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Abstract 

The High Data Rate Architecture (HiDRA) project is 

implementing a High-rate Delay Tolerant Networking 

(HDTN) capability that can support Low Earth Orbit (LEO) 

applications and environments.  The present state of the 

effort, future work, and other elements of the work to date are 

described in this paper.  This implementation is intended to 

support applications that run at 1+ Gbps, per the requirements 

of modern optical and high-frequency RF links.  Uniquely, 

this implementation is also tuned to support relay and data 

trunking applications, which might require support for large 

numbers of small bundles per second.  The design for this 

platform is based entirely on commercial-off-the-shelf 

(COTS) components, and possesses buffering capabilities in 

the 5 TB range. 

This document takes results from previous individual tests 

and integrates them to demonstrate results in the presence of 

a coherent use-case: consider a network aboard the ISS which 

intends to utilize an upcoming optical communications 

capability.  For this use-case, orbital analysis software is used 

to analyze orbital dynamics, from which a list of access times 

are generated that might take in to account weather, schedule 

competition, etc.  A variant of Contact Graph Routing (CGR) 

is applied to these windows to determine an optimal 

schedule.  This schedule is then loaded into the HDTN 

prototype and, in conjunction with various measurement 

tools, a complete end-to-end analysis of HDTN’s 

performance is conducted.  Various bottlenecks (including 

storage) are identified: these bottlenecks are expected to help 

us focus our future work on the elements of the system that 

are most likely to present issues moving forward.  Finally, we 

discuss possible paths for evolution beyond the present rates 

supported by the system, including (but not limited to) 

hardware acceleration. 

1 Introduction 

For the past half-century of space exploration, radio 

frequency (RF) means of communication and navigation have 

served as the backbone for both human and robotic missions.  

While the current optical (laser) communication technology 

demonstrations promise to deliver an order-of-magnitude 

increase in bandwidth[1][2][3], the current space and ground 

infrastructure must adapt in order to scale concomitantly.  

One crucial aspect of the necessary evolution lies in the 

realization of capabilities that can support delay- and 

disruption-tolerance, both in the architectural[4] and the 

implementation[5] sense, at rates that will allow high-speed 

links to be used to their full capacity. This functionality is at 

the heart of delay tolerant networking (DTN). 

 

Generally speaking, existing implementations of DTN have 

been designed to suit constrained end-nodes, which has 

(necessarily) limited their support for parallelism or 

pipelining capabilities present in modern systems.  One 

reference implementation of DTN (Interplanetary Overlay 

Network, or ION), for example, relies on a shared database 

kept in shared memory.  This database is protected by a series 

of mutual exclusion locks that prevent more than one process 

from ever obtaining access to its bundle database at once.  

Since each individual element in the ION pipeline requires 

access to that database, many elements in the pipeline are 

often stalled waiting for a different process to complete its 

task and free its lock.  Further, heavy contention for the lock 

itself leads to a relatively high amount of inter-CPU 

synchronization overhead, especially when specific ION 

processes are freely allowed to migrate between cores. 

 

While such designs are capable of achieving reasonable rates 

with sufficient tuning (e.g. maximizing the amount of data 

one sends in a single bundle, or coherent unit of transport), 

their architecture leads to a ceiling on their ability to scale 

outward.  This forces one to spend a great deal of time 

bootstrapping existing implementations to support use-cases 

for which they were never intended.  Along those lines, there 

has historically been a gap in implementations of DTN that 

are designed to achieve high-rate routing and transport.  To 

fill that gap, NASA has begun evaluating and implementing 

new approaches to DTN that might better exploit the 

capabilities of modern systems.  This paper describes one 

such implementation called High-rate DTN (HDTN), which 

is being developed at NASA's Glenn Research Center (GRC). 

