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Key Points: 39 

 We review the strengths and limitations of space-based observational capabilities for 40 

several important Arctic-Boreal Zone components. 41 

 We make recommendations for improving the current Arctic-Boreal Zone observing 42 

network and discuss how to build a more comprehensive one.  43 
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Abstract. Observations taken over the last few decades indicate that dramatic changes are 44 

occurring in the Arctic-Boreal Zone (ABZ), which are having significant impacts on ABZ 45 

inhabitants, infrastructure, flora and fauna, and economies. While suitable for detecting overall 46 

change, the current capability is inadequate for systematic monitoring and for improving 47 

process-based and large-scale understanding of the integrated components of the ABZ , which 48 

includes the cryosphere, biosphere, hydrosphere, and atmosphere. Such knowledge will lead to 49 

improvements in Earth system models, enabling more accurate prediction of future changes and 50 

development of informed adaptation and mitigation strategies. In this article, we review the 51 

strengths and limitations of current space-based observational capabilities for several important 52 

ABZ components and make recommendations for improving upon these current capabilities. We 53 

recommend an interdisciplinary and stepwise approach to develop a comprehensive ABZ 54 

Observing Network (ABZ-ON), beginning with an initial focus on observing networks designed 55 

to gain process-based understanding for individual ABZ components and systems that can then 56 

serve as the building blocks for a comprehensive ABZ-ON. 57 

 58 

Plain Language Summary. While numerous scientific datasets of the Arctic Boreal Zone 59 

(ABZ) confirm that this region is rapidly changing, the current observational suite is insufficient 60 

to understand many of the complex interactions between components of the ABZ, which 61 

includes the cryosphere, biosphere, hydrosphere, and atmosphere. Such a process-based 62 

understanding is necessary for the development of informed mitigation and adaptation response 63 

strategies and the prediction of future change. We review the strengths and limitations of the 64 

current suite of observations from satellites, which have the unique advantage of spatial coverage 65 

as compared to observations collected from near-surface instruments. We make 66 
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recommendations for improving satellite observations of individual components of the ABZ and 67 

recommend an interdisciplinary and stepwise approach to develop a comprehensive ABZ 68 

Observing Network (ABZ-ON). 69 
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1 Introduction 105 

Numerous Earth science observations (e.g., surface temperature, sea ice extent and 106 

thickness, snow cover extent and seasonality, ocean color, fire regimes, and ice sheet mass) 107 

indicate long-term changes are occurring in the Arctic-Boreal Zone (ABZ; e.g., Comiso and 108 

Hall, 2014; Osborne et al., 2018), a region that lies north of approximately 50°N and includes the 109 

boreal, sub-Arctic, and Arctic climate zones (Figure 1). The Arctic Monitoring and Assessment 110 

Programme’s (AMAP) Snow, Water, Ice and Permafrost in the Arctic (SWIPA) assessment 111 

(AMAP, 2017), Box et al. (2019) and others summarize these observed long-term ABZ changes, 112 

which are having profound and complex effects on ABZ inhabitants and their welfare, including 113 

flora/fauna, and economies (e.g., Larsen et al., 2014; Arctic Council, 2016; USGCRP, 2018). 114 

Arctic surface temperatures have warmed faster than the Earth as a whole over recent decades 115 

(Comiso and Hall, 2014; USGCRP, 2018; Overland et al., 2018) and the Arctic has experienced 116 

record high surface air temperatures in the last few years (e.g., Cullather et al., 2016a; Boisvert et 117 

al., 2016; Osborne et al., 2018), which led to record low winter sea ice extent (Ricker et al., 118 

2017). Change can occur more rapidly in the ABZ than in most other world regions, a 119 

phenomenon known as “polar amplification” (e.g., Masson-Delmotte et al., 2013 and references 120 

therein; Moon et al., 2019 and references therein). For example, Pistone et al (2014) estimated 121 

that the albedo forcing associated with changes in Arctic sea ice over the last three decades is 122 

25% as large globally as the direct radiative forcing from increased carbon dioxide over the same 123 

period. Polar amplification has mainly been attributed to ice-albedo feedback (e.g., Masson-124 

Delmotte et al., 2013 and references therein), which is consistent with satellite observations that 125 

show a strong correlation between changes in sea ice extent and surface air temperature in polar 126 

regions (e.g., Comiso et al., 2017; Oyle et al., 2019). However, there are complex and often 127 
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poorly understood interactions between the cryosphere, biosphere, hydrosphere, and atmosphere 128 

of the ABZ (Figure 2; e.g., McGuire et al., 2006; Ciais et al., 2013; Hinzman et al., 2013; Bhatt 129 

et al., 2014; Parmentier et al., 2017ab), which hamper our ability to predict future ABZ changes 130 

(e.g., Serreze and Barry, 2014). 131 

Deficiencies in our understanding of complex interactions between components of the 132 

ABZ will also hamper the development of informed mitigation and adaptation response 133 

strategies (e.g., Arctic Council, 2016; AMAP, 2017; Arctic Science Ministerial, 2018). Using the 134 

economy as an example, the benefits (depending on one’s perspective) of a warmer ABZ may 135 

include increased access to minerals, oil and natural gas, fisheries, and trans-polar shipping 136 

routes (e.g., Northwest and Northeast passages) to better connect country economies. 137 

Disadvantages may include increased wildfires, permafrost thaw, and coastal erosion leading to 138 

damage to infrastructure, such as buildings, roads, pipelines, ice roads, runways, and ports (e.g., 139 

Melvin et al., 2017; Moon et al., 2019). Large uncertainties may also restrict and slow 140 

infrastructure development, which is essential for ABZ economic development. Poor predictive 141 

capabilities may result in an inability to properly predict teleconnections and longer-term 142 

changes. For example, severe weather in the mid-latitudes may be influenced as changes in 143 

thermodynamic heating associated with sea ice loss influence the position of the jet stream (e.g., 144 

Cohen et al., 2014; Francis and Vavrus, 2015; Handorf et al., 2015; Overland and Wang, 2018). 145 

Assimilation of sea ice observations can lead to more skillful forecasts of ice extent several 146 

months in advance (e.g. Blockley and Peterson, 2018). Over longer timescales, improved process 147 

understanding is needed to predict rapid and irreversible changes (e.g., unexpectedly rapid 148 

carbon release from thawing of the vast ABZ soil reservoirs; National Research Council, 2013, 149 

