sharp} \llbracket c \rrbracket_{\mathrm{C}}^{\sharp} (R_I^{\sharp}) & I' \neq 0 \end{cases}$$

Semantic of programs

Semantic of programs: $\llbracket (L, A) \rrbracket^{\sharp} : L \to (\mathbb{V} \to \mathcal{D}^{\sharp})$

It is the smallest solution (in term of inclusion) of the following system:

$$\begin{cases} R_0^{\sharp} = \mathbb{V} \to \top \\ R_{I'}^{\sharp} = \bigsqcup_{(I,c,I') \in A}^{\sharp} \llbracket c \rrbracket_{\mathrm{C}}^{\sharp} (R_I^{\sharp}) & I' \neq 0 \end{cases}$$

Knaster-Tarski: the solution exists!

• We define $F^{\sharp} : (L \to (\mathbb{V} \to \mathcal{D}^{\sharp})) \to (L \to (\mathbb{V} \to \mathcal{D}^{\sharp}))$ $F^{\sharp}(R^{\sharp}) = \begin{cases} 0 \mapsto \top_{\mathrm{nr}} \\ l' \mapsto \bigsqcup_{(l,c,l') \in A}^{\sharp} \llbracket c \rrbracket_{\mathrm{C}}^{\sharp}(R^{\sharp}(l)) \end{cases}$

- We define $F^{\sharp} : (L \to (\mathbb{V} \to \mathcal{D}^{\sharp})) \to (L \to (\mathbb{V} \to \mathcal{D}^{\sharp}))$ $F^{\sharp}(R^{\sharp}) = \begin{cases} 0 \mapsto \top_{\mathrm{nr}} \\ l' \mapsto \bigsqcup_{(l,c,l') \in A}^{\sharp} \llbracket c \rrbracket_{\mathrm{C}}^{\sharp}(R^{\sharp}(l)) \end{cases}$
- *F*[#] is monotonic and computable

- We define $F^{\sharp} : (L \to (\mathbb{V} \to \mathcal{D}^{\sharp})) \to (L \to (\mathbb{V} \to \mathcal{D}^{\sharp}))$ $F^{\sharp}(R^{\sharp}) = \begin{cases} 0 \mapsto \top_{\mathrm{nr}} \\ l' \mapsto \bigsqcup_{(l,c,l') \in A}^{\sharp} \llbracket c \rrbracket_{\mathrm{C}}^{\sharp}(R^{\sharp}(l)) \end{cases}$
- *F*[#] is monotonic and computable
- Ifp *F*[#] is the abstract semantic of our program

• We define $F^{\sharp}: (L \to (\mathbb{V} \to \mathcal{D}^{\sharp})) \to (L \to (\mathbb{V} \to \mathcal{D}^{\sharp}))$

$$F^{\sharp}(R^{\sharp}) = \begin{cases} 0 & \mapsto & +_{\mathrm{nr}} \\ l' & \mapsto & \bigsqcup_{(l,c,l') \in A}^{\sharp} & \llbracket c \rrbracket_{\mathrm{C}}^{\sharp}(R^{\sharp}(l)) \end{cases}$$

- *F*[#] is monotonic and computable
- Ifp *F*[#] is the abstract semantic of our program
- Iterative method to compute the least fixed point:
 - $R^{\sharp^0} := L \to \perp_{\mathrm{nr}}$
 - $R^{\sharp^{k+1}} := F^{\sharp}(R^{\sharp^k})$ Stop when $R^{\#^{k+1}} = R^{\#^k}$