 

The major goal of this paper is to describe a fitness test of 

HDTN in a realistic setting, mixed with other DTN 

implementations. Success is defined by demonstrating three 

elements: HDTN can support up to 1Gbps rates even when 

sending “small” messages, HDTN maintains interoperability 

with DTN implementations that were designed for other 

purposes, and HDTN can scale each of its functions 

horizontally across a large number of cores (or even discrete 

systems). The first two criteria will be expanded upon in 

Section 2. 
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1.1 Network Model of Optical Communications 

The necessity for DTN in a space network is driven by the 

manner in which such networks normally operate; 

connectivity between any two nodes is primarily ruled by 

orbital mechanics.  Links are bidirectional in nature, but are 

highly asymmetric: the command and control messaging are 

a fraction of the bandwidth demanded by scientific 

instruments on-board the spacecraft.  When optical 

communications are employed as an addition to RF systems, 

they do not fundamentally change this approach to mission 

design, though they strongly influence the manner in which 

the network operates. Whereas RF-based communications 

rely on longer links with a lower continuous rate, optical 

communications are envisioned as extremely high-rate bursts. 

This enables long-term buffering with quick flushes to the 

ground. Existing Tracking and Data Relay Satellite System 

(TDRSS) spacecraft, though well-proven for older 

communications, do not support the burst-oriented approach, 

and are anyways being phased out[6]. Thus future missions 

will need a different mode of operation than TDRSS. 

Such support networks could exist as mix of government 

owned and operated assets and commercially supplied 

bandwidth. Any future-looking approach to modeling space 

networks must consider these possibilities. The 

corresponding mixture of data flows will push the 

consideration of quality of service (QoS) as commercial 

space, civilian science \& exploration (both robotic and 

human), and academic utilization of communication networks 

to extend small-satellite operations.  Each user would need to 

develop a set of particular QoS metrics (bit error rates, 

throughput, security, etc.) so that their traffic could be 

managed effectively across the network. 

 Although particular implementations may vary, it is 

important that the system architecture serve as much more 

than a point solution by offering extensibility to lunar and 

planetary exploration, and across a heterogeneous array of 

deployed assets and technologies.  This is quite the 

formidable challenge because space operations present a wide 

assortment of variables.  Elements to consider include, for 

example, the particular radiation environment as well as 

dynamic link ranges limiting instantaneous data rates and 

imparting memory buffer requirements on the spacecraft.  

This yields a requirement that the network architecture be 

flexible enough to accommodate the variability of mission 

parameters.  With that said, the network architecture must not 

be so general and abstract that the complexity would preclude 

the development of meaningful capabilities to accommodate 

an ever-increasing and -evolving portfolio of mission 

technologies and objectives. 

 

1.2 Experiment Network 

In order to test HDTN in a realistic environment, then, it was 

necessary to experiment with different approaches to a future 

space network.  For the purposes of this experiment, the 

network was kept relatively simple: more details are offered 

in Section 3. 

 

 
Figure 1 Basic architecture 

Per Figure 1, which is explained further in Section 3, a user 

spacecraft in low Earth orbit (LEO) is considered. It may 

communicate to a second spacecraft in geosynchronous 

equatorial orbit (GEO), which houses an optical 

communications relay. Or it may opt to transmit optical 

ground stations directly – it may also use RF capability. 

Considered together, these assets and capabilities present a 

heterogeneous network which considers technology, range, 

weather and terminal masking, and multi-path options.  As 

such, there are opportunities to test basic network policy as 

well as various approaches to switching and routing traffic. 

 

2. Delay-Tolerant Networking 

In order to cope with sporadic availability and long link 

propagation delay, a core component of the future NASA 

network is envisioned to be DTN.  While this paper will not 

attempt to act as an introduction to DTN - for suitable 

material, the reader is encouraged to consult[4][5][7][8] - 

however the necessities are reviewed below. 

From an architectural standpoint, delay-tolerance is achieved 

through the use of an overlay network.  This overlay is a 

logical construct that can be thought of as a graph that exists 

on top of a number of existing assets and links.  A vertex in 

this graph is a place at which data may exit the overlay: such 

a destination may map to either one physical asset or a 

collection of many (e.g. an entire constellation).  An edge in 

this graph represents a logical link between two endpoints: 

such edges may be constructed upon any protocol, known as 

convergence layers (CL). These consist of small transport-

later protocol adaptations which allow the atom of DTN data, 

the bundle, to pass through individual edges. The protocol by 

which such bundles are transported through the overlay itself 

is called the Bundle Protocol[5]. 