2014a; Treat and Frolking, 2013; Schuur et al., 2015; Schuur et al., 2018) that can exacerbate 150 
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global warming, possibly having unmanageably large, global economic costs and national 151 

security implications (e.g., Hope and Schaefer, 2016). Consequently, the effects of observed and 152 

potential changes in the ABZ have captured the attention of the world, leading to efforts, such as 153 

the formation of the intergovernmental Arctic Council in 1996, for ABZ countries to coordinate 154 

their individual research efforts (e.g., as summarized in Arctic Science Ministerial, 2018) and 155 

cooperate on common ABZ issues. 156 

 157 

While the past and current observing networks of instruments from orbital (i.e., satellite) 158 

and suborbital (e.g., surface, aircraft, Unmanned Aerial System (UAS), balloon, boat) platforms 159 

confirm that the ABZ is changing (e.g., Box et al., 2019), a more comprehensive and integrated 160 

ABZ observing network (ABZ-ON) of orbital and suborbital observations would improve 161 

scientific understanding of key processes. Many atmospheric general circulation models 162 

(AGCMs) and atmosphere-ocean general circulation models (AOGCMs) are evolving into Earth 163 

system models by simulating a more diverse set of interactive processes, incorporating such 164 

aspects as ice sheet dynamics, biogeochemical cycles, permafrost thaw, vegetation change, and 165 

wetland dynamics (Flato et al., 2013). A well-developed ABZ-ON would provide the data 166 

necessary for a comprehensive evaluation of Earth system model performance (e.g., National 167 

Research Council, 2014a) and identifying areas where further improvements are needed (e.g., 168 

Koenigk et al., 2014; Loranty et al., 2014). It would also support the establishment of long-term, 169 

multi-instrument records of ABZ change (Comiso and Hall, 2014). It would have the added 170 

benefit of providing a crucial baseline of the present state of the ABZ, against which to compare 171 

future change. Very likely, there will be additional economic benefit of ABZ-ON data for 172 

commercial and geostrategy applications. 173 
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Both orbital and suborbital platforms face unique challenges in the ABZ. Existing 174 

suborbital networks are sparse (e.g., Metcalfe et al., 2018) and expensive to operate in the often 175 

inaccessible and inhospitable environment (National Research Council, 2003). However limited, 176 

these suborbital data have been invaluable for monitoring ABZ change, filling some temporal 177 

gaps in satellite coverage, affording detail unobtainable from space, providing the data necessary 178 

for validation and interpretation of satellite data, and obtaining a process-based understanding of 179 

the ABZ. Earth-observing satellites uniquely provide far more complete spatial coverage than 180 

suborbital networks. They are predominately managed by government agencies, including the 181 

U.S. National Aeronautics and Space Administration (NASA), U.S. NOAA, European Space 182 

Agency (ESA), and Japan Aerospace Exploration Agency (JAXA). However, data collection is 183 

challenging as the ABZ is characterized by persistent cloudiness, lack of sunlight for months at a 184 

time, sea ice, snow and ice covered land surfaces, highly variable air pollution that affects ocean 185 

retrievals, and poor thermal contrast between the surface and the air above. Therefore, a 186 

complete observing network for the ABZ and key processes would require complementary data 187 

collected from space, air, and on the ground (e.g., National Research Council, 2014a) and further 188 

satellite and instrument technology development. In addition, a comprehensive suborbital 189 

component of an ABZ-ON would provide the crucial data necessary to develop satellite retrieval 190 

algorithms and validate satellite observations. Coordination of the establishment of cross-191 

discipline, suborbital ABZ-ON stations and aircraft campaigns would have the benefit of saving 192 

operating costs and facilitate information-sharing (e.g., AMAP, 2017). It is important to begin 193 

the development of a comprehensive ABZ-ON as the design and deployment of orbital and 194 

suborbital networks take time. This development would benefit from observing system 195 
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simulation experiments (OSSEs) as well as any new high-quality observations, given the paucity 196 

of current observations for most components of the ABZ. 197 

In this article, we review the strengths and limitations of current space-based 198 

observational capabilities for many of the important components of the ABZ and propose some 199 

observational needs, which should be considered in planning future space-based platforms. This 200 

review is not meant to be exhaustive, to explicitly cover all ABZ components or satellite data 201 

types (e.g., observations relevant to ABZ weather prediction), or to recommend a comprehensive 202 

suborbital component of an ABZ-ON. Instead, it is meant to contribute to the ongoing efforts, 203 

such as the Integrated Arctic Observation System (INTAROS), the Arctic Research Consortium 204 

of the U.S. (ARCUS) and the International Arctic Research Center (IARC), to develop a 205 

comprehensive ABZ-ON strategy. Other informative reviews and resources on various aspects of 206 

the use of satellite data for observing ABZ change and processes include “Remote Sensing of the 207 

Cryosphere” (Tedesco - Ed.; 2015), which provides overviews of remote sensing capabilities 208 

including chapters on properties of snow, ice sheets, sea ice, and permafrost, “The Arctic 209 

Climate System” (Serreze and Barry, 2014), and several reports by the U.S. National Research 210 

Council, including ones on observing Arctic change (National Research Council, 2014a) and 211 

specific disciplines, such as permafrost research (National Research Council, 2014b). 212 

We present the historical and current state of satellite observations of individual ABZ 213 

components (e.g., permafrost, land ice, ocean temperature) and discuss observational needs 214 

going forward. This article begins with surface temperature (Section 2), among the most 215 

important drivers of ABZ change, and follows with discussions on the ocean (Section 3: sea ice, 216 

salinity, temperature, circulation, biology and biogeochemistry), land (Section 4: land ice, snow, 217 

permafrost, vegetation, wildfires, and wetlands), and atmosphere (Section 5: short-lived 218 
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pollutants, greenhouse gases, clouds, and radiation). The sections are organized around the 219 

following questions for the particular variable discussed in the section: Why is observing that 220 

ABZ variable important? What suborbital observations do we have of the historical state of the 221 

ABZ variable? What is the historical and current state of satellite observations of that variable in 222 

the ABZ? What important properties are we currently missing in the ABZ satellite observing 223 

network? What are recommendations for an improved, more comprehensive observing strategy 224 