$$0x = rand(0, 12); 1y = 42;$$

$$4 \leftarrow x = x - 2$$
while 2(x > 0) {
$$3x = x - 2;$$

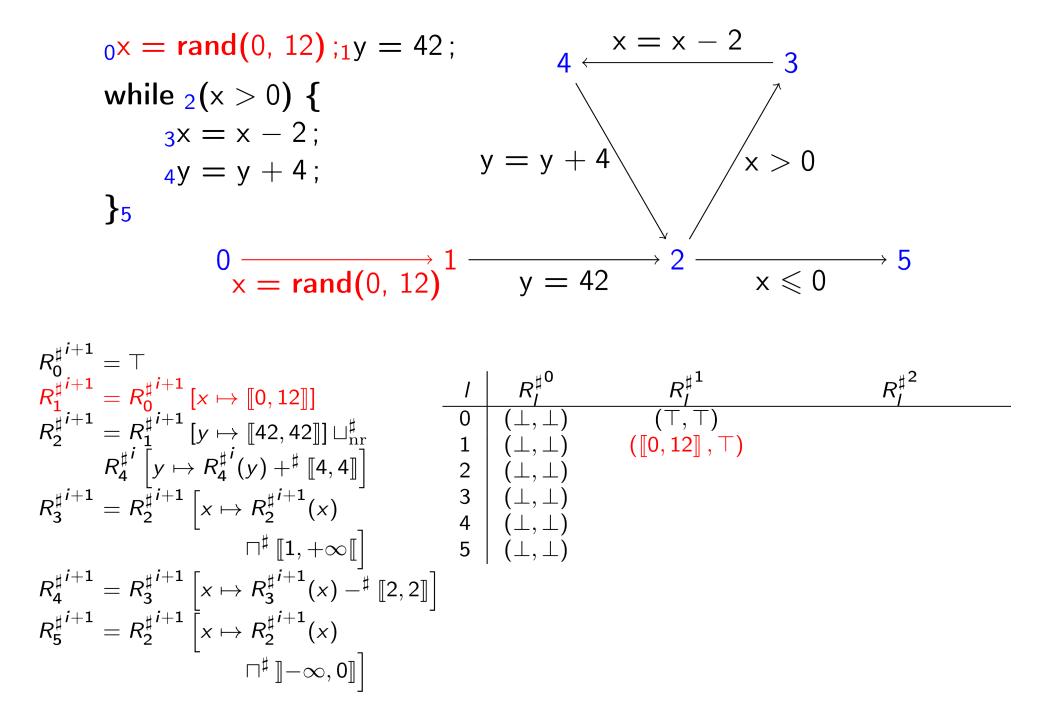
$$4y = y + 4;$$

$$y = y + 4;$$

$$y = y + 4$$

$$x > 0$$

$$y = 42 \rightarrow 2 \rightarrow 5$$



$$\begin{array}{c} _{0}x = \operatorname{rand}(0, 12); _{1}y = 42; \\ \text{while } _{2}(x > 0) \{ \\ _{3}x = x - 2; \\ _{4}y = y + 4; \\ \}_{5} \\ \begin{array}{c} 0 \\ \hline x = \operatorname{rand}(0, 12) \end{array} \\ 1 \xrightarrow{y = 42} \xrightarrow{y = y - 4} \\ y = y + 4 \\ \hline x > 0 \\ \end{bmatrix}_{5} \\ \begin{array}{c} 0 \\ \hline x = \operatorname{rand}(0, 12) \end{array} \\ \begin{array}{c} 1 \\ \hline y = 42 \\ \hline y = 42 \\ \hline x \leqslant 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \hline x \leqslant 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \hline x \leqslant 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \hline x \leqslant 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \hline y = 42 \\ \hline x \leqslant 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \hline x \leqslant 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \hline x \leqslant 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \hline y = 42 \\ \hline x \leqslant 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \hline x \leqslant 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \hline y \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \hline y \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \hline y \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \hline y \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \hline y \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \hline y \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \hline y \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \end{array} \\ \begin{array}{c} 0 \\ \end{array} \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \end{array}$$
 \\ \begin{array}{c} 0 \\ \end{array} \end{array}

$$R_{3}^{\sharp i+1} = R_{2}^{\sharp i+1} \begin{bmatrix} x \mapsto R_{2}^{\sharp i+1}(x) & & \\ & \Pi^{\sharp} [1, +\infty[]] & & \\ R_{4}^{\sharp i+1} = R_{3}^{\sharp i+1} \begin{bmatrix} x \mapsto R_{3}^{\sharp i+1}(x) -^{\sharp} [2, 2] \end{bmatrix} \\ R_{5}^{\sharp i+1} = R_{2}^{\sharp i+1} \begin{bmatrix} x \mapsto R_{2}^{\sharp i+1}(x) \\ & \Pi^{\sharp}] -\infty, 0 \end{bmatrix} \end{bmatrix}$$

$$\begin{array}{c} 0x = rand(0, 12); 1y = 42; \\ while 2(x > 0) \{ \\ 3x = x - 2; \\ 4y = y + 4; \\ \}_{5} \\ 0 \xrightarrow{}{} x = rand(0, 12)^{1} \xrightarrow{}{} y = 42 \\ \end{array} \begin{array}{c} x = x - 2 \\ y = y + 4 \\ x > 0 \\ y = 42 \\ x \leq 0 \\ \end{array}$$

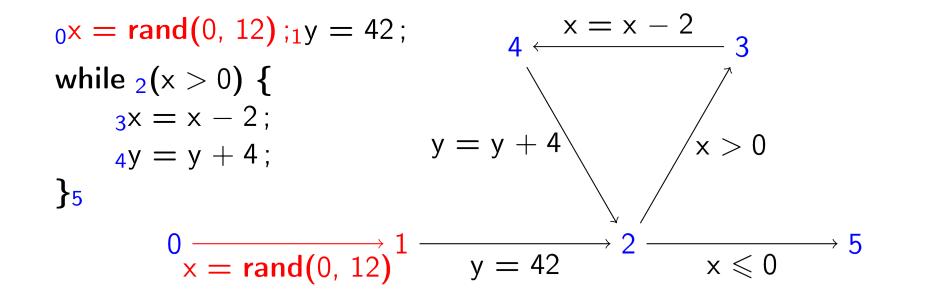
$$\begin{split} & R_{0}^{\sharp^{i+1}} = \top \\ & R_{1}^{\sharp^{i+1}} = R_{0}^{\sharp^{i+1}} \left[x \mapsto [\![0,12]] \right] & \frac{l}{R_{1}^{\sharp}} & \frac{R_{1}^{\sharp^{0}} - R_{1}^{\sharp^{1}} - R_{1}^{\sharp^{2}}}{0 - (\bot,\bot) - (\top,\top)} \\ & R_{2}^{\sharp^{i}} = R_{1}^{\sharp^{i+1}} \left[y \mapsto [\![42,42]] \right] \sqcup_{nr}^{\sharp} & 1 - (\bot,\bot) - ([\![0,12]],\top) \\ & R_{4}^{\sharp^{i}} \left[y \mapsto R_{4}^{\sharp^{i}}(y) + \sharp [\![4,4]] \right] & 2 - (\bot,\bot) - ([\![0,12]],\{42\}) \\ & R_{3}^{\sharp^{i+1}} = R_{2}^{\sharp^{i+1}} \left[x \mapsto R_{2}^{\sharp^{i+1}}(x) & 4 - ([\![1,12]],\{42\}) \\ & - \Pi^{\sharp} [\![1,+\infty[\![]]] & 5 - (\bot,\bot) - ([\![-1,10]],\{42\}) \\ & R_{4}^{\sharp^{i+1}} = R_{3}^{\sharp^{i+1}} \left[x \mapsto R_{3}^{\sharp^{i+1}}(x) - \sharp [\![2,2]] \right] \\ & R_{5}^{\sharp^{i+1}} = R_{2}^{\sharp^{i+1}} \left[x \mapsto R_{2}^{\sharp^{i+1}}(x) \\ & - \Pi^{\sharp} [\!] - \infty, 0] \right] \end{split}$$