If a purpose of networking is to achieve scalability of 

communications in the number of nodes, it must not become 

the bottleneck. However, the staple implementations' 

limitations are well documented[8][9][10]: maximum rates in 

the low 100's of megabits/second are common regardless of 

computational horsepower. Consider two DTN nodes 

connected over TCP/IP. If a transmitted bundle is over 

several megabytes, one may correctly assume that the data 

rate would essentially be the line-rate. However, most 

bundles are fragmented into collections of much smaller 

bundles. This increases the overhead associated with 
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processing the number of bundles. The aforementioned 

computational complexity begins to play a profound role, as 

the header fields are not of fixed width[5], and hence there is 

no random access within a given header. This and other 

factors imply that the software architecture will determine the 

maximum performance levels of a DTN when considering 

the metric bundles per second. 

We recall that it is imperative to have several independent 

manifestations of a protocol for interoperability testing. One 

version can help unearth bugs in the code, but having two or 

more help find bugs in the specification. However, 

interoperability means more than “speaking the same 

language,” and includes not speaking more quickly than one 

can listen. Hence the original goal for this paper implies that 

we need to maintain interoperability with DTN packages of 

all capabilities up to HDTN's. 

Existing DTN versions are held to other metrics than data-

rate, and should be considered different tools for different 

applications; they may all have a place in a single given 

network. We note that naming is consistent between the 

implementations (in this case); we use InterPlanetary 

Network (IPN) naming. Thus a name is of the form 

ipn:x.y, where the number x is the name of the node and 

the number y refers to the service number (see [11]). The 

high-rate DTN bplib[12] uses the flow-concept to determine 

where data should be sent and received. A flow is defined as 

a source node and service number followed by a destination 

node and service number, e.g. a.b_m.n, where a is the 

source node number, b is the source service number, m is the 

destination node number and n is the destination service 

number. These service numbers correspond to application 

threads on the local and remote nodes which will call bplib 

functions to store and accept data. 

For the tests conducted, we used the following DTN 

implementations: 

 Interplanetary Overlay Network (ION)[13] 

 Developed by the Jet Propulsion Laboratory (JPL), 

this is the NASA reference implementation 

 Designed with deep-space in mind 

 Performance ~100Mbps for small bundles[8][9] 

 Bplib (Bundle  Protocol Library)[12] 

 Developed by the NASA Goddard Space Flight 

Center 

 Lightweight framework on which more complete 

implementations of the bundle protocol may be 

based 

 Bplib may be used to support the development of 

code that operates at high rates’ 

 High-Rate Delay Tolerant Networking (HDTN)[8] 

 Developed by the NASA Glenn Research Center 

 Distributed implementation of the bundle protocol 

 Focuses on support for horizontal scaling, 

pipelining, and parallelism 

 

The test setup for this paper includes three ION nodes: 

ipn:1, ipn:2, and ipn:3, one HDTN node: ipn:4, and 

three bplib nodes: ipn:5, ipn:6, and ipn:7. They are 

connected as in Figure 2. The intuition is that the ION nodes 

would serve as sensor nodes aboard the spacecraft, which 

then connect to HDTN directly, which would function as a 

store, carry, and forward hub between this internal satellite 

network and ground stations running bplib. Time-varying 

connectivity is described in further detail in Section 3. 

 

 

Figure 2 Network configuration 

 

Figure 3 Software configuration 

2.1 Interoperability of Software Components 

 

The three DTN software packages (ION, HDTN, and bplib) 

perform the data storage and bundle encoding & decoding 

functions, but it is anticipated that there will be additional 

software components to command the experimental payloads 

and send health and status telemetry to a mission operations 

center. In particular, NASA core Flight System (cFS)[14] has 

been used extensively among space flight missions for 

experiment control, commands and telemetry. Several ground 

software packages are commonly used in conjunction with 

cFS to provide a graphical operator interface, such as ITOS 

(Integrated Test and Operations System)[15], COSMOS[16], 
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and TReK (Telescience Resource Kit)[17] as well as custom 

developed solutions, as shown in Figure 3. 

