
1

Rising Above the Cloud-

 Toward High-Rate Delay-Tolerant Networking in Low-

Earth Orbit
Alan Hylton, Daniel Raible, Gilbert Clark, Rachel Dudukovich, Brian Tomko, and Laura

Burk

NASA Glenn Research Center, Cleveland, Ohio, 44135

Keywords: Delay Tolerant Networking, Optical Communication

Abstract

The High Data Rate Architecture (HiDRA) project is

implementing a High-rate Delay Tolerant Networking

(HDTN) capability that can support Low Earth Orbit (LEO)

applications and environments. The present state of the

effort, future work, and other elements of the work to date are

described in this paper. This implementation is intended to

support applications that run at 1+ Gbps, per the requirements

of modern optical and high-frequency RF links. Uniquely,

this implementation is also tuned to support relay and data

trunking applications, which might require support for large

numbers of small bundles per second. The design for this

platform is based entirely on commercial-off-the-shelf

(COTS) components, and possesses buffering capabilities in

the 5 TB range.

This document takes results from previous individual tests

and integrates them to demonstrate results in the presence of

a coherent use-case: consider a network aboard the ISS which

intends to utilize an upcoming optical communications

capability. For this use-case, orbital analysis software is used

to analyze orbital dynamics, from which a list of access times

are generated that might take in to account weather, schedule

competition, etc. A variant of Contact Graph Routing (CGR)

is applied to these windows to determine an optimal

schedule. This schedule is then loaded into the HDTN

prototype and, in conjunction with various measurement

tools, a complete end-to-end analysis of HDTN’s

performance is conducted. Various bottlenecks (including

storage) are identified: these bottlenecks are expected to help

us focus our future work on the elements of the system that

are most likely to present issues moving forward. Finally, we

discuss possible paths for evolution beyond the present rates

supported by the system, including (but not limited to)

hardware acceleration.

1 Introduction

For the past half-century of space exploration, radio

frequency (RF) means of communication and navigation have

served as the backbone for both human and robotic missions.

While the current optical (laser) communication technology

demonstrations promise to deliver an order-of-magnitude

increase in bandwidth[1][2][3], the current space and ground

infrastructure must adapt in order to scale concomitantly.

One crucial aspect of the necessary evolution lies in the

realization of capabilities that can support delay- and

disruption-tolerance, both in the architectural[4] and the

implementation[5] sense, at rates that will allow high-speed

links to be used to their full capacity. This functionality is at

the heart of delay tolerant networking (DTN).

Generally speaking, existing implementations of DTN have

been designed to suit constrained end-nodes, which has

(necessarily) limited their support for parallelism or

pipelining capabilities present in modern systems. One

reference implementation of DTN (Interplanetary Overlay

Network, or ION), for example, relies on a shared database

kept in shared memory. This database is protected by a series

of mutual exclusion locks that prevent more than one process

from ever obtaining access to its bundle database at once.

Since each individual element in the ION pipeline requires

access to that database, many elements in the pipeline are

often stalled waiting for a different process to complete its

task and free its lock. Further, heavy contention for the lock

itself leads to a relatively high amount of inter-CPU

synchronization overhead, especially when specific ION

processes are freely allowed to migrate between cores.

While such designs are capable of achieving reasonable rates

with sufficient tuning (e.g. maximizing the amount of data

one sends in a single bundle, or coherent unit of transport),

their architecture leads to a ceiling on their ability to scale

outward. This forces one to spend a great deal of time

bootstrapping existing implementations to support use-cases

for which they were never intended. Along those lines, there

has historically been a gap in implementations of DTN that

are designed to achieve high-rate routing and transport. To

fill that gap, NASA has begun evaluating and implementing

new approaches to DTN that might better exploit the

capabilities of modern systems. This paper describes one

such implementation called High-rate DTN (HDTN), which

is being developed at NASA's Glenn Research Center (GRC).

The major goal of this paper is to describe a fitness test of

HDTN in a realistic setting, mixed with other DTN

implementations. Success is defined by demonstrating three

elements: HDTN can support up to 1Gbps rates even when

sending “small” messages, HDTN maintains interoperability

with DTN implementations that were designed for other

purposes, and HDTN can scale each of its functions

horizontally across a large number of cores (or even discrete

systems). The first two criteria will be expanded upon in

Section 2.

