Geophysical Research Letters

RESEARCH LETTER
10.1029/2019GL082951

Key Points:
- Alfvénic turbulence is observed in high-latitude regions associated with Jupiter's auroral emission
- Turbulent magnetic field fluctuations at high latitude map to the central plasma sheet in the inner magnetosphere
- High-latitude fluctuations indicate the presence of significant Alfvénic wave activity at longitudes up to ~90° along the Io footprint tail

Supporting Information:
- Supporting Information S1

Correspondence to:
D. J. Gershman,
daniel.j.gershman@nasa.gov

Citation:

Received 21 MAR 2019
Accepted 1 JUN 2019
Accepted article online 5 JUN 2019
Published online 4 JUL 2019

Abstract
The Alfvén wave mode transmits field-aligned currents and large-scale turbulence throughout Jupiter’s magnetosphere. Magnetometer data from the Juno spacecraft have provided the first observations of Alfvénic fluctuations along the polar magnetic flux tubes connected to Jupiter’s main auroral oval and the Jovian satellites. Transverse magnetic field perturbations associated with Io are observed up to ~90° away from main Io footprint, supporting the presence of extended Alfvénic wave activity throughout the Io footprint tail. Additional broadband fluctuations measured equatorward of the statistical auroral oval are composed of incompressible magnetic turbulence that maps to Jupiter’s equatorial plasma sheet at radial distances within ~20 Rₖ. These fluctuations exhibit a kₚ power spectrum consistent with strong magnetohydrodynamic turbulence. This turbulence can generate up to ~100 mW/m² of Poynting flux to power the Jovian aurora in regions connected to the inner magnetosphere’s central plasma sheet.

Plain Language Summary
Here we provide the first direct observations of magnetic turbulence near Jupiter’s poles. The locations and power of these turbulent fluctuations provide new constraints for modeling the particle acceleration that leads to the generation of Jupiter’s aurora. We find that this turbulence provides sufficient energy to produce the aurora at Jupiter, as well as emission associated with Jupiter’s moon Io. Constraints on turbulent auroral heating at Jupiter are relevant for analogous processes at other giant magnetospheres such as Saturn, Uranus, and Neptune.

1. Introduction
In magnetohydrodynamics (MHD), Alfvén waves are dispersionless modes whose perturbations are incompressible with respect to the background magnetic field (Alfvén, 1942). These fundamental wave modes travel undamped for large distances, enabling them to set up systems of field-aligned currents at planetary magnetospheres (Hayward & Dungey, 1983; Keiling, 2009; Southwood & Kivelson, 1991). In addition, at Jupiter these waves transmit significant Lorentz forces throughout the magnetosphere that balance the strong centrifugal forcing associated with Jovian rotation (Khurana et al., 2004; Vasyl’ianas, 1983) and play a significant role in the magnetic connection between the Jovian satellites (Belcher, 1987) and Jupiter’s aurora (Clarke et al., 2002, 2004; Connerney & Satoh, 2000). A recent study of Jupiter’s high-latitude magnetic field revealed ~300-nT transverse perturbations observed in association with the main auroral oval, providing direct constraints on the structure of such large-scale field-aligned currents (Kotsiaros et al., 2019).

In addition to macroscale magnetic perturbations, significant broadband magnetic turbulence has been reported in the Jovian plasma sheet (Glassmeier, 1995; Ng et al., 2018; Russell et al., 1998; Saur et al., 2002; Tao et al., 2015). These fluctuations were thought to map to Jupiter’s high-latitude ionosphere, where their conversion into particle energy has been suggested to serve as a possible generation mechanism of the main Jovian aurora (Saur et al., 2003, 2018). A similar phenomenon known as the “Alfvénic aura” has been suggested to occur at Earth, where energy transported throughout a turbulent cascade accelerates electrons to sufficient energies to produce auroral emission (Chaston et al., 2008). Such broad, precipitating energetic electron distributions have been reported at Jupiter (Allegrini et al., 2017; Clark et al., 2018;
Connerney, Adriani, et al., 2017; Mauk et al., 2017a, 2017b, 2018), and kinetic simulations of Jovian flux tubes have recently demonstrated that Alfvén waves can provide the needed energization (Damiano et al., 2019). However, without observations of corresponding magnetic fluctuations in the high-latitude magnetosphere, the nature of the turbulent cascade and its relationship to the aurora remain an open issue.