Bplib is an open source library actively under development 

by Goddard Space Flight Center and implements a subset of 

the RFC 5050 Bundle Protocol [5]. The library provides 

bundle encode, decode and storage capabilities and is 

intended for use in embedded applications. It was developed 

as a library meant to be integrated into a board support 

package for core Flight System projects as well as other 

applications requiring basic Bundle Protocol compatibility. 

For this reason, bplib requires that its calling application 

implements the actual threads of execution to perform the 

bundle reception, processing and transmission tasks, and uses 

thread safe synchronous blocking I/O. HDTN is interested in 

compatibility with bplib not only for its use as a research 

payload DTN interface but also for the possibility that the 

same library maybe used as the basis of a DTN ground 

software implementation.  

A basic example of a bplib application is given in [12] that 

can be developed with 4 threads: a bundle reader, data writer, 

bundle writer and data reader. The bundle reader listens to a 

DTN CL such as a UDP socket. When data is received, the 

bundle payload is stored.  The data writer thread accepts the 

payload data and may pipe the application data to services 

used by the calling application.  Data can be sent from the 

calling application using a data reader thread which will pass 

application data to bplib for bundle encoding. The bundles 

are then queued until they can be sent using a bundle writer 

thread to send the bundles to the DTN CL. 

3 The Scenario: Generating the Connectivity 

Model 

The example scenario used was simulated using the Satellite 

Orbit Analysis Program (SOAP) across a two year mission 

profile to generate statistical data on the availability to 

complete links between the communication terminals. The 

idea is to create a system that includes optical links, RF links, 

features multiple hops and multiple paths, and finally, enjoys 

some semblance of reality. The scenario used is a blend of 

real assets, upcoming assets, and some imagination. ION has 

been used about the International Space Station (ISS) since 

2016[18], which will also host upcoming optical 

payloads[19] which are targeting GEO-relay and direct-to-

Earth (DTE) optical communications. Therefore we model 

our scenario on a potential use case of these assets: we 

envision ION nodes connected to HDTN, all aboard the ISS, 

which then communicates to both optical ground stations and 

also an RF ground station as described in Section 2. 

 

Figure 4 shows a screenshot of the SOAP model which 

captures Figure 1 and demonstrates the scope of the system. 

The Earth has two optical ground stations (OGS) and an RF 

ground stations, OGS-1, OGS-2, and White Sands, 

respectively. The ISS can communicate using optical and RF, 

and finally there is STPSat-6, which will host the optical 

relay[20]. 

 

 
Figure 4 SOAP scenario 

 

 

SOAP calculates the line-of-site availability between orbital 

assets. To simplify matters, and because we are more 

interested in higher-layer protocols than Layer 1 (particularly 

encoding), we assume cloud-free line of sight (CFLOS). For 

our scenario, we are interested in: 

 Optical contact from the ISS to the relay, 

 Optical contact from the ISS direct-to-ground, and 

 Direct RF contact from the ISS to White Sands. 

 

A 24-hour window was chosen from which to create the 

network-test bed. The only assumption was that no two 

optical links would operate simultaneously. Moreover, we 

wanted to switch between the relay and direct to Earth (DTE) 

communications when possible in order to stress the 

flexibility of the network. The RF link was used sparsely, to 

represent the contention for using an already constrained link. 

When making switch-overs, we blocked out a minute to 

simulate beam steering and link establishment. Ultimately, 

DTN should accommodate any variations. 