(orbital and suborbital) going forward? One section that strays from this format is Section 6 on 225 

an innovative orbit option for remote sensing of the ABZ.  226 

In Section 7, we present our recommendations for prioritizing new satellite observations 227 

of the ABZ. In Section 7.1, we make general recommendations for satellite observing strategies, 228 

and in Section 7.2, we discuss specific observational priorities, which are summarized in Table 1, 229 

for both orbital and suborbital observations. The focus of our suborbital observational priorities 230 

is on the support of the interpretation and validation of satellite data and not necessarily on the 231 

development of a comprehensive suborbital component of an ABZ-ON. We prioritize satellite 232 

observations with designations of “Most Important”, “Very Important”, and “Important” based 233 

on the following considerations, which are further discussed in Section 7.2: (i) “Most Important” 234 

observational needs are ones for which the variable is poorly observed currently, and the current 235 

process-based understanding of the factors that determine that variable’s trends and variations 236 

are poorly known (e.g., Hinzman et al., 2013); (ii) “Very Important” observational needs are 237 

ones for which the variable is insufficiently observed, and more or better observations are 238 

necessary to advance process-based and/or large-scale understanding related to that variable; (iii) 239 

“Important” observational needs are ones for which the current and anticipated future 240 

observational suite for that variable is adequate in comparison to those for other variables. In 241 
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Section 7.3, we discuss considerations for the development of a comprehensive and integrated 242 

ABZ-ON and make a recommendation.  243 

Finally, in this article, we mention numerous satellite instruments and suborbital 244 

networks. We recommend the reader to the Committee on Earth Observation Satellites (CEOS) 245 

database (http://database.eohandbook.com/) for more detailed information on satellite instrument 246 

specifications, history and observations. In addition, the CEOS database website allows the user 247 

to search for measurements of specific variables (e.g., ocean salinity, surface albedo, and 248 

vegetation). Listings of existing suborbital networks and searchable databases are also available. 249 

For example, the Sustain Arctic Observing Networks program (SAON; 250 

https://www.arcticobserving.org/; IDA Science and Technology Policy Institute and Sustaining 251 

Arctic Observing Networks, 2017) hosts an interactive map that allows the user to search for 252 

suborbital networks, such as by region and discipline, and to locate network information, 253 

including data access. 254 

2 Surface Temperature: A Driver of ABZ Change (Josefino C. Comiso) 255 

Among the most important parameters needed to understand changes in the ABZ is 256 

surface temperature as it controls much of the physical and radiative characteristics of the Earth’s 257 

surface, especially in areas covered by snow, ice or permafrost. For example, surface 258 

temperature dictates the onset of melt or freeze-up as well as duration of melt or freeze-up in 259 

these areas. In this regard, it is the factor that determines the residence time of snow and how 260 

thick the snow can be during winter and how thick the sea ice cover can become before the 261 

spring melt begins. Together with surface albedo, it also controls the amount of energy, 262 

including turbulent, latent and sensible heat fluxes, that is transferred between the surface and the 263 

atmosphere. 264 

http://database.eohandbook.com/
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Satellite and in situ surface temperature data show that the rate of warming in the Arctic 265 

since 1981 is more than three times higher than the global rate (Comiso and Hall, 2014). This is 266 

caused in part by ice-albedo feedback which is associated with the decline of high albedo 267 

surfaces, such as sea ice and snow in the region (Holland and Bitz, 2003; Stuecker et al., 2018). 268 

The amplification in warming is consistent with the observed decline in the Arctic perennial ice 269 

cover which went through a dramatic retreat in 2007 when the average sea surface temperatures 270 

in the Beaufort Sea and Chukchi Sea regions had record high values (Shibata et al., 2010; 271 

Kashiwase et al., 2017). An increasing trend in solar heat input to the upper Arctic Ocean has 272 

also been observed and attributed to the rapid decline of the sea ice cover (Perovich et al., 2007). 273 

The key tool used for measuring surface temperature from space has been thermal 274 

infrared sensors (around 10 to 14 µm). Examples of such sensors include the Nimbus-7/Thermal 275 

Humidity Infrared Radiometer (THIR) launched in 1978, NOAA/Advanced Very High 276 

Resolution Radiometer (AVHRR), which has been providing continuous global data since 1981, 277 

the ESA/Advanced Along Track Scanning Radiometer (AATSR) launched in 2002, Earth 278 

Observing System (EOS)/Terra and EOS/Aqua Moderate Resolution Imaging Spectroradiometer 279 

(MODIS) launched in 1999 and 2002, respectively, and ESA/ENVISAT/Medium Resolution 280 

Imaging Spectrometer (MERIS) launched in 2002. For time series studies, the sensor that has 281 

been used the most is the AVHRR sensor because of comprehensive coverage and the 282 

availability of global and continuous data since August 1981. There have been many challenges, 283 

however, associated with the creation of time series of global surface temperature data from the 284 

AVHRR sensor series. For example, since the expected lifetime of each sensor is about five 285 

years, a long data record is possible only if similar and compatible sensors are launched one after 286 

another. Although the AVHRR series was designed with that purpose in mind, the different 287 
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sensors have different calibration and they tend to degrade with time. Furthermore, there were no 288 

overlaps in coverage to enable inter-calibration of the different sensors, and, although the system 289 

is multispectral, the set of channels available are sometimes not effective for discriminating 290 

clouds from snow-covered surfaces.  291 

There were many studies made to overcome these problems, the effectiveness of which 292 

varied with season, surface condition and location (Steffen et al., 1992; Key and Haefliger, 1992; 293 

Simpson and Yhann, 1994; Comiso, 2003). One of the key sources of error has been the inability 294 

to accurately mask out cloud-covered areas, which is especially difficult in snow-covered regions 295 

because of the lack of contrast both in reflected shortwave and emitted longwave. To minimize 296 

errors, spatial techniques have been applied, such as the use of daily differencing of data 297 

assuming that the cloud cover changes from one day to the next. Statistical techniques were also 298 

used assuming that the statistics of cloud-covered areas are different from those not covered by 299 

clouds (Comiso, 2003). To account for the lack of overlapping data between sensors and the 300 

apparent degradation of sensors, the calibrations of the different sensors were adjusted for 301 

improved consistency through the use of high quality in situ data. Since in situ data usually 302 

represent 2 m air temperatures, the 2 m data are first converted to surface temperature data on a 303 

monthly basis using coefficients from regression analysis of 2 m air and surface data from year-304 

long measurements (i.e., Perovich et al., 2003) before they were used to improve the temporal 305 

consistency of AVHRR data. The uncertainties associated with retrievals have been estimated to 306 

be generally about 2 to 3
o
C (Steffen et al., 1992). However, such estimates are usually based on 307 

comparative analysis with in situ data and more recent studies using aircraft thermal infrared data 308 

indicate that the accuracies can be as high as 1.5
o
C. Also, the spatial distribution of temperatures 309 

over land, ice sheets and sea ice as observed by AVHRR is represented more accurately than 310 
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those provided by reanalysis data, especially in areas where there is a paucity of in situ data 311 