2

1.1 Network Model of Optical Communications

The necessity for DTN in a space network is driven by the

manner in which such networks normally operate;

connectivity between any two nodes is primarily ruled by

orbital mechanics. Links are bidirectional in nature, but are

highly asymmetric: the command and control messaging are

a fraction of the bandwidth demanded by scientific

instruments on-board the spacecraft. When optical

communications are employed as an addition to RF systems,

they do not fundamentally change this approach to mission

design, though they strongly influence the manner in which

the network operates. Whereas RF-based communications

rely on longer links with a lower continuous rate, optical

communications are envisioned as extremely high-rate bursts.

This enables long-term buffering with quick flushes to the

ground. Existing Tracking and Data Relay Satellite System

(TDRSS) spacecraft, though well-proven for older

communications, do not support the burst-oriented approach,

and are anyways being phased out[6]. Thus future missions

will need a different mode of operation than TDRSS.

Such support networks could exist as mix of government

owned and operated assets and commercially supplied

bandwidth. Any future-looking approach to modeling space

networks must consider these possibilities. The

corresponding mixture of data flows will push the

consideration of quality of service (QoS) as commercial

space, civilian science \& exploration (both robotic and

human), and academic utilization of communication networks

to extend small-satellite operations. Each user would need to

develop a set of particular QoS metrics (bit error rates,

throughput, security, etc.) so that their traffic could be

managed effectively across the network.

 Although particular implementations may vary, it is

important that the system architecture serve as much more

than a point solution by offering extensibility to lunar and

planetary exploration, and across a heterogeneous array of

deployed assets and technologies. This is quite the

formidable challenge because space operations present a wide

assortment of variables. Elements to consider include, for

example, the particular radiation environment as well as

dynamic link ranges limiting instantaneous data rates and

imparting memory buffer requirements on the spacecraft.

This yields a requirement that the network architecture be

flexible enough to accommodate the variability of mission

parameters. With that said, the network architecture must not

be so general and abstract that the complexity would preclude

the development of meaningful capabilities to accommodate

an ever-increasing and -evolving portfolio of mission

technologies and objectives.

1.2 Experiment Network

In order to test HDTN in a realistic environment, then, it was

necessary to experiment with different approaches to a future

space network. For the purposes of this experiment, the

network was kept relatively simple: more details are offered

in Section 3.

Figure 1 Basic architecture

Per Figure 1, which is explained further in Section 3, a user

spacecraft in low Earth orbit (LEO) is considered. It may

communicate to a second spacecraft in geosynchronous

equatorial orbit (GEO), which houses an optical

communications relay. Or it may opt to transmit optical

ground stations directly – it may also use RF capability.

Considered together, these assets and capabilities present a

heterogeneous network which considers technology, range,

weather and terminal masking, and multi-path options. As

such, there are opportunities to test basic network policy as

well as various approaches to switching and routing traffic.

2. Delay-Tolerant Networking

In order to cope with sporadic availability and long link

propagation delay, a core component of the future NASA

network is envisioned to be DTN. While this paper will not

attempt to act as an introduction to DTN - for suitable

material, the reader is encouraged to consult[4][5][7][8] -

however the necessities are reviewed below.

From an architectural standpoint, delay-tolerance is achieved

through the use of an overlay network. This overlay is a

logical construct that can be thought of as a graph that exists

on top of a number of existing assets and links. A vertex in

this graph is a place at which data may exit the overlay: such

a destination may map to either one physical asset or a

collection of many (e.g. an entire constellation). An edge in

this graph represents a logical link between two endpoints:

such edges may be constructed upon any protocol, known as

convergence layers (CL). These consist of small transport-

later protocol adaptations which allow the atom of DTN data,

the bundle, to pass through individual edges. The protocol by

which such bundles are transported through the overlay itself

is called the Bundle Protocol[5].

If a purpose of networking is to achieve scalability of

communications in the number of nodes, it must not become

the bottleneck. However, the staple implementations'

limitations are well documented[8][9][10]: maximum rates in

the low 100's of megabits/second are common regardless of

computational horsepower. Consider two DTN nodes

connected over TCP/IP. If a transmitted bundle is over

several megabytes, one may correctly assume that the data

rate would essentially be the line-rate. However, most

bundles are fragmented into collections of much smaller

bundles. This increases the overhead associated with

3

processing the number of bundles. The aforementioned

computational complexity begins to play a profound role, as

the header fields are not of fixed width[5], and hence there is

no random access within a given header. This and other

factors imply that the software architecture will determine the

maximum performance levels of a DTN when considering

the metric bundles per second.