 

DTN typically uses schedules, known as contact graphs[7], 

to determine routing. The data used to generate the contact 

schedule over the aforementioned 24-hour period is shown, 

loosely, in Figure 5. While generated from the data used, this 

figure is not meant to be rigorous, but rather used for 

intuition; hence units are purposefully excluded. Over one 

day, the red blocks represent contacts from the ISS to the 

relay (and hence either ground station), which are interrupted, 

as discussed, in favor of direct contact with either OGS-1 

(green) or OGS-2 (blue). The RF link, in yellow, is always 

utilized when available. 
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We assume that onboard the satellite, all nodes are constantly 

connected, and that the optical relay can always communicate 

with either ground station. Given an opportunity for DTE 

optical communications, this is always taken. If no DTE path 

exists, but a relay path does, the ground stations were 

scheduled in an alternating pattern. We note that relays are 

transparent at the network layer. We also assume that data 

rates do not depend on whether or not the relay is utilized. 

Finally, an unreasonable assumption is made for the ground 

stations: there is sufficient connectivity between the ground 

stations and some MOC such that terrestrial data transport is 

guaranteed. This is definitely not the case, especially when 

the best sites for optical ground stations tend to be remote. 

However, addressing infrastructural concerns is beyond the 

scope. 

 

 
Figure 5 Schedule data visualization 

 

The output of SOAP gives start and stop times of each 

contact in the simulation time. The data was filtered and then 

used to generate schedules. ION uses a globally distributed 

table of connectivity, the contact graph. This includes one-

way light time, however in this case the round trip time 

(RTT) was low enough to be inconsequential even for TCP, 

and so was omitted. HDTN uses Multiprotocol Label 

Switching (MPLS)[21], which is described further below. 

Finally bplib does not yet have a scheduler, and so Bash 

scripts were created to schedule transmissions. 

 

Brief statistics are shown in Table 1 for the 2-year period. 

Given the chosen orbits, the DTE durations are not 

surprising. However, it was unexpected to see roughly hour-

long contacts when the relay was utilized. This is something 

that would be pruned by adding fidelity to the SOAP model, 

however this unnecessarily over specifies the problem; we 

recall that the network should react gracefully to the schedule 

changes. 

 STPSat-6 OGS-1 OGS-2 White Sands 

Duty Cycle 

% 

58.06 1.74 1.29 1.34 

Average 

Contact(min) 

57.61 5.62 5.69 5.15 

Variance 7.17 2.77 2.62 2.25 

Table 1 Basic statistics over 2-year period 

 

4 High-Rate Delay-Tolerant Networking 

4.1 Introduction 

High-rate DTN (HDTN) is an implementation of DTN that 

demonstrates various concepts and experiments that have 

been performed within the scope of the High Data Rate 

Architecture (HiDRA) project over the past few years.  

HDTN has a hard requirement to support sustained bundle 

flows at rates of 1+ Gbps, with support for expanding that 

number as requirements change.  As such, HDTN has placed 

an emphasis on demonstrating how a DTN engine can 

support horizontal scaling, incremental hardware 

acceleration, and generally achieve high data rates (both in 

terms of throughput and in terms of bundles per second) 

without necessitating large investments in hardware that has 

been developed specifically to support the Bundle Protocol. 

HDTN is a work in progress, and as such may see some 

changes to design or implementation.  With that said, lab 

experiments have been encouraging: the software has been 

able to consistently process 5 - 6 Gbps of traffic (given 1K 

bundle sizes) that can be forwarded without needing to first 

be stored.  When disk-based storage is required, that number 

falls somewhat: the specific impact depends on the storage 

medium selected.  Our implementation of HDTN currently 

relies on a collection of three 1 TB SSD persistent storage 

devices, each of which is running over a SATA 3 (6 Gbps) 

interface.  These disks are sufficient to support the necessary 

1 Gbps rate, with results to date demonstrating performance 

in the 2 Gbps range.  RAM-based storage has proven to be 

much faster, but is necessarily limited in what it can support: 

most systems support far more disk space than they do RAM.  

As such, approaches to tiered caching and retrieval are an 

active area of study for the project: HDTN's design does 

allow for multiple instances of storage (each with different 

rates), but how best to utilize available storage remains an 

open problem in this area. 