When Voyager 1 flew by Io, the plasma and magnetic field instruments directly observed Alfvénic perturbations (Acuna et al., 1981; Belcher et al., 1981). Gurnett and Goertz (1981) connected these Iogenic Alfvén waves, bouncing back and forth between hemispheres, with Io-triggered radio emissions (Al Warwick, 1979; Carr et al., 1983). These Alfvén waves have been suggested as a mechanism for transmitting power generated by Io’s orbital motion around Jupiter to the associated Io footprint (IFP) auroral emission (Gurnett & Goertz, 1981; Hinton et al., 2019; Neubauer, 1980, 1998; Saur, 2004). Some theoretical models (Delamere et al., 2003; Ergun et al., 2009; Hess et al., 2010; Hill & Vasyliunas, 2002; Matsuda et al., 2012; Su et al., 2003) predicted an Alfvénic generation mechanism for the main IFP spot and a steady-state quasi-static electric potential for its tail, while others suggested that Alfvén waves could account for both the main spot and the tail (Bonfond et al., 2009, 2017; Crary & Bagenal, 1997; Jacobsen et al., 2007). Recent thermal particle observations by Juno have reported broad energy distributions of precipitating electrons in these regions (Szalay et al., 2018), indicative of a stochastic acceleration process, though the presence of Alfvénic perturbations in connection to the IFP has not yet been reported.

Here we present observations of broadband Alfvénic fluctuations measured in Jupiter’s high-latitude magnetosphere. We use high-resolution magnetometer data collected by the Juno spacecraft over its first dozen peri-Jove (PJ) passes to estimate the spectral power of turbulence in the vicinity of Jupiter’s main auroral oval and near the IFP. The spatial variation and spectral index of these fluctuations are then used to constrain their magnetospheric points of origin and to quantify their potential to generate aurora.

2. Data Selection and Analysis

For this study we used fluxgate magnetometer data collected by Juno’s magnetic field investigation (MAG; Connerney, Benn, et al., 2017) between July 2016 and April 2018. This time period spanned Juno’s first 12 peri-Jove (PJ) passes (i.e., PJ1–PJ12). Data from PJ2 was not available due to the spacecraft’s entry into safe mode on approach. The JRM09 model of Jupiter’s magnetic field (Connerney et al., 2018) combined with a model magnetodisc (Connerney et al., 1981) was used to map the Juno trajectory to the location of statistical auroral oval and to the footprints of the Jovian moons Io, Europa, and Ganymede (Bonfond et al., 2009, 2012).

Magnetic field vectors were analyzed at the maximum available temporal resolution of 64 vector samples per second. The operational dynamic range of the fluxgate magnetometer varied throughout each PJ in response to the wide dynamic range of ambient magnetic field magnitudes. We restricted our analysis to the highest ranges, namely, ranges “5” and “6,” with nominal dynamic ranges of 4.096 and 16.38 G (1 G = 105 nT) which provide resolutions of 12.5 and 50 nT/bit, respectively (Connerney, Benn, et al., 2017). Measured magnetic field vectors for these ranges were expected to be accurate to within one part in 105 (Connerney, Adriani, et al., 2017; Connerney, Benn, et al. 2017; Connerney, et al. 2018).

Three-dimensional magnetic field vector measurements were transformed from the rotating sensor coordinate frame into the Jupiter-De-Spun-Sun (JSS) nonrotating frame (i.e., the “JUNO_JSS” frame in Juno SPICE kernels or the Jupiter-Sun-Equatorial frame described by Bagenal et al., 2017). In this coordinate system, the Z axis was oriented along the direction of Jupiter’s spin axis, the Y axis was oriented along the direction of the cross product between the spin axis and the unit vector of Jupiter to the Sun, and the X axis completed the right-handed system.