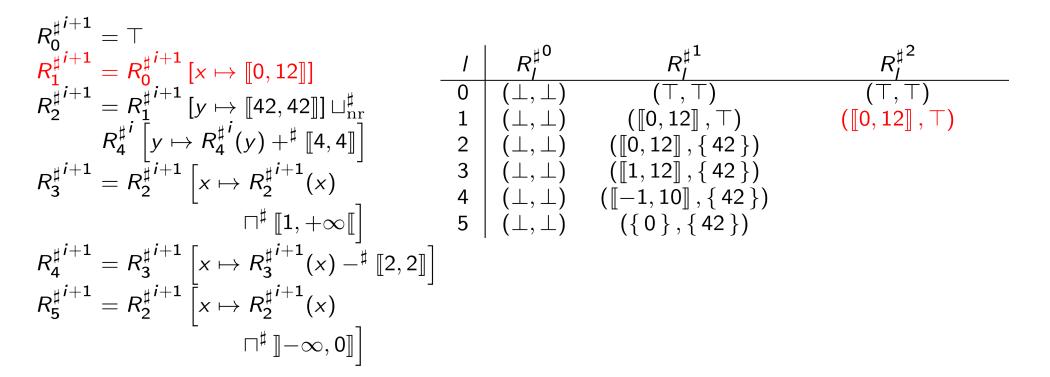
$$\begin{array}{c} _{0}x = rand(0, 12); _{1}y = 42; \\ \text{while } _{2}(x > 0) \{ \\ _{3}x = x - 2; \\ _{4}y = y + 4; \\ \}_{5} \\ 0 \xrightarrow{}_{x = rand(0, 12)} 1 \xrightarrow{}_{y = 42} 2 \xrightarrow{}_{x \leq 0} 5 \end{array}$$

$$\begin{split} & R_{0}^{\sharp^{i+1}} = \top \\ & R_{1}^{\sharp^{i+1}} = R_{0}^{\sharp^{i+1}} \left[x \mapsto \left[0, 12 \right] \right] \\ & R_{2}^{\sharp^{i+1}} = R_{1}^{\sharp^{i+1}} \left[y \mapsto \left[42, 42 \right] \right] \sqcup_{nr}^{\sharp} \\ & R_{4}^{\sharp^{i}} \left[y \mapsto R_{4}^{\sharp^{i}}(y) + \sharp \left[4, 4 \right] \right] \\ & 2 \quad (\bot, \bot) \quad (\left[0, 12 \right], \top) \\ & R_{3}^{\sharp^{i+1}} = R_{2}^{\sharp^{i+1}} \left[x \mapsto R_{2}^{\sharp^{i+1}}(x) \\ & 1 \quad (\bot, \bot) \quad (\left[1, 12 \right], \{ 42 \}) \\ & \Pi^{\sharp} \left[1, +\infty \right[\right] \\ & 5 \quad (\bot, \bot) \quad (\left[-1, 10 \right], \{ 42 \}) \\ & R_{4}^{\sharp^{i+1}} = R_{3}^{\sharp^{i+1}} \left[x \mapsto R_{3}^{\sharp^{i+1}}(x) - \sharp \left[2, 2 \right] \right] \\ & R_{5}^{\sharp^{i+1}} = R_{2}^{\sharp^{i+1}} \left[x \mapsto R_{2}^{\sharp^{i+1}}(x) \\ & \Pi^{\sharp} \left[-\infty, 0 \right] \right] \end{split}$$

$$\begin{array}{c} 0x = rand(0, 12); 1y = 42; \\ while 2(x > 0) \{ \\ 3x = x - 2; \\ 4y = y + 4; \\ \}_{5} \\ 0 \\ x = rand(0, 12)^{1} \\ \end{array} \begin{array}{c} x = x - 2 \\ y = y + 4 \\ y = y + 4 \\ y = 42 \\ y = 42 \\ \end{array} \begin{array}{c} x = x - 2 \\ x > 0 \\ x > 0 \\ x = x - 2; \\ x > 0 \\ x = x - 2; \\ y = y + 4 \\ x > 0 \\ x = x - 2; \\ y = y + 4 \\ y = y + 4 \\ y = 42 \\ x \le 0 \\ \end{array}$$

$$\begin{split} R_{0}^{\sharp^{i+1}} &= \mathsf{T} \\ R_{1}^{\sharp^{i+1}} &= R_{0}^{\sharp^{i+1}} \begin{bmatrix} x \mapsto \llbracket 0, 12 \rrbracket \end{bmatrix} & \stackrel{I}{\longrightarrow} \llbracket 42, 42 \rrbracket] \sqcup_{nr}^{\sharp} & \stackrel{I}{\longrightarrow} \llbracket (\bot, \bot) & (\top, \top) & (\top, \top) \\ R_{4}^{\sharp^{i}} \begin{bmatrix} y \mapsto R_{4}^{\sharp^{i}} (y) + \sharp \llbracket 4, 4 \rrbracket \end{bmatrix} & 2 & (\bot, \bot) & (\llbracket 0, 12 \rrbracket, \{42\}) \\ R_{3}^{\sharp^{i+1}} &= R_{2}^{\sharp^{i+1}} \begin{bmatrix} x \mapsto R_{2}^{\sharp^{i+1}} (x) & 3 & (\bot, \bot) & (\llbracket 1, 12 \rrbracket, \{42\}) \\ & \Pi^{\sharp} \llbracket 1, +\infty \llbracket \end{bmatrix} & 5 & (\bot, \bot) & (\llbracket -1, 10 \rrbracket, \{42\}) \\ R_{4}^{\sharp^{i+1}} &= R_{3}^{\sharp^{i+1}} \begin{bmatrix} x \mapsto R_{3}^{\sharp^{i+1}} (x) - \sharp \llbracket 2, 2 \rrbracket \end{bmatrix} \\ R_{5}^{\sharp^{i+1}} &= R_{2}^{\sharp^{i+1}} \begin{bmatrix} x \mapsto R_{3}^{\sharp^{i+1}} (x) - \sharp \llbracket 2, 2 \rrbracket \end{bmatrix} \\ R_{5}^{\sharp^{i+1}} &= R_{2}^{\sharp^{i+1}} \begin{bmatrix} x \mapsto R_{2}^{\sharp^{i+1}} (x) \\ & \Pi^{\sharp} \rrbracket -\infty, 0 \rrbracket \end{bmatrix} \end{split}$$