4.2 Components 

Previous sections of this document have explained the need 

for support of parallel and pipelined approaches to network 

processing.  In order to support such approaches, it is 

necessary to decompose DTN into a series of components 

that describe its core function.  For the purposes of this paper, 

these components are: 

 Ingress - CL adapter that accepts traffic in bundle format 

 Egress - manages a collection of CL adapters that 

forward bundle traffic 

 Switch - evaluates and forwards traffic based on various 

header fields 

 Controller - manages schedules and indicates when 

specific events should happen 

 Storage - manages storage and release of bundles for 

which a forward link is not immediately available 



6 
 

 Applications - applications can bind to the fabric directly 

and register themselves for bundle traffic 

 

4.3 Interconnect 

These components are realized as individual processes, but 

they do not use the bundle protocol when communicating 

internally.  Instead, they rely on a custom lightweight 

message fabric built on top of Ethernet.  Netmap's software 

VALE switch[22] is used as a local interconnect when 

multiple HDTN processes are running on a single host.  

When clustered operation (e.g. operation across multiple 

hosts) is desired, physical interfaces can be bound to the 

HDTN processes directly.  When hybrid modes of operation 

are desired (e.g. two ingress processes on one system 

communicating with a switch operating on another), physical 

interfaces may be bound to virtual interfaces on a specific 

instance of VALE. 

 

A lightweight discovery protocol runs between all connected 

components, allowing multiple instances of the same 

component to spin up / spin down as needed to address load.  

This allows HDTN to be deployed and extended 

incrementally as load begins to catch up to the capabilities of 

the system.  Further, individual components may be replaced 

by specific hardware components (e.g. ASICs and / or 

FPGAs) in order to achieve SWaP numbers that are realistic 

for modern spacecraft to support: this effort largely remains 

future work at present. 

 

Netmap's performance has been acceptable to date: initial 

testing has shown performance in the range of roughly 70 

Gbps (at roughly 8 million messages per second) when 

pushing messages between processes connected to one 

another through a single instance of the VALE software 

switch.  Netmap's own packet generator can achieve 

throughput that is substantially higher than this on identical 

hardware, so further tuning is expected to improve 

performance to a degree.  The system is heavily memory 

constrained, however, as data is copied between processes in 

the current configuration. 

 

Note that no data is shared directly between any two (or 

more) processes.  Instead, necessary data is replicated 

between processes as needed - this configuration requires 

substantial care with respect to how configuration is 

propagated to the nodes and updated, but yields benefits to 

the speed and scalability that can be achieved: since each 

element operates completely independently of the rest, many 

bottlenecks can be addressed by e.g. spinning up additional 

instances of elements and load-balancing across all of them.  

Tuning the number of instances of each element is a manual 

process, but the discovery and automatic registration 

alleviates the associated configuration burden associated with 

this. 

 

4.4 System Flow 

Bundles arrive at the HDTN system through an ingress 

process.  The ingress process examines the headers of a 

bundle and transforms it into an intermediate format (IF).  To 

facilitate switching and routing within a specific HDTN, the 

system relies on label-switching.  Upon reception of a bundle, 

the ingress element examines aspects of the bundle and 

translates it to a specific forwarding equivalence class (FEC) 

by assigning it a numeric label.  This label is then used to 

guide the bundle's movement through other elements of the 

system.  Once this label has been assigned, the bundle is sent 

to the switch element of the system. 

The switch keeps a schedule internally that describes when 

specific links will be available and what the rates are.  

Schedules are managed on a per-label basis: any traffic that is 

labeled in a specific way will share a rate allocation and 

logical path to a specific destination.  As such, the switch's 

purpose is to examine the label of the incoming traffic and 

evaluate, based on its label, what to do with it.  This 

determination occurs through the application of a series of 

rules that are contained in a table - the process is similar to 

what occurs in an SDN-enabled switch, for example.  In 

general, the switch can choose between four discrete actions: 

 Deliver: the bundle is forwarded to a specific local 

endpoint when an application has registered for such 

 Drop: the bundle is dropped 

 Forward: the bundle is immediately forwarded to the 

next hop in its assigned path 

 Store: the bundle is sent to a locally attached storage 

device for later retrieval 

 

In the delivery case, the bundle is sent to an application.  