We recall that it is imperative to have several independent

manifestations of a protocol for interoperability testing. One

version can help unearth bugs in the code, but having two or

more help find bugs in the specification. However,

interoperability means more than “speaking the same

language,” and includes not speaking more quickly than one

can listen. Hence the original goal for this paper implies that

we need to maintain interoperability with DTN packages of

all capabilities up to HDTN's.

Existing DTN versions are held to other metrics than data-

rate, and should be considered different tools for different

applications; they may all have a place in a single given

network. We note that naming is consistent between the

implementations (in this case); we use InterPlanetary

Network (IPN) naming. Thus a name is of the form

ipn:x.y, where the number x is the name of the node and

the number y refers to the service number (see [11]). The

high-rate DTN bplib[12] uses the flow-concept to determine

where data should be sent and received. A flow is defined as

a source node and service number followed by a destination

node and service number, e.g. a.b_m.n, where a is the

source node number, b is the source service number, m is the

destination node number and n is the destination service

number. These service numbers correspond to application

threads on the local and remote nodes which will call bplib

functions to store and accept data.

For the tests conducted, we used the following DTN

implementations:

 Interplanetary Overlay Network (ION)[13]

 Developed by the Jet Propulsion Laboratory (JPL),

this is the NASA reference implementation

 Designed with deep-space in mind

 Performance ~100Mbps for small bundles[8][9]

 Bplib (Bundle Protocol Library)[12]

 Developed by the NASA Goddard Space Flight

Center

 Lightweight framework on which more complete

implementations of the bundle protocol may be

based

 Bplib may be used to support the development of

code that operates at high rates’

 High-Rate Delay Tolerant Networking (HDTN)[8]

 Developed by the NASA Glenn Research Center

 Distributed implementation of the bundle protocol

 Focuses on support for horizontal scaling,

pipelining, and parallelism

The test setup for this paper includes three ION nodes:

ipn:1, ipn:2, and ipn:3, one HDTN node: ipn:4, and

three bplib nodes: ipn:5, ipn:6, and ipn:7. They are

connected as in Figure 2. The intuition is that the ION nodes

would serve as sensor nodes aboard the spacecraft, which

then connect to HDTN directly, which would function as a

store, carry, and forward hub between this internal satellite

network and ground stations running bplib. Time-varying

connectivity is described in further detail in Section 3.

Figure 2 Network configuration

Figure 3 Software configuration

2.1 Interoperability of Software Components

The three DTN software packages (ION, HDTN, and bplib)

perform the data storage and bundle encoding & decoding

functions, but it is anticipated that there will be additional

software components to command the experimental payloads

and send health and status telemetry to a mission operations

center. In particular, NASA core Flight System (cFS)[14] has

been used extensively among space flight missions for

experiment control, commands and telemetry. Several ground

software packages are commonly used in conjunction with

cFS to provide a graphical operator interface, such as ITOS

(Integrated Test and Operations System)[15], COSMOS[16],

4

and TReK (Telescience Resource Kit)[17] as well as custom

developed solutions, as shown in Figure 3.

Bplib is an open source library actively under development

by Goddard Space Flight Center and implements a subset of

the RFC 5050 Bundle Protocol [5]. The library provides

bundle encode, decode and storage capabilities and is

intended for use in embedded applications. It was developed

as a library meant to be integrated into a board support

package for core Flight System projects as well as other

applications requiring basic Bundle Protocol compatibility.

For this reason, bplib requires that its calling application

implements the actual threads of execution to perform the

bundle reception, processing and transmission tasks, and uses

thread safe synchronous blocking I/O. HDTN is interested in

compatibility with bplib not only for its use as a research

payload DTN interface but also for the possibility that the

same library maybe used as the basis of a DTN ground

software implementation.

A basic example of a bplib application is given in [12] that

can be developed with 4 threads: a bundle reader, data writer,

bundle writer and data reader. The bundle reader listens to a

DTN CL such as a UDP socket. When data is received, the

bundle payload is stored. The data writer thread accepts the

payload data and may pipe the application data to services

used by the calling application. Data can be sent from the

calling application using a data reader thread which will pass

application data to bplib for bundle encoding. The bundles

are then queued until they can be sent using a bundle writer

thread to send the bundles to the DTN CL.