$$\begin{array}{c} _{0}x = rand(0, 12); _{1}y = 42; \\ while _{2}(x > 0) \{ \\ _{3}x = x - 2; \\ _{4}y = y + 4; \\ \}_{5} \\ 0 \\ \hline \\ x = rand(0, 12) \\ \end{array} \begin{array}{c} x = x - 2 \\ y = y + 4 \\ y = y + 4 \\ \hline \\ y = 42 \\ \hline \\ y = 42 \\ \hline \\ x \leqslant 0 \\ \end{array} \begin{array}{c} x = x - 2 \\ 3 \\ \hline \\ x > 0 \\ \hline \\ x \leqslant 0 \\ \end{array}$$

$$\begin{split} & \mathcal{R}_{0}^{\sharp^{i+1}} = \top \\ & \mathcal{R}_{1}^{\sharp^{i+1}} = \mathcal{R}_{0}^{\sharp^{i+1}} \left[x \mapsto \left[0, 12 \right] \right] \\ & \mathcal{R}_{2}^{\sharp^{i+1}} = \mathcal{R}_{1}^{\sharp^{i+1}} \left[y \mapsto \left[42, 42 \right] \right] \sqcup_{nr}^{\sharp} \\ & \mathcal{R}_{4}^{\sharp^{i}} \left[y \mapsto \mathcal{R}_{4}^{\sharp^{i}} (y) + \sharp \left[4, 4 \right] \right] \\ & \mathcal{R}_{3}^{\sharp^{i+1}} = \mathcal{R}_{2}^{\sharp^{i+1}} \left[x \mapsto \mathcal{R}_{2}^{\sharp^{i+1}} (x) \\ & \mathcal{R}_{2}^{\sharp^{i+1}} \left[x \mapsto \mathcal{R}_{2}^{\sharp^{i+1}} (x) \\ & \mathcal{R}_{3}^{\sharp^{i+1}} = \mathcal{R}_{2}^{\sharp^{i+1}} \left[x \mapsto \mathcal{R}_{2}^{\sharp^{i+1}} (x) \\ & \mathcal{R}_{3}^{\sharp^{i+1}} = \mathcal{R}_{2}^{\sharp^{i+1}} \left[x \mapsto \mathcal{R}_{2}^{\sharp^{i+1}} (x) \\ & \mathcal{R}_{3}^{\sharp^{i+1}} = \mathcal{R}_{2}^{\sharp^{i+1}} \left[x \mapsto \mathcal{R}_{2}^{\sharp^{i+1}} (x) \\ & \mathcal{R}_{4}^{\sharp^{i+1}} = \mathcal{R}_{3}^{\sharp^{i+1}} \left[x \mapsto \mathcal{R}_{3}^{\sharp^{i+1}} (x) - \sharp \left[2, 2 \right] \right] \\ & \mathcal{R}_{4}^{\sharp^{i+1}} = \mathcal{R}_{2}^{\sharp^{i+1}} \left[x \mapsto \mathcal{R}_{2}^{\sharp^{i+1}} (x) \\ & \mathcal{R}_{3}^{\sharp^{i+1}} = \mathcal{R}_{2}^{\sharp^{i+1}} \left[x \mapsto \mathcal{R}_{3}^{\sharp^{i+1}} (x) \\ & \mathcal{R}_{3}^{\sharp^{i+1}} (x) \\ & \mathcal{R}_{3}^{\sharp^{i+1}} = \mathcal{R}_{3}^{\sharp^{i+1}} \left[x \mapsto \mathcal{R}_{3}^{\sharp^{i+1}} (x) \right] \\ & \mathcal{R}_{5}^{\sharp^{i+1}} = \mathcal{R}_{2}^{\sharp^{i+1}} \left[x \mapsto \mathcal{R}_{3}^{\sharp^{i+1}} (x) \\ & \mathcal{R}_{3}^{\sharp^{i+1}} \left[x \mapsto \mathcal{R}_{3}^{\sharp^{i+1}} \left[x \mapsto \mathcal{R}_{3}^{\sharp^{i+1}} (x) \\ & \mathcal{R}_{3}^{\sharp^{i+1}} \left[x \mapsto \mathcal{R}_{3}^{\sharp^{i+1} \left[x \mapsto \mathcal{R}_{3}^{\sharp^{i+1}} \left[x \mapsto \mathcal{R}_{3}^{\sharp^{i+1}} \left[x \mapsto \mathcal{R}_{3}^{\sharp^{i+1} \left[x \mapsto \mathcal{R}_{3}^{\sharp^{i+1}} \left[x \mapsto \mathcal{R}_{3}^{\sharp^{i+1}}$$

$$\begin{array}{c} 0 \\ x = rand(0, 12); \\ 1 \\ y = 42; \\ y = x - 2; \\ 4y = y + 4; \\ \end{array}$$

$$\begin{array}{c} 4 \\ x = x - 2 \\ y = y + 4 \\ y = y + 4; \\ y = y + 4; \\ \end{array}$$