Deliver can either provide metadata only (e.g. data related to 

all bundle headers that the switch knows how to process), or 

the entirety of the bundle.  Metadata-only is useful for cases 

where applications are being developed to enforce network-

level policy (e.g. basic firewalls): the bundle payload can be 

held in storage while the processing application makes a 

decision based on the metadata provided.  Complete delivery, 

on the other hand, is used to support more traditional 

applications that need to operate on bundle data directly. 

 

In the forward case, the bundle is sent to an egress 

component for further processing.  Upon arrival, this 

component evaluates the IF headers and determines how best 

to forward the bundle.  In the case that direct interaction with 

a remote DTN endpoint is desired, the bundle protocol is 

used to directly send the bundle to its destination over, for 

example, traditional CCSDS protocols or the Internet 

Protocol (IP).  Alternatively, the internal label can be 

translated into a conventional Multi-Protocol Label 

Switching stack for direct transport between instances of 

HDTN: MPLS has the benefit of being supported directly in 

hardware on many existing switching / routing chipsets, and 

generally has excellent support for making guarantees related 

to latency and rate allocations per-FEC. 
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For the drop case, the bundle is silently discarded.  For space 

applications, this is an option only in limited cases: scientific 

data is extremely valuable, and thus extreme care should be 

taken to ensure that it is preserved and delivered as 

appropriate.  Still, in certain situations, data may need to be 

removed from the network.  Note that the switch supports 

modes of operation where bundle lifetimes are either 

enforced or ignored, and the bundle age block is directly 

supported as well. 

 

Finally, the store action is one of the most complex.  In 

general, the switching element keeps a local buffer (e.g. in 

system RAM) that it can use to store data for a specific label: 

this is intended for short-term buffering in the event of a link 

disruption.  Once bundle traffic in a specific FEC has 

exceeded a quota (or the available buffer in the switch has 

been exhausted), both existing and future traffic for the FEC 

are forwarded to a storage element.  This element acts as a 

kind of network-attached storage device, and possesses the 

capability to, when commanded, release data to the egress 

element at a specified rate.  This element is also responsible 

for enforcing quotas, which are assigned and managed on a 

per-FEC basis. 

 

The final element of HDTN discussed here is the egress 

element.  This element accepts traffic from other HDTN 

components, evaluates the FEC and determines an 

appropriate destination, repackages the data into its original 

bundle format (if needed), and finally forwards the traffic as 

appropriate.  The egress element includes support for various 

approaches to rate control, including support for specific 

inter-frame gap times when operating over certain protocols 

(e.g. UDP and LTP).  Support for UDP/IP is stable, and 

support for TCP/IP and LTP/IP are far more experimental: 

they have been demonstrated, but should be considered works 

in progress. 

 

There are other elements of HDTN (e.g. command and 

control interfaces) that are not discussed here.  Additional 

detail is expected to be published in a future paper on the 

subject. 

 

5 Test Discussion 

The HDTN test bed consists of seven physical nodes running 

on Debian 10 for x86-64 architectures (amd64). UDP is used 

for the DTN CL since it is common among all three 

implementations, although it is planned to support additional 

CLs in the future. Considering the IPN naming (ipn:x.y), 

the service number y is either a 1 to indicate a data ingress 

service or a 2 to indicates a data egress service. 

The desired data rates as shown in Figure 3 are controlled 

with Linux traffic control (tc). Bash scripts are used to 

automate and schedule the flow of data through the network. 

Each ION node (nodes 1-3) continuously listens for bundles 

using bprecvfile, which receives bundles and writes the 

payload file to disk.  The ION nodes then repeatedly attempt 

to send 1 kB files using bpsendfile to the bplib nodes (nodes 

5-7) through HDTN (node 4), as shown in Table 2. Each 

sending node will attempt to send the percentage of traffic 

shown in Table 2, however bundles will only actually be able 

to be forwarded when there are contacts scheduled between 

the sending node and node 4 according to ION's contact plan. 