3 The Scenario: Generating the Connectivity

Model

The example scenario used was simulated using the Satellite

Orbit Analysis Program (SOAP) across a two year mission

profile to generate statistical data on the availability to

complete links between the communication terminals. The

idea is to create a system that includes optical links, RF links,

features multiple hops and multiple paths, and finally, enjoys

some semblance of reality. The scenario used is a blend of

real assets, upcoming assets, and some imagination. ION has

been used about the International Space Station (ISS) since

2016[18], which will also host upcoming optical

payloads[19] which are targeting GEO-relay and direct-to-

Earth (DTE) optical communications. Therefore we model

our scenario on a potential use case of these assets: we

envision ION nodes connected to HDTN, all aboard the ISS,

which then communicates to both optical ground stations and

also an RF ground station as described in Section 2.

Figure 4 shows a screenshot of the SOAP model which

captures Figure 1 and demonstrates the scope of the system.

The Earth has two optical ground stations (OGS) and an RF

ground stations, OGS-1, OGS-2, and White Sands,

respectively. The ISS can communicate using optical and RF,

and finally there is STPSat-6, which will host the optical

relay[20].

Figure 4 SOAP scenario

SOAP calculates the line-of-site availability between orbital

assets. To simplify matters, and because we are more

interested in higher-layer protocols than Layer 1 (particularly

encoding), we assume cloud-free line of sight (CFLOS). For

our scenario, we are interested in:

 Optical contact from the ISS to the relay,

 Optical contact from the ISS direct-to-ground, and

 Direct RF contact from the ISS to White Sands.

A 24-hour window was chosen from which to create the

network-test bed. The only assumption was that no two

optical links would operate simultaneously. Moreover, we

wanted to switch between the relay and direct to Earth (DTE)

communications when possible in order to stress the

flexibility of the network. The RF link was used sparsely, to

represent the contention for using an already constrained link.

When making switch-overs, we blocked out a minute to

simulate beam steering and link establishment. Ultimately,

DTN should accommodate any variations.

DTN typically uses schedules, known as contact graphs[7],

to determine routing. The data used to generate the contact

schedule over the aforementioned 24-hour period is shown,

loosely, in Figure 5. While generated from the data used, this

figure is not meant to be rigorous, but rather used for

intuition; hence units are purposefully excluded. Over one

day, the red blocks represent contacts from the ISS to the

relay (and hence either ground station), which are interrupted,

as discussed, in favor of direct contact with either OGS-1

(green) or OGS-2 (blue). The RF link, in yellow, is always

utilized when available.

5

We assume that onboard the satellite, all nodes are constantly

connected, and that the optical relay can always communicate

with either ground station. Given an opportunity for DTE

optical communications, this is always taken. If no DTE path

exists, but a relay path does, the ground stations were

scheduled in an alternating pattern. We note that relays are

transparent at the network layer. We also assume that data

rates do not depend on whether or not the relay is utilized.

Finally, an unreasonable assumption is made for the ground

stations: there is sufficient connectivity between the ground

stations and some MOC such that terrestrial data transport is

guaranteed. This is definitely not the case, especially when

the best sites for optical ground stations tend to be remote.

However, addressing infrastructural concerns is beyond the

scope.

Figure 5 Schedule data visualization

The output of SOAP gives start and stop times of each

contact in the simulation time. The data was filtered and then

used to generate schedules. ION uses a globally distributed

table of connectivity, the contact graph. This includes one-

way light time, however in this case the round trip time

(RTT) was low enough to be inconsequential even for TCP,

and so was omitted. HDTN uses Multiprotocol Label

Switching (MPLS)[21], which is described further below.

Finally bplib does not yet have a scheduler, and so Bash

scripts were created to schedule transmissions.

Brief statistics are shown in Table 1 for the 2-year period.

Given the chosen orbits, the DTE durations are not

surprising. However, it was unexpected to see roughly hour-

long contacts when the relay was utilized. This is something

that would be pruned by adding fidelity to the SOAP model,

however this unnecessarily over specifies the problem; we

recall that the network should react gracefully to the schedule

changes.