$$\begin{array}{c} 0 \\ x = rand(0, 12) \\ y = 42 \\ \end{array}$$

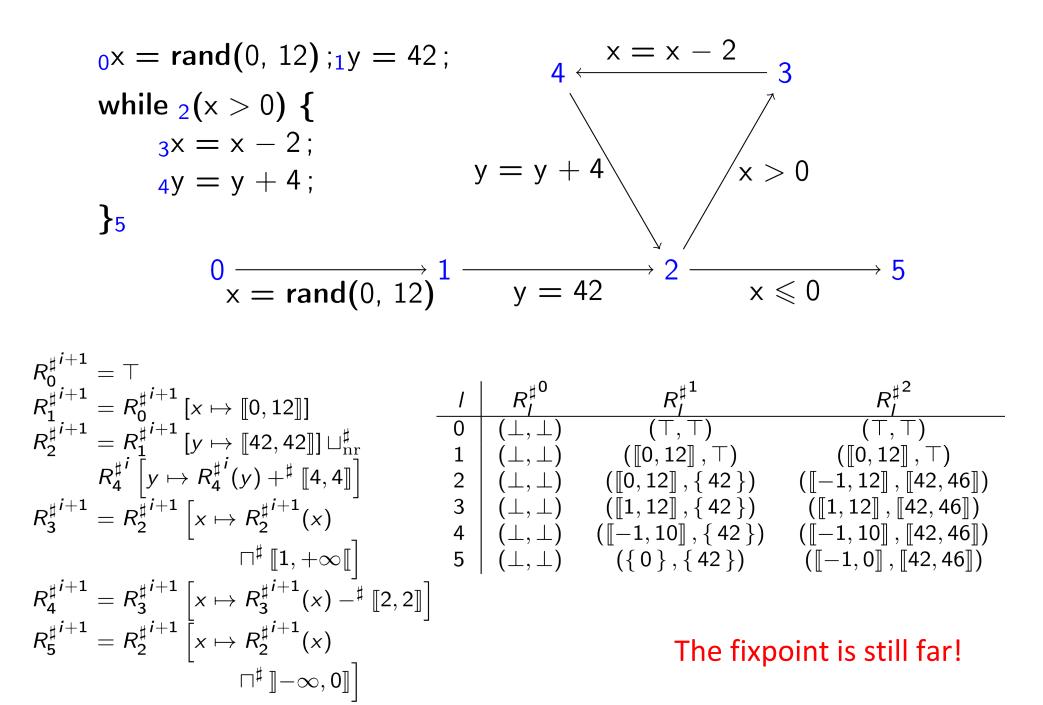
$$\begin{array}{c} x = x - 2 \\ x > 0 \\ x > 0 \\ \end{array}$$

$$\begin{split} & R_{0}^{\sharp^{i+1}} = \top \\ & R_{1}^{\sharp^{i+1}} = R_{0}^{\sharp^{i+1}} \left[x \mapsto [\![0,12]] \right] \\ & R_{2}^{\sharp^{i+1}} = R_{1}^{\sharp^{i+1}} \left[y \mapsto [\![42,42]] \sqcup_{nr}^{\sharp} \\ & R_{4}^{\sharp^{i}} \left[y \mapsto R_{4}^{\sharp^{i}}(y) + {}^{\sharp} \left[4, 4 \right] \right] \\ & 2 \quad (\bot, \bot) \quad ([\![0,12]], \top) \quad ([\![0,12]], \top) \\ & R_{4}^{\sharp^{i+1}} = R_{2}^{\sharp^{i+1}} \left[x \mapsto R_{2}^{\sharp^{i+1}}(x) \\ & 1 \quad (\bot, \bot) \quad ([\![1,12]], \{42\}) \quad ([\![-1,12]], [\![42,46]]) \\ & \Pi, + \infty [\![] \quad 5 \quad (\bot, \bot) \quad ([\![-1,10]], \{42\}) \\ & \Pi^{\sharp} [1, + \infty [\![] \quad 5 \quad (\bot, \bot) \quad (\{0\}, \{42\}) \\ & R_{4}^{\sharp^{i+1}} = R_{2}^{\sharp^{i+1}} \left[x \mapsto R_{3}^{\sharp^{i+1}}(x) - {}^{\sharp} [\![2,2]] \right] \\ & R_{5}^{\sharp^{i+1}} = R_{2}^{\sharp^{i+1}} \left[x \mapsto R_{2}^{\sharp^{i+1}}(x) \\ & \Pi^{\sharp} [-\infty, 0] \right] \end{split}$$

$$\begin{array}{c} 0 \times = \operatorname{rand}(0, 12); _{1}y = 42; \\ \text{while }_{2}(x > 0) \{ \\ 3x = x - 2; \\ 4y = y + 4; \\ \}_{5} \\ 0 \\ x = \operatorname{rand}(0, 12)^{1} \\ y = 42 \\ \end{array} \begin{array}{c} x = x - 2 \\ y = y + 4 \\ y = y + 4 \\ y = y + 4 \\ y = 42 \\ x < 0 \\ \end{array}$$

$$\begin{split} & R_{0}^{\sharp^{i+1}} = \top \\ & R_{1}^{\sharp^{i+1}} = R_{0}^{\sharp^{i+1}} \left[x \mapsto [\![0,12]\!] \right] \\ & R_{2}^{\sharp^{i+1}} = R_{1}^{\sharp^{i+1}} \left[y \mapsto [\![42,42]\!] \sqcup_{nr}^{\sharp} \\ & R_{4}^{\sharp^{i}} \left[y \mapsto R_{4}^{\sharp^{i}}(y) + {}^{\sharp} \left[4,4 \right] \right] \\ & 2 \quad (\bot,\bot) \quad ([\![0,12]\!],\top) \quad ([\![0,12]\!],\top) \\ & R_{4}^{\sharp^{i+1}} = R_{2}^{\sharp^{i+1}} \left[x \mapsto R_{2}^{\sharp^{i+1}}(x) \\ & 1 \quad (\bot,\bot) \quad ([\![1,12]\!],\{42\}) \quad ([\![-1,12]\!],[\![42,46]\!]) \\ & \Pi^{\sharp} [1,+\infty[\!] \\ & 5 \quad (\bot,\bot) \quad ([\![-1,10]\!],\{42\}) \quad ([\![-1,10]\!],[\![42,46]\!]) \\ & R_{4}^{\sharp^{i+1}} = R_{3}^{\sharp^{i+1}} \left[x \mapsto R_{3}^{\sharp^{i+1}}(x) \\ & R_{5}^{\sharp^{i+1}} = R_{2}^{\sharp^{i+1}} \left[x \mapsto R_{3}^{\sharp^{i+1}}(x) \\ & \Pi^{\sharp} [] - \infty, 0] \right] \end{split}$$