(Comiso, 2003). 312 

Among the most important sources of uncertainty in temperature data is the ability to 313 

identify observations under clear skies conditions. Some techniques used for cloud masking of 314 

AVHRR data assume that the temperature of clouds is lower than that of the surface (e.g., 315 

Comiso, 2003). This is generally the case, but not always, because of the effect of temperature 316 

inversion, which is a common feature in the Arctic during winter. During inversion, the 317 

temperature of the troposphere is higher than that of the surface making it more difficult to 318 

discriminate cloud-covered areas from cloud-free ones. The detection of inversion has been 319 

made possible by instruments like the Atmospheric Infrared Sounder (AIRS) on board the 320 

EOS/Aqua satellite. Refinements in the techniques for cloud detection that make use of this 321 

capability to detect the occurrences of inversion would lead to more accurate determination of 322 

surface temperature. 323 

Plots of monthly averaged surface temperatures as retrieved from AVHRR data at high 324 

latitude regions (>60
o
N) in the Northern Hemisphere are shown in Figure 3ab for land and sea 325 

ice, respectively. To illustrate how the time series is put together, data from the different 326 

NOAA/AVHRR sensors (NOAA-7 to NOAA-19) are indicated in different colors. It is apparent 327 

that land surface temperatures are more seasonal than those over sea ice in part because the data 328 

from land include those from glaciers and the Greenland ice sheet, which experience extremely 329 

low temperatures in winter. To gain insight into the yearly variability and trends, monthly 330 

surface temperature anomalies are presented in Figure 3cd, for land and sea ice, respectively. 331 

The monthly anomalies were derived by using averages for each month from 1981 to the present 332 

as climatological values that are subtracted from the monthly data. It is apparent that the 333 
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temporal distribution of anomalies over land is similar to those over sea ice. The patterns of dips 334 

and peaks are not identical but they occur at approximately the same time indicating that changes 335 

over land areas are coherent with changes over the sea ice covered regions. The trends in 336 

temperature are both positive but slightly different with the trend over land being 0.38 ± 337 

0.03
o
C/decade while the trend over sea ice is about 0.29 ± 0.04

o
C/decade. The same dataset has 338 

also been used to provide a similar record of sea surface temperature (SST). Results from 339 

analysis of these data (not shown) indicate a trend in SST of about 0.18
o
C/decade. It should be 340 

noted, however, that the spatial distribution of the trend (not shown) is not uniform since there 341 

are some areas where the surface temperature trend is near zero or even negative as in parts of 342 

Siberia and the Bering Sea. 343 

When a long-term record is not required, there are other sensors that provide more 344 

accurate surface temperatures than AVHRR data. For example, continuous and well calibrated 345 

data are available from EOS/Terra and EOS/Aqua MODIS that have several (36) channels, many 346 

of which can be used for atmospheric correction and cloud masking. Such data have been used to 347 

create a climate-quality data record of surface temperature over Greenland (Hall et al., 2012; 348 

Hall et al., 2018). Similar data sets are also available from ESA/ENVISAT/MERIS and AATSR 349 

from 2003 to 2011. The AATSR, and a similar system called Sea and Land Surface Temperature 350 

Radiometer (SLSTR) on board Sentinel 3 launched in 2016, makes a couple of measurements for 351 

each data point at two different incidence angles for improved atmospheric corrections. It is an 352 

especially attractive system and has the potential of providing the most accurate measurement. 353 

Although lacking in global coverage, there are also sensors like NASA’s Terra Advanced 354 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Landsat 8, and Satellite 355 

Pour l’Observation de la Terre (SPOT) that provide high resolution data (of about 30 m). SST 356 
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can also be derived using JAXA’s Advanced Microwave Scanning Radiometer for the Earth 357 

Observing System (AMSR-E) on NASA’s Aqua satellite, and JAXA’s AMSR2 on Japan’s 358 

Global Change Observation Mission – Water (GCOM-W) satellite, which is a passive 359 

microwave sensor that is able to make continuous measurements even during cloudy conditions. 360 

Such data are available from 2003 to 2011 and from 2012 to the present, but the resolution is 361 

relatively coarse at about 50 km. 362 

Overall, global surface temperatures, including those in the ABZ, can be measured from 363 

space with reasonable accuracy during clear-sky conditions using thermal infrared sensors. The 364 

use of the same type of sensor, like AVHRR, over a long term period would be ideal for 365 

evaluating long term changes. But in the case of AVHRR, there are shortcomings as indicated 366 

previously and the data should be combined with the newer and more capable systems, like 367 

MODIS, MERIS, AATSR and SLSTRL, for improved accuracy, better temporal and spatial 368 

resolution and more comprehensive coverage. Higher resolution systems, like Landsat 8 and 369 

ASTER, should also be used, especially for regional and mesoscale studies. Satellite data should 370 

be used to supplement available in situ data sets from meteorological stations and other sources 371 

in the ABZ (Rigor et al., 2000). In this regard, studies should take advantage of facilities, like the 372 

U.S. Department of Defense Atmospheric Radiation Measurement (ARM) facility in Barrow, 373 

Alaska which provides very comprehensive atmospheric and surface measurements, including 374 

that of temperature. Such facilities provide excellent validation data for satellite temperatures, 375 

and in addition, can collect extensive data of cloud and radiation processes that enable improved 376 

understanding of the climate system in the region and proper interpretation of satellite surface 377 

temperature data. 378 
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Table 1 summarizes our recommendations for improving the orbital and suborbital 379 

observations of surface temperature. 380 

3 Observing Properties of the Arctic Ocean 381 

In this section, we discuss the 1) historical and current state of observations of the 382 

properties of the Arctic Ocean, including sea ice, salinity, temperature, circulation and ocean 383 

productivity, and 2) observational needs going forward, which are summarized in Table 1. 384 