 STPSat-6 OGS-1 OGS-2 White Sands

Duty Cycle

%

58.06 1.74 1.29 1.34

Average

Contact(min)

57.61 5.62 5.69 5.15

Variance 7.17 2.77 2.62 2.25

Table 1 Basic statistics over 2-year period

4 High-Rate Delay-Tolerant Networking

4.1 Introduction

High-rate DTN (HDTN) is an implementation of DTN that

demonstrates various concepts and experiments that have

been performed within the scope of the High Data Rate

Architecture (HiDRA) project over the past few years.

HDTN has a hard requirement to support sustained bundle

flows at rates of 1+ Gbps, with support for expanding that

number as requirements change. As such, HDTN has placed

an emphasis on demonstrating how a DTN engine can

support horizontal scaling, incremental hardware

acceleration, and generally achieve high data rates (both in

terms of throughput and in terms of bundles per second)

without necessitating large investments in hardware that has

been developed specifically to support the Bundle Protocol.

HDTN is a work in progress, and as such may see some

changes to design or implementation. With that said, lab

experiments have been encouraging: the software has been

able to consistently process 5 - 6 Gbps of traffic (given 1K

bundle sizes) that can be forwarded without needing to first

be stored. When disk-based storage is required, that number

falls somewhat: the specific impact depends on the storage

medium selected. Our implementation of HDTN currently

relies on a collection of three 1 TB SSD persistent storage

devices, each of which is running over a SATA 3 (6 Gbps)

interface. These disks are sufficient to support the necessary

1 Gbps rate, with results to date demonstrating performance

in the 2 Gbps range. RAM-based storage has proven to be

much faster, but is necessarily limited in what it can support:

most systems support far more disk space than they do RAM.

As such, approaches to tiered caching and retrieval are an

active area of study for the project: HDTN's design does

allow for multiple instances of storage (each with different

rates), but how best to utilize available storage remains an

open problem in this area.

4.2 Components

Previous sections of this document have explained the need

for support of parallel and pipelined approaches to network

processing. In order to support such approaches, it is

necessary to decompose DTN into a series of components

that describe its core function. For the purposes of this paper,

these components are:

 Ingress - CL adapter that accepts traffic in bundle format

 Egress - manages a collection of CL adapters that

forward bundle traffic

 Switch - evaluates and forwards traffic based on various

header fields

 Controller - manages schedules and indicates when

specific events should happen

 Storage - manages storage and release of bundles for

which a forward link is not immediately available

6

 Applications - applications can bind to the fabric directly

and register themselves for bundle traffic

4.3 Interconnect

These components are realized as individual processes, but

they do not use the bundle protocol when communicating

internally. Instead, they rely on a custom lightweight

message fabric built on top of Ethernet. Netmap's software

VALE switch[22] is used as a local interconnect when

multiple HDTN processes are running on a single host.

When clustered operation (e.g. operation across multiple

hosts) is desired, physical interfaces can be bound to the

HDTN processes directly. When hybrid modes of operation

are desired (e.g. two ingress processes on one system

communicating with a switch operating on another), physical

interfaces may be bound to virtual interfaces on a specific

instance of VALE.

A lightweight discovery protocol runs between all connected

components, allowing multiple instances of the same

component to spin up / spin down as needed to address load.

This allows HDTN to be deployed and extended

incrementally as load begins to catch up to the capabilities of

the system. Further, individual components may be replaced

by specific hardware components (e.g. ASICs and / or

FPGAs) in order to achieve SWaP numbers that are realistic

for modern spacecraft to support: this effort largely remains

future work at present.

Netmap's performance has been acceptable to date: initial

testing has shown performance in the range of roughly 70

Gbps (at roughly 8 million messages per second) when

pushing messages between processes connected to one

another through a single instance of the VALE software

switch. Netmap's own packet generator can achieve

throughput that is substantially higher than this on identical

hardware, so further tuning is expected to improve

performance to a degree. The system is heavily memory

constrained, however, as data is copied between processes in

the current configuration.

Note that no data is shared directly between any two (or

more) processes. Instead, necessary data is replicated

between processes as needed - this configuration requires

substantial care with respect to how configuration is

propagated to the nodes and updated, but yields benefits to

the speed and scalability that can be achieved: since each

element operates completely independently of the rest, many

bottlenecks can be addressed by e.g. spinning up additional

instances of elements and load-balancing across all of them.

Tuning the number of instances of each element is a manual

process, but the discovery and automatic registration

alleviates the associated configuration burden associated with

this.