$$\begin{array}{c} {}_{0}x = \operatorname{rand}(0, 12); {}_{1}y = 42; \\ \text{while } {}_{2}(x > 0) \left\{ \\ {}_{3}x = x - 2; \\ {}_{4}y = y + 4; \\ \end{array} \right\}_{5} \\ \begin{array}{c} 0 \\ \hline \\ & \\ \end{array} \\ \begin{array}{c} 0 \\ \hline \\ & \\ \end{array} \\ \begin{array}{c} x = \operatorname{rand}(0, 12) \end{array}^{1} \\ \end{array} \\ \begin{array}{c} y = y + 4 \\ \end{array} \\ \begin{array}{c} y = y + 4 \\ \end{array} \\ \begin{array}{c} y = y + 4 \\ \end{array} \\ \begin{array}{c} x > 0 \\ \hline \\ \end{array} \\ \begin{array}{c} x = x - 2 \\ \end{array} \\ \begin{array}{c} 3 \\ \hline \\ & \\ \end{array} \\ \begin{array}{c} y = y + 4 \\ \end{array} \\ \begin{array}{c} x = x - 2 \\ \end{array} \\ \begin{array}{c} 3 \\ \hline \\ & \\ \end{array} \\ \begin{array}{c} x = x - 2 \\ \end{array} \\ \begin{array}{c} 3 \\ \hline \\ & \\ \end{array} \\ \begin{array}{c} y = y + 4 \\ \end{array} \\ \begin{array}{c} y = 42 \\ \end{array} \\ \begin{array}{c} x < 0 \\ \end{array} \\ \begin{array}{c} x < 0 \\ \end{array} \\ \begin{array}{c} x < 0 \\ \end{array} \\ \begin{array}{c} x \\ x \\ \end{array} \\ \end{array} \\ \begin{array}{c} x \\ x \\ \end{array} \\ \begin{array}{c} x \\ x \\ \end{array} \\ \begin{array}{c} x \\ x \\ \end{array} \\ \end{array} \\ \begin{array}{c} x \\ x \\ \end{array} \\ \begin{array}{c} x \\ x \\ \end{array} \\ \end{array} \\ \begin{array}{c} x \\ x \\ \end{array} \\ \begin{array}{c} x \\ x \\ \end{array} \\ \begin{array}{c} x \\ x \\ \end{array} \\ \end{array} \\ \begin{array}{c} x \\ x \\ \end{array} \\ \end{array} \\ \begin{array}{c} x \\ x \\ \end{array} \\ \begin{array}{c} x \\ x \\ \end{array} \\ \end{array} \\ \begin{array}{c} x \\ x \\ \end{array} \\ \end{array} \\ \begin{array}{c} x \\ x \\ \end{array} \\ \end{array} \\ \begin{array}{c} x \\ x \\ \end{array} \\ \end{array} \\ \begin{array}{c} x \\ x \\ \end{array} \\ \end{array} \\ \begin{array}{c} x \\ x \\ \end{array} \\ \end{array} \\ \begin{array}{c} x \\ x \\ \end{array} \end{array} \\ \begin{array}{c} x \\ \end{array} \end{array} \\ \begin{array}{c} x \\ x \\ \end{array} \end{array} \\ \begin{array}{c} x \\ x \\ \end{array} \end{array} \\ \begin{array}{c} x \\ x \\ \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} x \\ x \\ \end{array} \end{array} \\ \begin{array}{c} x \\ x \\ \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} x \\ x \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} x \\ \end{array} \end{array} \\ \begin{array}{c} x \\ x \\ \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} x \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} x \\ \end{array} \end{array} \\ \begin{array}{c} x \\ \end{array} \end{array} \end{array} \\ \begin{array}{c} x \\ \end{array}$$



Correctness

The **abstract** semantic is an over-approximation of the **concrete** semantic. For all $I \subseteq L$: $R_I \subseteq \gamma_{\mathrm{nr}} \left(R_I^{\sharp} \right)$

• Problem: This algorithm might not terminate!

- Problem: This algorithm might not terminate!
- The sequence $(F^n(\perp))_{n \in \mathbb{N}}$ might not converge

- Problem: This algorithm might not terminate!
- The sequence $(F^n(\perp))_{n \in \mathbb{N}}$ might not converge
- The sequence is increasing because **F** is monotonic

- Problem: This algorithm might not terminate!
- The sequence $(F^n(\perp))_{n \in \mathbb{N}}$ might not converge
- The sequence is increasing because **F** is monotonic
- If **D**[#] is finite, then this would converge

- Problem: This algorithm might not terminate!
- The sequence $(F^n(\perp))_{n \in \mathbb{N}}$ might not converge
- The sequence is increasing because **F** is monotonic
- If **D**[#] is finite, then this would converge
- But intervals have infinitely increasing sequences: $([0, n])_{n \in N}$

- Problem: This algorithm might not terminate!
- The sequence $(F^n(\perp))_{n \in \mathbb{N}}$ might not converge
- The sequence is increasing because **F** is monotonic
- If **D**[#] is finite, then this would converge
- But intervals have infinitely increasing sequences: $([0, n])_{n \in N}$
- Even if it terminates, it could be slow..

Convergence Acceleration

- We introduce a new operator called *widening* ∇
- The *widening* is responsible for breaking **infinitely increasing sequences**
- It performs a jump forward

Widening

A **widening** ∇ is a binary operator ∇ : $\mathcal{D}^{\sharp} \times \mathcal{D}^{\sharp} \to \mathcal{D}^{\sharp}$ such that:

•
$$\forall x^{\sharp}, y^{\sharp}, x^{\sharp} \sqcup^{\sharp} y^{\sharp} \sqsubseteq^{\sharp} x^{\sharp} \bigtriangledown y^{\sharp}$$

• For all sequences $(x_n^{\sharp})_{n \in \mathbb{N}}$, the following sequence **converges**:

$$\left(egin{array}{ccc} y_0^{\sharp} &=& x_0^{\sharp} \ y_{i+1}^{\sharp} &=& y_i^{\sharp} igarlepsilon x_{i+1}^{\sharp} \end{array}
ight.$$