3.1 Arctic Sea Ice (Claire L. Parkinson)  385 

Sea ice is a major component of the Arctic climate system, reflecting solar radiation, 386 

restricting exchanges of heat, mass, and momentum between the ocean and the atmosphere, and 387 

affecting ocean downwelling and circulation through such processes as expelling salt as the ice 388 

forms and ages and releasing relatively fresh water as the ice melts. A mass change of particular 389 

relevance to discussions of climate change is that of CO2, as CO2 uptake by the polar oceans can 390 

be expected to increase as sea ice retreats. 391 

Sea ice also affects the life of the Arctic, from the microorganisms living within the ice 392 

all the way up through the food chain to the iconic polar bears that live much of their lives on the 393 

ice and feed off marine life from the platform that the ice provides. Among the animals affected 394 

by sea ice are humans, and among the most discussed impacts on humans of reduced sea ice 395 

coverage in recent and forecasted future decades is the opportunity this provides for increased 396 

shipping through the Northwest and Northeast Passages (e.g., Brigham, 2010; Smith and 397 

Stephenson, 2013; Stephenson and Smith, 2015; Barber et al., 2018). This opportunity comes 398 

with concerns as well, such as increased chance of oil spills and other environmental pollution 399 

and increased political tensions. Further, while shipping through the Northwest and Northeast 400 
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Passages has gotten easier, the increased mobility of the reduced Arctic ice pack has on occasion 401 

produced more hazardous ice conditions in other regions (Barber et al., 2018). 402 

The impact of the ice extends well beyond the Arctic itself, as shown through both 403 

carefully controlled modeling studies (e.g., Rind et al., 1995) and inferences from observations 404 

(e.g., Walsh, 2013). Changes in sea ice are tightly intertwined with changes in temperature and 405 

have further been tied to changes in the frequency of severe winters in Eurasia (Mori et al., 2014) 406 

and, through changes in the jet stream, to changes in the frequency of many extreme weather 407 

events in Northern Hemisphere mid-latitudes (Cohen et al., 2014; Francis and Vavrus, 2015). 408 

Through their effect on temperature, sea ice decreases are also likely a cause of the increased 409 

methane emissions from the Arctic tundra and wetlands (Parmentier et al., 2013; Parmentier et 410 

al., 2015). Well illustrating the interconnectedness of the climate system, Nakamura et al. (2016) 411 

find that the stratosphere plays a crucial role in some of the connections between sea ice changes 412 

and weather changes in lower latitudes. 413 

Sea ice covers approximately 15 x 10
6
 km

2
 (i.e., 1.5 times the area of Canada) of Arctic 414 

waters in wintertime, retreating to approximately 5 x 10
6
 km

2
 in summer, with considerable 415 

interannual variability. Prior to the advent of satellite technology, getting an Arctic-wide picture 416 

of this enormous expanse of ice was particularly difficult, hindered not only by the large areal 417 

extent but also by the dangers imposed by the cold, the dark (in wintertime), and the dynamics of 418 

the ice cover, with floes continually breaking up, moving, and crunching against each other.  419 

In great contrast to the in situ difficulties, sea ice has proven particularly amenable to 420 

satellite observations, as at many wavelengths the ice is quite readily distinguished from liquid 421 

water. Furthermore, it is always liquid water on which the sea ice is floating, in huge contrast to 422 

snow cover on land, for which the underlying surface could be concrete, tundra, grass, or many 423 
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other surfaces. This contrast between the uniformity versus non-uniformity of the underlying 424 

surface, plus the fact that snow cover on land can be hidden under trees in the boreal forest, 425 

makes it far easier to identify and quantify sea ice from satellite data than to do the same for 426 

snow cover.  427 

Sea ice has been observed and studied with data from a wide variety of satellite 428 

instruments. First came visible and infrared observations, which can provide readily recognizable 429 

images of sea ice under sunny and cloud-free conditions. Such images were available in the early 430 

1960s from NASA’s first Television and Infrared Observation Satellite (TIROS), launched in 431 

1960, although these images were limited to latitudes equatorward of 60° N and S, providing a 432 

major limitation for sea ice monitoring. Much better coverage came with the 1964 launch of the 433 

Nimbus 1 satellite, which was placed in a near polar orbit allowing data coverage poleward to 434 

82.5°N. Further advances in visible and infrared imagery came with the Landsat and AVHRR 435 

series, both begun in the 1970s and still continuing today, and with MODIS, launched in 436 

December 1999 on the Terra satellite and in May 2002 on the Aqua satellite, and the Visible 437 

Infrared Imaging Radiometer Suite (VIIRS), launched in October 2011 on the Suomi National 438 

Polar-orbiting Partnership (Suomi NPP) satellite.  439 

Valuable as the visible data are for obtaining readily recognizable, high resolution images 440 

of the sea ice cover during periods of sunlight and cloud-free conditions, they are not nearly so 441 

valuable during darkness and/or cloudy conditions. In great contrast, with careful choice of 442 

wavelength, microwave imagery can avoid both of those limitations, as (1) the microwave 443 

radiation derives from the Earth system and does not require sunlight, and (2) at some 444 

wavelengths the microwave radiation passes through most clouds unaffected, in significant part 445 

because the particle sizes in the clouds are much smaller than the wavelengths of the radiation. 446 
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These advantages, plus the fact that the microwave signature of sea ice differs significantly from 447 

the microwave signature of liquid water, have made satellite passive microwave technology 448 

enormously valuable for obtaining climate records of the sea ice cover.  449 

The first major satellite passive microwave imager was the single-channel Electrically 450 

Scanning Microwave Radiometer (ESMR) on NASA’s Nimbus 5 satellite launched in December 451 

1972 (the Russian COSMOS-243 satellite, launched in 1968, carried a non-imaging passive 452 

microwave radiometer (Massom, 1991)). The ESMR instrument was highly successful in 453 

demonstrating the value of passive microwave imagery for monitoring sea ice (and other 454 

variables), although with only one channel it did not allow sorting through such complications in 455 

the sea ice cover as differences in ice type and melt and/or snow on the ice surface. As a result, 456 

the follow-on Scanning Multichannel Microwave Radiometer (SMMR) on NASA’s Nimbus 7 457 

satellite was a marked improvement. SMMR was launched in October 1978 and provided a sea 458 

ice data record from November 1978 through mid-August 1987. SMMR was followed by a 459 

series of Special Sensor Microwave Imager (SSMI) and SSMI Sounder (SSMIS) instruments on 460 

satellites in the U.S. Department of Defense’s Defense Meteorological Satellite Program 461 