Power spectral densities (i.e., P_f, where f is the quantity of interest) were calculated from discrete fast Fourier transforms of high-resolution Juno magnetic field data. To minimize discontinuities in construction of spectrograms, a Hanning window was applied to the data before transforming into frequency space. Spectrograms of the normalized trace of the power spectral matrix, that is, $P_{TT} = (P_{xx} + P_{yy} + P_{zz})/3$, and the spectral power of magnetic field magnitude, that is, P_{BB}, were calculated using successive sets of 30-s samples with 25-s overlap between each interval. These quantities represented the total fluctuation power and compressive fluctuation power, respectively (e.g., Belcher & Davis, 1971; Bavassano et al., 1982).
Frequency in the spacecraft frame (ω_{sc}, rad/s) is related to that in the plasma frame (ω) by the Doppler shift relation, $\omega_{sc} = \omega + k \cdot V$, where k is the wave vector and V is the relative velocity between the two frames. Here, V was dominated by the spacecraft velocity, $V_{sc} \sim 50$ km/s (Connerney et al., 2018; Szalay et al., 2018). Often in turbulent analysis, to transform measured frequencies into spatial scales, the Taylor hypothesis is applied, which requires that $|V| >> |\omega/k|$, that is, the turbulent eddies can be considered as “frozen” as they advect past the observer (Howes et al., 2014; Matthaeus & Goldstein, 1982; Taylor, 1938). However, in Jupiter’s polar magnetosphere, the field was sufficiently strong to require a semirelativistic description Alfvén wave propagation. In this regime, the Alfvén mode remained nearly dispersionless at fluid scales but propagated with speed $V_A/\sqrt{1+(V_A/c)^2}$, where c is the speed of light and V_A is the typical Alfvén speed of $B/(mn\mu_o)$, with B, m, n, and μ_o representing to the magnetic field magnitude, particle mass, number density, and vacuum permeability, respectively (Gombosi et al., 2002; Kurbatov et al., 2017; Su et al., 2006). In the high-latitude regions considered here, the Alfvén speed was $\sim c$. Therefore, the Taylor hypothesis was not satisfied, that is, $|\omega/k - c| >> V_A$, even for highly obliquely propagating modes. In this limit,
frequencies in the spacecraft frame and plasma frame were nearly equal. However, the known dispersion relation of semirelativistic shear Alfvén waves (i.e., \(\omega = c k \cos(\theta) \)) provided a mechanism to convert frequency to wave vector. The power spectral densities of measured fluctuations in frequency space therefore provided information about the scaling of turbulent energy with \(k_\parallel \) rather than the more often measured cascade in \(k_\perp \) (Glassmeier, 1995; Saur et al., 2003; Tao et al., 2015). Despite having observed frequencies \(\sim 1 \text{ Hz} \), the wave modes studied here are fluid scale. The kinetic turbulence that directly engages in wave–particle interactions would be measured at significantly higher frequencies.

Finally, the Poynting flux of inertial Alfvén waves was estimated as \(\delta B^2 c/\mu_0 \) (Saur et al., 2003, 2018), where \(\delta B \) was the root-mean-square (RMS) amplitude of the turbulent fluctuations. Data were band-pass filtered using a fifth-order Butterworth filter with cutoff frequencies 0.2 and 5 Hz, largely isolating fluctuations above the spectral noise floor. The variances of each magnetic field component in a region of interest were then summed to provide an estimate of total fluctuation power. The average fluctuation power in adjacent intervals lacking appreciable Alfvén wave activity was subtracted from this value to provide a background correction. The RMS amplitude \(\delta B \) corresponded to the square root of the resultant sum.

3. Results

An overview of magnetic field fluctuations observed during Juno’s PJ1 (27 August 2016) pass is shown in Figure 1. Enhancements of transverse fluctuations were observed in the vicinity of the statistical auroral oval and footprint tails of Io, Europa, and Ganymede in both the northern (\(~12:10–12:20\) UT) and southern hemispheres (\(~13:26–13:30\) UT). No corresponding compressive fluctuations were observed in either hemisphere. An increased spectral noise floor in the magnetic field data was evident in range 6 due to the increased quantization noise relative to that in range 5.
Power spectral densities of the transverse fluctuations observed by Juno from 13:26 to 13:30 UT during PJ1 are shown in Figure 2. Surrounding intervals were used to provide an estimate of the relevant spectral noise. A power law fit to high signal-to-noise data resulted in a spectral index of -2.29 ± 0.09. Using the relationship $\omega \approx c k ||$, the frequency range $0.1-1$ Hz corresponded to parallel wavelengths between $4-40 R_J$, where R_J is the equatorial radius of Jupiter, that is, 71,492 km.