$$R^{\sharp} = F^{\sharp^{N}}(\bot) = \operatorname{lfp} F^{\sharp}$$

$$\uparrow^{\uparrow}$$

$$R^{\sharp^{2}} = F^{\sharp}(R^{\sharp^{1}}) = F^{\sharp^{2}}(\bot)$$

$$\uparrow^{\uparrow}$$

$$R^{\sharp^{1}} = F^{\sharp}(R^{\sharp^{0}}) = F^{\sharp}(\bot)$$

$$\uparrow^{\uparrow}$$

$$R^{\sharp^{0}} = \bot$$

Without widening

$$R^{\sharp} = F^{\sharp^{N}}(\bot) = \operatorname{lfp} F^{\sharp}$$

$$\vdots$$

$$\uparrow^{\uparrow}$$

$$R^{\sharp^{2}} = F^{\sharp}(R^{\sharp^{1}}) = F^{\sharp^{2}}(\bot)$$

$$\uparrow^{\uparrow}$$

$$R^{\sharp^{1}} = F^{\sharp}(R^{\sharp^{0}}) = F^{\sharp}(\bot)$$

$$\uparrow^{\uparrow}$$

$$R^{\sharp^{0}} = \bot$$

Without widening

$$R^{\sharp} = R^{\sharp} \nabla F^{\sharp}(R^{\sharp})$$
$$\begin{pmatrix} \text{lfp } F^{\sharp} \\ \vdots \\ (\\ R^{\sharp^{2}} = R^{\sharp^{1}} \nabla F^{\sharp}(R^{\sharp^{1}}) \\ (\\ R^{\sharp^{1}} = R^{\sharp^{0}} \nabla F^{\sharp}(R^{\sharp^{0}}) \\ (\\ R^{\sharp^{0}} = \bot \end{pmatrix}$$

With widening

Iterations with widening

• It is still a fixpoint: $R^{\sharp} = R^{\sharp} \bigtriangledown F^{\sharp}(R^{\sharp})$ thus $F^{\sharp}(R^{\sharp}) \sqsubseteq^{\sharp} R^{\sharp}$

Iterations with widening

- It is still a fixpoint: $R^{\sharp} = R^{\sharp} \bigtriangledown F^{\sharp}(R^{\sharp})$ thus $F^{\sharp}(R^{\sharp}) \sqsubseteq^{\sharp} R^{\sharp}$
- It is not the *least fixed point*

Iterations with widening

- It is still a fixpoint: $R^{\sharp} = R^{\sharp} \bigtriangledown F^{\sharp}(R^{\sharp})$ thus $F^{\sharp}(R^{\sharp}) \sqsubseteq^{\sharp} R^{\sharp}$
- It is not the *least fixed point*
- It includes the *least fixed point*: $\operatorname{lfp} F^{\sharp} \sqsubseteq^{\sharp} R^{\sharp}$

Interval widening

$$x^{\sharp} \nabla y^{\sharp} = \begin{cases} \begin{bmatrix} a, b \end{bmatrix} & \text{si } x^{\sharp} = \begin{bmatrix} a, b \end{bmatrix}, y^{\sharp} = \begin{bmatrix} c, d \end{bmatrix}, c \geqslant a, d \leqslant b \\ \begin{bmatrix} a, +\infty \begin{bmatrix} & \text{si } x^{\sharp} = \begin{bmatrix} a, b \end{bmatrix}, y^{\sharp} = \begin{bmatrix} c, d \end{bmatrix}, c \geqslant a, d > b \\ \end{bmatrix} -\infty, b \end{bmatrix} & \text{si } x^{\sharp} = \begin{bmatrix} a, b \end{bmatrix}, y^{\sharp} = \begin{bmatrix} c, d \end{bmatrix}, c < a, d \leqslant b \\ \end{bmatrix} -\infty, +\infty \begin{bmatrix} & \text{si } x^{\sharp} = \begin{bmatrix} a, b \end{bmatrix}, y^{\sharp} = \begin{bmatrix} c, d \end{bmatrix}, c < a, d \leqslant b \\ y^{\sharp} & \text{si } x^{\sharp} = \begin{bmatrix} a, b \end{bmatrix}, y^{\sharp} = \begin{bmatrix} c, d \end{bmatrix}, c < a, d > b \\ y^{\sharp} & \text{si } x^{\sharp} = \bot \\ x^{\sharp} & \text{si } y^{\sharp} = \bot \end{cases}$$

Interval widening

$$x^{\sharp} \nabla y^{\sharp} = \begin{cases} \begin{bmatrix} a, b \end{bmatrix} & \text{si } x^{\sharp} = \begin{bmatrix} a, b \end{bmatrix}, y^{\sharp} = \begin{bmatrix} c, d \end{bmatrix}, c \geqslant a, d \leqslant b \\ \begin{bmatrix} a, +\infty \begin{bmatrix} & \text{si } x^{\sharp} = \begin{bmatrix} a, b \end{bmatrix}, y^{\sharp} = \begin{bmatrix} c, d \end{bmatrix}, c \geqslant a, d > b \\ \end{bmatrix} -\infty, b \end{bmatrix} & \text{si } x^{\sharp} = \begin{bmatrix} a, b \end{bmatrix}, y^{\sharp} = \begin{bmatrix} c, d \end{bmatrix}, c < a, d \leqslant b \\ \exists -\infty, +\infty \begin{bmatrix} & \text{si } x^{\sharp} = \begin{bmatrix} a, b \end{bmatrix}, y^{\sharp} = \begin{bmatrix} c, d \end{bmatrix}, c < a, d \leqslant b \\ y^{\sharp} & \text{si } x^{\sharp} = \bot \\ x^{\sharp} & \text{si } y^{\sharp} = \bot \end{cases}$$

$$\llbracket 0,1
rbracket
abla
rbracket [0,2
rbracket] = \llbracket 0,+\infty
rbracket \ \llbracket 0,2
rbracket
abla
rbracket [0,1
rbracket] = \llbracket 0,2
rbracket$$

Widening

- Widening allows the algorithm to terminate quickly
- But it might cause a loss of precision
- In practice, we only use the widening after a few iterations
- We can also use a widening with a threshold

$$R_{0}^{\sharp^{i+1}} = \top$$

$$R_{1}^{\sharp^{i+1}} = R_{1}^{\sharp^{i}} \nabla_{\mathrm{nr}} \left(R_{0}^{\sharp^{i+1}} \left[x \mapsto \llbracket 12, 12 \rrbracket \right] \sqcup_{\mathrm{nr}}^{\sharp} \right.$$

$$R_{2}^{\sharp^{i}} \left[y \mapsto R_{2}^{\sharp^{i}}(x) -^{\sharp} \llbracket 1, 1 \rrbracket \right] \right)$$

$$R_{3}^{\sharp^{i+1}} = R_{1}^{\sharp^{i+1}} \left[x \mapsto R_{1}^{\sharp^{i+1}}(x) \right.$$

$$\Box^{\sharp} \llbracket -\infty, 0 \rrbracket \right]$$

Regain precision

- We introduce a new operator called narrowing Δ
- Perform decreasing iterations to regain precision