4.4 System Flow

Bundles arrive at the HDTN system through an ingress

process. The ingress process examines the headers of a

bundle and transforms it into an intermediate format (IF). To

facilitate switching and routing within a specific HDTN, the

system relies on label-switching. Upon reception of a bundle,

the ingress element examines aspects of the bundle and

translates it to a specific forwarding equivalence class (FEC)

by assigning it a numeric label. This label is then used to

guide the bundle's movement through other elements of the

system. Once this label has been assigned, the bundle is sent

to the switch element of the system.

The switch keeps a schedule internally that describes when

specific links will be available and what the rates are.

Schedules are managed on a per-label basis: any traffic that is

labeled in a specific way will share a rate allocation and

logical path to a specific destination. As such, the switch's

purpose is to examine the label of the incoming traffic and

evaluate, based on its label, what to do with it. This

determination occurs through the application of a series of

rules that are contained in a table - the process is similar to

what occurs in an SDN-enabled switch, for example. In

general, the switch can choose between four discrete actions:

 Deliver: the bundle is forwarded to a specific local

endpoint when an application has registered for such

 Drop: the bundle is dropped

 Forward: the bundle is immediately forwarded to the

next hop in its assigned path

 Store: the bundle is sent to a locally attached storage

device for later retrieval

In the delivery case, the bundle is sent to an application.

Deliver can either provide metadata only (e.g. data related to

all bundle headers that the switch knows how to process), or

the entirety of the bundle. Metadata-only is useful for cases

where applications are being developed to enforce network-

level policy (e.g. basic firewalls): the bundle payload can be

held in storage while the processing application makes a

decision based on the metadata provided. Complete delivery,

on the other hand, is used to support more traditional

applications that need to operate on bundle data directly.

In the forward case, the bundle is sent to an egress

component for further processing. Upon arrival, this

component evaluates the IF headers and determines how best

to forward the bundle. In the case that direct interaction with

a remote DTN endpoint is desired, the bundle protocol is

used to directly send the bundle to its destination over, for

example, traditional CCSDS protocols or the Internet

Protocol (IP). Alternatively, the internal label can be

translated into a conventional Multi-Protocol Label

Switching stack for direct transport between instances of

HDTN: MPLS has the benefit of being supported directly in

hardware on many existing switching / routing chipsets, and

generally has excellent support for making guarantees related

to latency and rate allocations per-FEC.

7

For the drop case, the bundle is silently discarded. For space

applications, this is an option only in limited cases: scientific

data is extremely valuable, and thus extreme care should be

taken to ensure that it is preserved and delivered as

appropriate. Still, in certain situations, data may need to be

removed from the network. Note that the switch supports

modes of operation where bundle lifetimes are either

enforced or ignored, and the bundle age block is directly

supported as well.

Finally, the store action is one of the most complex. In

general, the switching element keeps a local buffer (e.g. in

system RAM) that it can use to store data for a specific label:

this is intended for short-term buffering in the event of a link

disruption. Once bundle traffic in a specific FEC has

exceeded a quota (or the available buffer in the switch has

been exhausted), both existing and future traffic for the FEC

are forwarded to a storage element. This element acts as a

kind of network-attached storage device, and possesses the

capability to, when commanded, release data to the egress

element at a specified rate. This element is also responsible

for enforcing quotas, which are assigned and managed on a

per-FEC basis.

The final element of HDTN discussed here is the egress

element. This element accepts traffic from other HDTN

components, evaluates the FEC and determines an

appropriate destination, repackages the data into its original

bundle format (if needed), and finally forwards the traffic as

appropriate. The egress element includes support for various

approaches to rate control, including support for specific

inter-frame gap times when operating over certain protocols

(e.g. UDP and LTP). Support for UDP/IP is stable, and

support for TCP/IP and LTP/IP are far more experimental:

they have been demonstrated, but should be considered works

in progress.

There are other elements of HDTN (e.g. command and

control interfaces) that are not discussed here. Additional

detail is expected to be published in a future paper on the

subject.

5 Test Discussion

The HDTN test bed consists of seven physical nodes running

on Debian 10 for x86-64 architectures (amd64). UDP is used

for the DTN CL since it is common among all three

implementations, although it is planned to support additional

CLs in the future. Considering the IPN naming (ipn:x.y),

the service number y is either a 1 to indicate a data ingress

service or a 2 to indicates a data egress service.