(DMSP), with the first SSMI launched on the DMSP F8 satellite in June 1987. The SSMI/SSMIS 462 

series continues today and has been joined by such additional passive microwave instruments as 463 

AMSR-E (no longer operating), AMSR2, and India’s Multi-frequency Scanning Microwave 464 

Radiometer (MSMR) on India’s Oceansat 1, launched in May 1999. 465 

The SMMR/SSMI/SSMIS combination has provided a sea ice record now exceeding four 466 

decades in length. By the mid and late 1990s, it was clear from this record that the sea ice 467 

coverage of the Arctic was decreasing (e.g., Johannessen et al., 1995; Parkinson et al., 1999). 468 

This decrease, overall, has speeded up in the subsequent years (e.g., Comiso et al., 2008; Stroeve 469 
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et al., 2012) and is reflected also in such additional trends as shortening of the sea ice season 470 

(Parkinson, 2014) and earlier onset of melt on the sea ice (Bliss et al., 2017). Figure 4 illustrates 471 

the passive microwave record of the Arctic sea ice cover and its depiction of changes that have 472 

occurred since the late 1970s, showing stark decreases in sea ice coverage in the mid-winter 473 

month of February in the Sea of Okhotsk (off the coast of Siberia) and the Barents Sea (north of 474 

Scandinavia and western Russia) and in the mid-summer month of August in the central Arctic. 475 

Although there is a large amount of interannual variability, the 1979 and 2018 snapshots 476 

appropriately reflect the overall loss of sea ice coverage over the 1979-2018 time period. 477 

One extremely important aspect of the sea ice cover that has not been obtained from 478 

passive satellite instruments, whether microwave or otherwise, is ice thickness for the full range 479 

of ice thicknesses (for thicknesses up to 0.5 m, see Tian-Kunze et al., 2014). To obtain the total 480 

volume of Arctic sea ice, a thickness measurement is needed along with the areal measurement 481 

provided by the passive microwave instrumentation. Ice thickness has been obtained from 482 

upward-looking sonar on submarines, but these data sets are tremendously limited by where and 483 

when the submarines are in the Arctic and taking sonar measurements. Despite the limitations, 484 

the submarine data have suggested a substantial thinning of the ice cover (e.g., Rothrock et al., 485 

1999; Yu et al., 2004), and this result nicely complements the ice retreat found from the satellite 486 

passive microwave data.  487 

Although we do not yet have a climate-quality ice thickness record, the potential of 488 

satellites to obtain weekly ice thickness records throughout the Arctic bodes well for an eventual 489 

climate-quality record derived from satellites. Radar altimeters on board the European satellites 490 

European Remote Sensing (ERS)-1, ERS-2, and CryoSat2, launched in July 1991, April 1995, 491 

and April 2010, respectively, and the Geoscience Laser Altimeter System (GLAS) on NASA’s 492 
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Ice, Cloud, and land Elevation Satellite (ICESat), launched in January 2003, have demonstrated 493 

the value of both radar and laser altimetry for ice thickness measurements (Kwok et al., 2009; 494 

Laxon et al., 2013). The ICESat mission ended in 2009 and is now followed by the ICESat-2 495 

mission, launched in September 2018.  496 

Another sea ice variable with limited satellite-based results is snow depth on sea ice. 497 

Snow cover affects the surface energy balance, with an albedo typically higher than that of snow-498 

free ice and a low thermal conductivity, so that its presence increases the reflection of solar 499 

radiation and further restricts heat transfers between the atmosphere and the underlying ocean. 500 

Snow depth on sea ice has been estimated from satellite passive microwave data at least since the 501 

late 1990s, when Markus and Cavalieri (1998) developed a snow depth algorithm based on two 502 

channels of microwave data and an empirically derived linear fit to in situ Antarctic snow depths. 503 

Brucker and Markus (2013) used airborne radar data from Operation IceBridge to perform an 504 

assessment of snow depth over Arctic seasonal sea ice calculated from AMSR-E data for the 505 

period 2009-2011. Although the results varied depending on location, overall the difference 506 

between the AMSR-E results and the IceBridge results was 0.00 ± 0.07 m. Still, several regions 507 

were identified with errors exceeding 0.10 m (Brucker and Markus, 2013). Comparison of the 508 

Operation IceBridge data with in situ snow thickness measurements yielded a root-mean-square 509 

error of 5.8 cm (Webster et al., 2014). A subsequent comparison of snow depths derived from 510 

IceBridge data through five retrieval algorithms was done explicitly to help inform the 511 

development of next-generation algorithms for the data (Kwok et al., 2017). 512 

Rostosky et al. (2018) tackled the problem of expanding snow depth retrievals from 513 

satellite passive microwave data to include snow depths over multiyear ice, taking advantage of 514 

the 6.9 GHz measurements from the AMSR-E and AMSR2 sensors. Comparisons of the derived 515 
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snow depths with Operation IceBridge springtime measurements yielded good agreement, 516 

although better with first-year ice than multiyear ice (Rostosky et al., 2018). Maaß et al. (2013) 517 

examined the use of lower frequency passive microwave data, at 1.4 GHz (L-band), from the 518 

European Space Agency’s Soil Moisture and Ocean Salinity (SMOS) satellite to retrieve snow 519 

thickness estimates over thick Arctic sea ice, detailing both the complications and the sense that 520 

this could be an approach worth pursuing further. 521 

The potential exists for satellite-derived Arctic-wide estimates of snow depth on sea ice 522 

through subtracting ice freeboard estimates derived from radar altimetry from total snow and ice 523 

freeboard estimates derived from laser altimetry. This potential was explored by Kwok and 524 

Markus (2018) in anticipation of coincident measurements from CryoSat-2’s radar altimeter and 525 

ICESat-2’s laser altimeter, using an airborne laser altimeter as a proxy for the satellite laser 526 

altimeter prior to the ICESat-2 launch. Comparisons with snow depths obtained from an airborne 527 

snow radar on Operation IceBridge were encouraging for the eventual derivation of snow 528 

thickness from satellite radar and laser altimeters (Kwok and Markus, 2018). Accuracy in the 529 

snow depth product is important not just for a measure of climate change but also because the 530 

snow depth affects the calculation of sea ice thickness from the altimetry data. More work 531 

remains, especially in determining how close the laser reflection is to the top surface of the snow 532 

and how close the radar reflection is to the ice-snow interface. 533 

Additional satellite instruments used for sea ice studies include scatterometers and 534 

synthetic aperture radars (SARs). Scatterometry data from the European ERS-1 and ERS-2, the 535 