Narrowing

A *narrowing* \triangle is a binary operator $\triangle : \mathcal{D}^{\sharp} \times \mathcal{D}^{\sharp} \to \mathcal{D}^{\sharp}$ such that:

•
$$\forall x^{\sharp}, y^{\sharp}, x^{\sharp} \sqcap^{\sharp} y^{\sharp} \sqsubseteq^{\sharp} x^{\sharp} \bigtriangleup y^{\sharp} \sqsubseteq^{\sharp} x^{\sharp}$$

• For all sequences $(x_n^{\sharp})_{n \in \mathbb{N}}$, the following sequence **converges**:

$$\left\{ egin{array}{ccc} y_0^{\sharp}&=&x_0^{\sharp}\ y_{i+1}^{\sharp}&=&y_i^{\sharp} \bigtriangleup x_{i+1}^{\sharp} \end{array}
ight.$$

$$R^{\sharp} = R^{\sharp} \bigtriangledown F^{\sharp}(R^{\sharp})$$

$$R^{\sharp'^{1}} = R^{\sharp} \bigtriangleup F^{\sharp}(R^{\sharp})$$

$$\vdots$$

$$R^{\sharp'} = R^{\sharp'} \bigtriangleup F^{\sharp}(R^{\sharp'})$$

$$lfp F^{\sharp}$$

$$\vdots$$

$$R^{\sharp^{0}} = \bot$$

$$R^{\sharp} = R^{\sharp} \nabla F^{\sharp}(R^{\sharp})$$

$$R^{\sharp'^{1}} = R^{\sharp} \triangle F^{\sharp}(R^{\sharp})$$

$$\downarrow$$

$$R^{\sharp'} = R^{\sharp'} \triangle F^{\sharp}(R^{\sharp'})$$

$$lip F^{\sharp}$$

$$\vdots$$

$$R^{\sharp^{0}} = \bot$$

$$\operatorname{lfp} \mathsf{F}^{\sharp} \sqsubseteq^{\sharp} \mathsf{R}^{\sharp'}$$

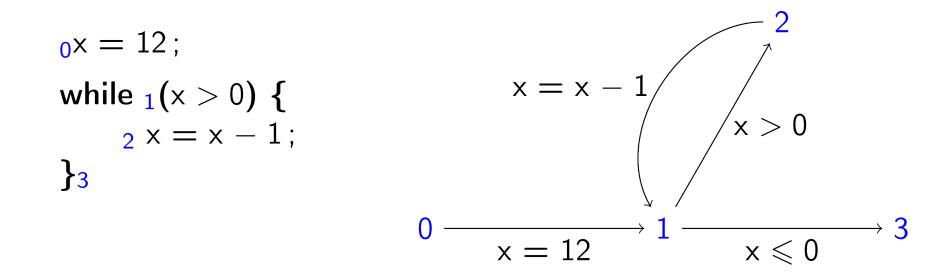
Interval narrowing

$$x^{\sharp} \bigtriangleup y^{\sharp} = \begin{cases} \begin{bmatrix} a, d \end{bmatrix} & \text{si } x^{\sharp} = \begin{bmatrix} a, +\infty \llbracket, y^{\sharp} = \llbracket c, d \rrbracket \\ \llbracket c, b \rrbracket & \text{si } x^{\sharp} = \rrbracket -\infty, b \rrbracket, y^{\sharp} = \llbracket c, d \rrbracket \\ \llbracket c, d \rrbracket & \text{si } x^{\sharp} = \rrbracket -\infty, +\infty \llbracket, y^{\sharp} = \llbracket c, d \rrbracket \\ x^{\sharp} & \text{sinon} \end{cases}$$

Interval narrowing

$$x^{\sharp} \bigtriangleup y^{\sharp} = \begin{cases} \begin{bmatrix} a, d \end{bmatrix} & \text{si } x^{\sharp} = \begin{bmatrix} a, +\infty \llbracket, y^{\sharp} = \llbracket c, d \rrbracket \\ \llbracket c, b \rrbracket & \text{si } x^{\sharp} = \rrbracket -\infty, b \rrbracket, y^{\sharp} = \llbracket c, d \rrbracket \\ \llbracket c, d \rrbracket & \text{si } x^{\sharp} = \rrbracket -\infty, +\infty \llbracket, y^{\sharp} = \llbracket c, d \rrbracket \\ x^{\sharp} & \text{sinon} \end{cases}$$

$$egin{aligned} & \llbracket 0,+\infty\llbracket & \bigtriangleup & \llbracket 0,1
rbracket & = \llbracket 0,1
rbracket & \ & \llbracket 0,2
rbracket & \bigtriangleup & \llbracket 0,1
rbracket & = \llbracket 0,2
rbracket & \ & \blacksquare & 0,2
rbracket & 0,2
rbracket & \ & \blacksquare & 0,2
rbl$$



$$egin{aligned} & R_0^{\sharp} = op_{
m nr} \ & R_1^{\sharp} = \llbracket 0, 12
rbracket \ & R_2^{\sharp} = \llbracket 1, 12
rbracket \ & R_3^{\sharp} = \llbracket 0, 0
rbracket \end{aligned}$$

Abstract Domains

Domain	Constraints	Complexity
Interval	x ∈ [a, b]	n
Congruence	$x \in aZ+b$	n
Gauge	$x \in [a^*i + b^*k +, a'^*i + b'^*k +]$	K*n
Difference Bound Matrices	x - y ∈ [a, b]	n ³
Octagon	$x \pm y \in [a, b]$	n ³
Polyhedra	a*x + b*y + + c <= 0	Exponential

Thank you.

Questions?

maxime.arthaud@nasa.gov