The desired data rates as shown in Figure 3 are controlled

with Linux traffic control (tc). Bash scripts are used to

automate and schedule the flow of data through the network.

Each ION node (nodes 1-3) continuously listens for bundles

using bprecvfile, which receives bundles and writes the

payload file to disk. The ION nodes then repeatedly attempt

to send 1 kB files using bpsendfile to the bplib nodes (nodes

5-7) through HDTN (node 4), as shown in Table 2. Each

sending node will attempt to send the percentage of traffic

shown in Table 2, however bundles will only actually be able

to be forwarded when there are contacts scheduled between

the sending node and node 4 according to ION's contact plan.

HDTN's switch process will determine the appropriate node

to deliver the bundle to based on the destination node and

service numbers in the bundle's primary block.

Receiving Nodes % of Traffic

Sending Node 5 6 7

1 (1 Gbps) 90 0 10

2 (1 Gbps) 0 90 10

3 (1 Gbps) 40 40 20

Table 2 ION source traffic summary

 Receiving Nodes % of Traffic

Sending Node 1 2 3

5 (1 Gbps) 100 0 0

6 (1 Gbps) 0 100 0

3 (1 Gbps) 0 0 100

Table 3 bplib source traffic summary

Since bplib does not follow a contact schedule in the same

manner that ION does, the results of the orbital analysis were

used to generate a series of transmission start times and

durations. These contact times were then used in a Lua script

which will create a new bundle writer thread for bplib, and

attempt to continuously send a 1 kB file to the corresponding

ION node, with a 0.03 second delay between iterations to

approximately control the rate of traffic to the ION nodes.

Table 3 shows the percentage of traffic sent from each bplib

node (nodes 5-7) to ION (nodes 1-3) through HDTN (node

4). Each node also has a bundle reader thread which is always

listening for bundles. An MD5 checksum is calculated for

each file received and the total number of bundles received,

correct bundles, and incorrect bundles are logged.

5.1 Networking Test Results

 Bplib does not support extension block 0x05 (Previous

Hop Block) or 0x14 (Bundle Age Extension Block) used

by ION. The blocks do not cause any problems, and are

simply skipped and a warning message is printed.

 In order to send larger volumes of data at rates of up to

approximately 480 Mbps, two constants needed to be

increased in bplib. In bplib.c

BP_DEFAULT_ACTIVE_TABLE_SIZE and in

bplib_store\file.c, FILE_DATA_CACHE_SIZE were

both increased from 16384 to 1000000. In addition,

bundles were set to expire after one second so that

storage queues would be cleared out faster.

 There were several queuing and storage issues

experienced in bplib and ION when attempting to

transmit and receive data at higher rates. This was an

initial round of preliminary testing, and additional work

must be done to understand the appropriate configuration

8

settings within ION and bplib, as well as the test bed

automation scripts.

 The ION working memory (wmSize) and heap sizes

(heapWords) were increased from the default to

1000000000 in order to allow for higher data rate testing.

 Additional network statistics collection could be added

to the HDTN test set up to facilitate troubleshooting.

In general, HDTN did not have any issues handling the rates

and number of bundles sent from the ION and bplib nodes. A

previous paper[8] showed rates of 10,000+bundles/s were

possible even for bundles less than 512 bytes large. Here,

data transmission rates were intentionally constrained for this

test so that initial troubleshooting of all of the software

components could take place. A small sleep period of a few

milliseconds was placed in the loop of each script for

automating the transmission of bundles. We show that HDTN

is capable of processing hundreds of bundles per second and

additional high speed testing is underway.

6 Conclusion

In this paper, we described recent progress on a High-rate

DTN (HDTN). We described the design and flow of bundles

through our system, highlighting key aspects of its design and

implementation to date. Further, we demonstrated the use of

our implementation in a realistic scenario. We implemented

this scenario in a lab setting, and sent many gigabytes of data

over the course of a day of continuous testing. In the course

of this testing, we demonstrated that our system was able to

operate as intended, and that all implementations of the

Bundle Protocol (ours included) used for this test were able

to successfully inter-operate with one another.

To truly stress HDTN and bplib, much larger scale tests

(more ION nodes) must be used. This will be the focus of an

upcoming publication, however given bplib-HDTN

performance, it is very promising.