Spectrograms from the subsequent ten PJ passes are shown in Figure 3. These data exhibited similar behavior to that observed in PJ1, that is, transverse fluctuations localized near the auroral zones, with no observable compressive component. Close-up images for each PJ in the same format as Figure 1 were included as supporting information. In total, these 11 PJ passes spanned a full range of System III longitudes, with transverse fluctuation power observed on nearly every crossing of the auroral field lines, with the exception of PJ11 near $\sim 13:30$ UT.

Finally, significant fluctuation power was evident in Figure 3 associated with the IFP tail. The Poynting flux was estimated for six intervals when Juno crossed within 90° in longitude from the IFP. These fluxes, as well as the observed altitude and longitudinal distance from the IFP, are shown for each interval in Figure 4. The strongest wave power of $\sim 1,000$ mW/m2 was measured during PJ12, when Juno passed within $\sim 6^\circ$ of the IFP. Weaker Poynting fluxes of ~ 10 mW/m2 were observed up to $\sim 90^\circ$ in the IFP tail during PJ 6. The altitudes of IFP tail crossings varied significantly from ~ 0.2 to $\sim 2 R_J$. PJ5 and PJ6 crossed the IFP tail at nearly the same altitude of $\sim 0.7 R_J$ but at longitudinal distances of 14° and 78°, respectively, resulting in a difference in fluctuation power by an order of magnitude.

Figure 3. Transverse and compressive magnetic field fluctuation power observed by Juno during PJ3–PJ12. These plots are identical in format to Figure 1, with close-up views and trajectory information for each PJ pass provided in supporting information. As with PJ1, only transverse fluctuation power was observed. This wave power was nearly always localized to regions just equatorward of the statistical auroral oval. Fluctuations specifically associated with crossings of the Io footprint tail were evident in PJ5–PJ7 and PJ12, where the longitudinal distance of Juno from the Io footprint was less than $\sim 90^\circ$. See Figure 1 for legend.
4. Discussion

The presented polar magnetic field data provide measurable evidence of significant Alfvénic wave activity (i.e., ~10 mW/m²) at IFP tail longitudes up to ~90°, with up to ~1,000 mW/m² a few degrees from the main Io spot. This range of Poynting fluxes is consistent with precipitating electron fluxes determined by Szalay et al. (2018) for PJ5–PJ7 and typical UV auroral brightness values (Bonfond et al., 2009, 2012), suggesting that Alfvén wave activity is sufficient to generate the IFP tail. This wave power was observed at higher frequencies in the Juno magnetometer data (i.e., between ~0.2 and 5 Hz) and was therefore not apparent in Juno spin-averaged data (e.g., Szalay et al., 2018).

Broadband Alfvénic turbulence was observed at all System III longitudes but was confined to within polar latitudes immediately equatorward of the statistical auroral oval. The broadband fluctuations observed in PJ1 aligned with the broad-energy electron signatures reported by the energetic particle instruments (Allegrini et al., 2017; Clark et al., 2018; Mauk et al., 2017a, 2017b, 2018). No corresponding fluctuations were observed in concert with the discrete-energy electron signatures described by Mauk et al. (2017a, 2017b, 2018). The RMS value of the band-pass filtered Alfvén turbulence in Figure 1 was ~20 nT, corresponding to an average Poynting flux of ~80 mW/m². This value is in good agreement with fluxes of energetic electrons reported by Mauk et al., 2017b, suggesting that Alfvénic turbulence provides a sufficient source of acceleration of electrons generating auroral emission at Jupiter as discussed by Saur et al. (2003, 2018) and Damiano et al. (2019).