HDTN's switch process will determine the appropriate node 

to deliver the bundle to based on the destination node and 

service numbers in the bundle's primary block. 

 
Receiving Nodes % of Traffic 

Sending Node 5 6 7 

1 (1 Gbps) 90 0 10 

2 (1 Gbps) 0 90 10 

3 (1 Gbps) 40 40 20 

Table 2 ION source traffic summary 

  Receiving Nodes % of Traffic 

Sending Node 1 2 3 

5 (1 Gbps) 100 0 0 

6 (1 Gbps) 0 100 0 

3 (1 Gbps) 0 0 100 

Table 3 bplib source traffic summary 

Since bplib does not follow a contact schedule in the same 

manner that ION does, the results of the orbital analysis were 

used to generate a series of transmission start times and 

durations. These contact times were then used in a Lua script 

which will create a new bundle writer thread for bplib, and 

attempt to continuously send a 1 kB file to the corresponding 

ION node, with a 0.03 second delay between iterations to 

approximately control the rate of traffic to the ION nodes. 

Table 3 shows the percentage of traffic sent from each bplib 

node (nodes 5-7) to ION (nodes 1-3) through HDTN (node 

4). Each node also has a bundle reader thread which is always 

listening for bundles. An MD5 checksum is calculated for 

each file received and the total number of bundles received, 

correct bundles, and incorrect bundles are logged. 

5.1 Networking Test Results 

 Bplib does not support extension block 0x05 (Previous 

Hop Block) or 0x14 (Bundle Age Extension Block) used 

by ION. The blocks do not cause any problems, and are 

simply skipped and a warning message is printed. 

 In order to send larger volumes of data at rates of up to 

approximately 480 Mbps, two constants needed to be 

increased in bplib. In bplib.c 

BP_DEFAULT_ACTIVE_TABLE_SIZE and in 

bplib_store\file.c, FILE_DATA_CACHE_SIZE were 

both increased from 16384 to 1000000. In addition, 

bundles were set to expire after one second so that 

storage queues would be cleared out faster. 

 There were several queuing and storage issues 

experienced in bplib and ION when attempting to 

transmit and receive data at higher rates. This was an 

initial round of preliminary testing, and additional work 

must be done to understand the appropriate configuration 
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settings within ION and bplib, as well as the test bed 

automation scripts. 

 The ION working memory (wmSize) and heap sizes 

(heapWords) were increased from the default to 

1000000000 in order to allow for higher data rate testing. 

 Additional network statistics collection could be added 

to the HDTN test set up to facilitate troubleshooting. 

 

In general, HDTN did not have any issues handling the rates 

and number of bundles sent from the ION and bplib nodes. A 

previous paper[8] showed rates of 10,000+bundles/s were 

possible even for bundles less than 512 bytes large. Here, 

data transmission rates were intentionally constrained for this 

test so that initial troubleshooting of all of the software 

components could take place. A small sleep period of a few 

milliseconds was placed in the loop of each script for 

automating the transmission of bundles. We show that HDTN 

is capable of processing hundreds of bundles per second and 

additional high speed testing is underway. 

6 Conclusion 

In this paper, we described recent progress on a High-rate 

DTN (HDTN).  We described the design and flow of bundles 

through our system, highlighting key aspects of its design and 

implementation to date.  Further, we demonstrated the use of 

our implementation in a realistic scenario.  We implemented 

this scenario in a lab setting, and sent many gigabytes of data 

over the course of a day of continuous testing.  In the course 

of this testing, we demonstrated that our system was able to 

operate as intended, and that all implementations of the 

Bundle Protocol (ours included) used for this test were able 

to successfully inter-operate with one another. 

To truly stress HDTN and bplib, much larger scale tests 

(more ION nodes) must be used. This will be the focus of an 

upcoming publication, however given bplib-HDTN 

performance, it is very promising. 
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