Japanese Advanced Earth Observing Satellite-1 (ADEOS-1) and ADEOS-2, launched in 1998 536 

and 2002, respectively, and NASA’s Quick Scatterometer (QuikSCAT), launched in 1999, have 537 

been used for identifying and monitoring ice type and ice drift and for operational ice-edge 538 
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detection. Because backscatter is sensitive to salt, scatterometers can be more effective than 539 

radiometers in distinguishing first-year versus multi-year ice (e.g., Nghiem et al., 2007), whereas 540 

backscatter complications from wind roughening of the ocean can make radiometers more 541 

effective than scatterometers in identifying the ice edge (e.g., Meier and Markus, 2015). SAR 542 

data from the U.S. Seasat, launched in June 1978, the Russian COSMOS-1870, launched in July 543 

1987, the European ERS-1 and ERS-2, JAXA’s Japanese Earth Resources Satellite-1 (JERS-1), 544 

launched in February 1992, the Canadian Space Agency’s RADARSAT-1 and RADARSAT-2, 545 

launched in November 1995 and December 2007, respectively, and the ESA’s Sentinel-1 C-band 546 

SAR, launched in April 2014, have proven useful in characterizing ice roughness and other 547 

details of the sea ice cover. 548 

When considering future needs for satellite observations of sea ice, three high priority 549 

items are to: (1) continue the passive microwave record that has obtained so much information 550 

about sea ice since the early 1970s and now has a fairly complete record since late 1978, (2) 551 

obtain a time series of laser altimeter measurements of ice thickness from the recently launched 552 

ICESat-2 satellite, and (3) continue radar altimeter measurements with CryoSat-2 or follow-on 553 

missions, for the ice thickness measurements they provide. 554 

For much more on the satellite remote sensing of sea ice, the reader is referred to reviews 555 

in Parkinson and Cavalieri (2012) and Meier and Markus (2015). 556 

In view of the highly coupled nature of the Earth system, the changes in Arctic sea ice 557 

have many ramifications, from warming the atmosphere and other climate impacts, to causing 558 

numerous changes in the polar ecosystem, to impacts on humans living in, working in, or visiting 559 

the Arctic region. For all these reasons, the future of the Arctic sea ice matters far beyond the 560 

Arctic sea ice itself. Like almost all predictions, the predictions for the future of Arctic sea ice 561 
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are filled with uncertainties, although the consensus viewpoint of those engaged in climate 562 

change studies involving sea ice is that the Arctic sea ice coverage will likely continue to 563 

decrease, overall, in the upcoming decades. For a review on modeling the future of Arctic sea 564 

ice, including the types of modeling approaches needed to improve the simulations, the reader is 565 

referred to Maslowski et al. (2012). 566 

3.2 Arctic Ocean Salinity, Temperature and Circulation (Emmanuel P. Dinnat, James 567 

Carton)  568 

Observing the Arctic Ocean is important because of its fast and amplified response to 569 

changes in climate, and its potential impact on future climate change through interactions with 570 

the cryosphere, atmosphere, land, and lower latitude oceans. The Arctic Ocean is not only the 571 

smallest ocean, but also the shallowest (Figure 5, left). Its average depth is ~1,200 m and most of 572 

its water is shallower than 1,000 m, owing to the large extent of the Eurasian continental shelf. 573 

Most of its connections with the Pacific and Atlantic (Bering Strait, channels of the Canadian 574 

Archipelagos, Barents Sea) are shallow, with the exception of Fram Strait (as deep as 2.5 km). 575 

Large exchanges of freshwater (e.g., ice sheet melt, river runoff, precipitation) and heat (e.g., 576 

ocean advection, atmosphere heat fluxes) occur in the Arctic Ocean. Thus the Arctic Ocean can 577 

provide extended climate memory to the ABZ such as when sea surface temperature (SST) 578 

during one summer leads to a decrease in sea ice growth in the following winter (Steele et al., 579 

2008), which in turns leads to more absorption of shortwave radiation. Incoming Atlantic Ocean 580 

water warms and salinifies the intermediate waters of the Arctic Ocean and likely plays a role in 581 

amplification of climate change at high latitudes (Spielhagen et al., 2011). In a warming climate, 582 

increased freshwater input from ice melt, continental discharge from the ABZ rivers (Figure 5, 583 

left), and changes in precipitation/evaporation can enhance the stability of the Arctic Ocean 584 
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(along with increasing temperature stratification), reducing deepwater formation and ultimately 585 

weakening the Atlantic Meridional Overturning Circulation (AMOC; Fichefet et al., 2003; Yang 586 

et al., 2016). Theory suggests that freshening of the higher latitudes can also have effects on the 587 

ocean heat and wind regimes in the tropics (Fedorov et al., 2007). Given the importance of these 588 

processes and the current large observational uncertainties, there is a strong need for long-term, 589 

continuous observations, as well as for improvement in predictive modeling. Among the key 590 

variables are salinity, temperature, surface topography, and currents. 591 

In situ observation coverage of the Arctic Ocean has been limited by the distribution of 592 

sea ice (Figure 5, right, and Figure 6). Before the 1980’s, oceanographic observations relied 593 

primarily on a variety of in situ measurement systems, including profiling instruments, buoys, 594 

and shipboard measurements (Woodruff et al., 2011). These observations contain a variety of 595 

systematic and random errors, which for SST can be 1°C or even larger. Nevertheless, they 596 

provide over a century of unique information about changes in ABZ climate, spanning the early 597 

twentieth century warm period and the cool period that followed.  598 

In situ observations also form the basis for calibrating satellite observations. Before 2000, 599 

the collection of in situ observations relied heavily on ships of opportunity along major shipping 600 

lanes in the Northern Hemisphere. For example, SST and sea surface salinity (SSS) have been 601 

measured since 1999 along a shipping lane between Denmark and South Greenland onboard the 602 

container ship Nuka Arctica (Reverdin et al., 2002). After 2000, the number of measurements 603 

and their spatial and temporal coverage increased substantially with the deployment of the Argo 604 

network of free drifting profiling floats (Gould et al., 2004). There are now about 4000 Argo 605 

floats deployed globally that measure conductivity, temperature and depth/pressure (CTD), from 606 

which vertical profiles of salinity and temperature are retrieved from 2000 m deep to 5-10 m 607 
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below the surface. However, the spatial distribution of Argo instruments is inhomogeneous and 608 

regions with even sporadic ice cover are difficult to sample (Figure 5, right) because the floats 609 

are programmed to surface every 10 days. The strong stratification of the Arctic Ocean puts high 610 

energy demands on an Argo float.  611 

Spurred by the 2007-2008 International Polar Year (IPY), sustained observation systems 612 

and international coordination efforts (i.e., Integrated Arctic Ocean Observing System (iAOOS; 613 