7 Acknowledgements

The authors wish to acknowledge the contributions of Dr.

Don Cornwell and Gary Pease for their continuing support,

and Tom Basciano, Scott Burleigh, Marian Cronin, Dave

Israel, Penny Roberts, and Jonathan Wilmot for everything

from technical support to programmatic help to unwavering

encouragement and patience.

8 References

[1] Murphy, D. V., Kansky, J. E., Grein, M. E., Schulein, et al.,
“LLCD operations using the Lunar Lasercom Ground
Terminal,” Free-Space Laser Communication and

Atmospheric Propagation XXVI, Vol. 8971, 10. International

Society for Optics and Photonics, SPIE, 2014, pp. 250 – 256.

[2] Israel, D. J., Edwards, B. L., and Staren, J. W., “Laser
Communications Relay Demonstration (LCRD) update and
the path towards optical relay operations,” 2017 IEEE
Aerospace Conference, 2017, pp. 1–6.
[3] Biswas, A., Srinivasan, M., Rogalin, R., Piazzolla, S., et al.,
“Status of NASA’s deep space optical communication
technology demonstration,” 2017 IEEEInternational
Conference on Space Optical Systems and Applications
(ICSOS), 2017, pp. 23–27.
[4] Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., et al.,
“RFC 4838, Delay-Tolerant Networking Architecture,” IETF
Network Working Group, 2007.
[5] Scott, K., and Burleigh, S., “RFC 5050, Bundle Protocol
Specification,” IETF Network Working Group, 2007.
[6] Foust, J., and Foust, J., “TDRS launch marks end of an
era,” Aug 2017.
[7] Araniti, G., Bezirgiannidis, N., Birrane, E., et al., “Contact
graph routing in DTN space networks: overview,
enhancements and performance,” IEEE Communications
Magazine, Vol. 53, No. 3, 2015, pp. 38–46.
[8] Hylton, A., Raible, D., and Clark, G., “A Delay Tolerant
Networking-Based Approach to a High Data Rate Architecture
for Spacecraft,” 2019 IEEE Aerospace Conference, 2019.
[9] Muri, P., and McNair, J., “A performance comparison of
DTN protocols for high delay optical channels,” 2013, pp.
183–188.
 [10] Schildt, S., Morgenroth, J., Pöttner, et al., “IBR-DTN: A
lightweight, modular and highly portable Bundle
Protocol implementation,” Electronic Communications of the
EASST, Vol. 37, 2011..
[11] Clare, L., Burleigh, S., and Scott, K., “Endpoint naming
for space delay / Disruption Tolerant Networking,” 2010 IEEE
Aerospace Conference, 2010, pp. 1–10.
[12] Joe-Paul Swinski, e. a., “bplib,”
https://github.com/nasa/bplib, 2018.
[13] Burleigh, S., “Interplanetary Overlay Network: An
Implementation of the DTN Bundle Protocol,” 2007 4th IEEE
Consumer Communications and Networking Conference,
2007, pp. 222–226.
[14] Goddard Space Flight Center, “core Flight System,”
https://cfs.gsfc.nasa.gov/, accessed September 9, 2019.
[15] Goddard Space Flight Center, “Integrated Test and
Operations System (ITOS),”
https://itos.gsfc.nasa.gov/index.php, accessed September 9,
2019.
[16] Ball Aerospace, “COSMOS,”
https://www.ball.com/aerospace/programs/cosmos, accessed
September 9, 2019.
[17] Marshall Space Flight Center, “Telescience Resource
Kit,” https://trek.msfc.nasa.gov/, accessed September 9,
2019.
[18] Willman, B., Davidson, S., Pohlchuck, B., Pitts, L., and
Schlesinger, A., “DTN Leads the International Space Station
Payload Operation in Advanced Exploration,” NASA STI,
2016.
[19] Seas, A., Gonnsen, Z., and Yarnall, T., “ILLUMA-T
(Integrated LCRD LEO User Modem and Amplifier Terminal)
Payload,” 2018. URL
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/2018000
2846.pdf.
[20] Edwards, B. L., and Israel, D. J., Update on NASA’s
Laser Communications Relay Demonstration Project, 2018.
[21] 1897, L. D. G. C. N., MPLS Fundamentals, Cisco Press,
2007.
[22] Rizzo, L., “Netmap,” https://github.com/luigirizzo/netmap,
2012.