The spatial localization of broadband fluctuations observed in the high-latitude regions suggested that they were related to a narrowly focused latitudinal band of auroral emission. The observed polar turbulence mapped to Jupiter’s central plasma sheet between the Io torus and the stretched magnetodisc current sheet, that is, equatorial distances between ~10 and 20 RJ, as evidenced by magnetic field modeling and examination of thermal plasma data during this time period (e.g., Figure 1 in Szalay et al., 2017). Appreciable power dissipation within polar latitudes between the IFT footprint and the main aurora has also been established by remote observations of H₃⁺ emissions (Sato et al., 1996; Satoh & Connerney, 1999). Plasma sheet turbulence produced beyond ~20 RJ appeared to remain confined to lower latitudes, with no corresponding observations discernible in the polar data. The turbulent energy at these larger distances therefore should have resulted in the heating of magnetospheric plasma rather than the acceleration of auroral electrons (Saur et al., 2018).

At the equator, wave phase speeds are small compared to plasma convection speeds such that measured magnetic field fluctuations map to a spectrum in k⊥. At high-latitudes, where the phase speeds are on the order of the speed of light, measured magnetic field fluctuations map to a spectrum in k∥. The measured inertial-range k∥ spectrum over the poles suggested that the turbulence along the field line could be consistent with a critically balanced (i.e., strong MHD turbulence) Kolmogorov cascade (i.e., E ~ k∥−5/3) (Goldreich & Sridhar, 1995). “Critical balance” assumes that the linear wave time scale and nonlinear energy transfer time scale are comparable in the region where the energy transfer takes place. At Jupiter, this interaction was likely confined to low latitudes (Saur et al., 2003). In critically balanced Kolmogorov turbulence, the perpendicular and parallel inertial range cascades exhibit spectral indices of ~−5/3 and ~−2, respectively. Such cascades are often observed in the solar wind (Chen et al., 2011; Wicks et al., 2011). Kolmogorov-like k∥ spectra have been reported in Jupiter’s equatorial plasma sheet in the vicinity of ~20 RJ (Glassmeier, 1995; Tao et al., 2015; Ng et al., 2018). Because the turbulent fluctuations are contained within a given flux tube, an inertial range k∥ spectrum measured at the equator would be equivalent to an inertial range k∥ spectrum measured at high latitudes. The observed parallel spectrum was somewhat steeper than k∥−2 (i.e., closer to k∥−7/5) indicating that the cascade may not have been fully developed. Even if the critical balance assumption is not fully valid, the definitive measurement of an inertial range k∥ spectrum here suggested that weak...
MHD turbulence theory may not have provided a complete description of the turbulence in this region, as it excludes the presence of such a parallel cascade (Galtier et al., 2000). However, this constraint likely only places modest limitations on the dissipation rates estimated by Saur et al. (2003, 2018), who assumed weak turbulence framework for turbulence at Jupiter.

5. Conclusions
We have reported observations of broadband Alfvénic waves in Jupiter’s polar magnetosphere that demonstrated the following: (1) the power spectrum of high-latitude fluctuations can exhibit a $K_i = \pm 0.09$ dependence, suggesting that the observations were consistent with strong MHD turbulence; (2) Alfvénic turbulence maps to regions of Jupiter’s inner magnetosphere where the magnetic fields remained relatively dipolar and provides up to $\sim 100 \text{ mW/m}^2$ of power available for stochastic particle acceleration and subsequent auroral generation; (3) Alfvénic activity along the IFP tail provides up to $\sim 1,000 \text{ mW/m}^2$ close to the Io flux tube, with $\sim 10 \text{ mW/m}^2$ observable up to $\sim 90^\circ$ away from the tail; (4) Alfvén waves likely play a significant role in the generation of both the main aurora at Jupiter as well as extended IFP tail.

References
Bagental, F., Adriani, A., Allegrini, F., Bolton, S. J., Bonfond, B., Bunce, E. J., et al. (2017). Magnetospheric science objectives of the Juno mission. NASA’s Planetary Data System as part for the Juno MAG instrument. This work was supported by the Juno mission.

Acknowledgments
Juno data are publicly available from NASA’s Planetary Data System as part of the JNO-J-3-FGM-CAL-V1.0.0 data set for the Juno MAG instrument. This work was supported by the Juno mission.

Southwood, D. J., & Kivelson, M. G. (1991). An approximate description of