Dickson, 2006, 2007); Overturning in the Subpolar North Atlantic Program (O-SNAP; www.o-614 

snap.org)) have been put in place during the last decade with the goal to improve monitoring of 615 

high latitude oceans and of their long-term changes. One objective, in particular, is to quantify 616 

the mass, heat and freshwater fluxes associated with the AMOC. Observing systems include a 617 

multitude of instruments, such as permanent moorings, gliders and CTD deployments at major 618 

choke points of ocean exchanges (e.g., Davis and Fram Straits). Technological advances also 619 

allow for ice-based observatories, such as Ice Tethered Profiler (ITP; Toole et al., 2011) and 620 

Polar Ocean Profiling Systems (POPS; Kikuchi et al., 2007), providing an unprecedented 621 

number of temperature and salinity profiles of the ice covered ocean in the inner regions of the 622 

Arctic Ocean (e.g., magenta dots in Figure 5, right). The high latitude capabilities of the floats in 623 

the Argo network were improved with a combination of software to avoid surfacing when ice is 624 

present, increased onboard data storage to keep profiles measured under the ice for a later 625 

transmission, and use of a better communication network to minimize time spent at the surface 626 

(Roemmich et al., 2009).  627 

Despite these expanded in situ networks, the spatial and temporal coverage of the Arctic 628 

seas remains sparse, requiring the addition of satellite data to complete the picture. Figure 5 629 

(right) shows locations where the Coriolis Ocean database ReAnalysis (CORA) dataset has 630 
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salinity and temperature data measured during 2016 (Cabanes et al., 2013), to which are added 631 

(in black) ship tracks from the research vessel (R/V) Polarstern that operates yearly rotations in 632 

the Arctic (Driemel et al., 2017). While the Argo network samples part of the Arctic, such as the 633 

Norwegian Sea and the Baffin Bay, regular observations are lacking elsewhere. Other monitoring 634 

systems include permanent mooring and time-limited oceanographic campaigns, and the use of 635 

ships of opportunity. However, their spatial coverage is poor and continuous monitoring is not 636 

always possible. Fortunately, satellite remote sensing alleviates the limited spatial coverage and 637 

provides regular revisit opportunities. 638 

Sea Surface Temperature 639 

SST is the most mature ocean remotely sensed variable, dating from the measurements of 640 

upwelling infrared and visible radiation from NOAA polar orbiter satellites beginning in the 641 

mid-1970s, which were then adjusted to match in situ observations. High precision infrared 642 

radiometers (e.g., AVHRR and AATSR) now provide the highest absolute accuracy satellite SST 643 

(Kilpatrick et al., 2001). Their advantages over in situ measurements include greatly improved 644 

spatial coverage at or below the 10 km Arctic Ocean eddy scale (Høyer et al., 2012; Stroh et al., 645 

2015). They also provide twice-daily temporal coverage and the virtues of using a single 646 

instrument. But these infrared wavelengths can be obstructed by clouds and contaminated by 647 

aerosols and sea ice bits within a satellite footprint in the marginal ice zone (Donlon et al., 2012; 648 

Le Traon et al., 2015). Another source of error is the variable humidity of the air column, which 649 

affects the atmospheric corrections. Also, these infrared observations measure temperature in a 650 

shallow 0.1-1 mm thick skin layer, whereas in situ instruments typically make measurements at a 651 

depth of 1-10 m.  652 
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AVHRR observations have been complemented by the MODIS infrared radiometer 653 

capabilities and a succession of European radiometers including the Spinning Enhanced Visible 654 

and InfraRed Imager (SEVIRI) instrument aboard the geostationary Meteosat Second Generation 655 

satellites. Use of longer microwave wavelengths avoids the problem of cloud masking. The first 656 

of these microwave instruments in a near-polar orbit was AMSR-E, launched in 2002, followed 657 

by the Naval Research Laboratory’s WindSat, AMSR2, and GPM Microwave Imager (GMI), the 658 

latter of which are still functioning. These sensors use frequencies above 5 GHz for which the 659 

impact of salinity on emissivity is small (see Figure 3 of Le Vine et al., 2010) and can be 660 

corrected for using SSS from climatology (Shibata, 2013). Although these instruments provide 661 

more frequent sampling because of their all-weather observation capability, their accuracy is 662 

lower than the infrared instruments and they have larger (25-50 km) spatial footprints. Using a 663 

29 year record primarily based on infrared satellites, Chepurin and Carton (2012) derived a trend 664 

in Arctic SST of 0.04°C/y (± 0.01°C/y) for ice free regions (errors increase near ice edge). 665 

Sea Surface Salinity 666 

SSS has been monitored from space since 2010 using L-band (1.4 GHz) microwave 667 

radiometers onboard the SMOS and Aquarius (onboard SAC-D) missions (Lagerloef et al., 2008; 668 

Kerr et al., 2010; Brucker et al., 2014ab; Le Vine et al., 2015). In June 2015, the Aquarius 669 

mission was lost because of a spacecraft failure. An L-band radiometer on SMAP, launched in 670 

January 2015, also allows for SSS retrievals even though its primary objective was to measure 671 

soil moisture and land freeze/thaw. Example maps of SSS observed from space are shown in 672 

Figure 6 for mid-spring when the sea ice cover is at its maximum and for late summer when sea 673 

ice extent is at its minimum. In spring, only the Labrador Sea south of the Baffin Bay, the 674 

Norwegian Sea, and the Barents Sea are clearly observable, with SSS mostly falling in the range 675 
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of 33 – 36 psu. North of the Pacific Ocean, small regions with reduced ice concentration occur, 676 

but the accuracy of satellite retrievals is questionable. In late summer when sea ice retreats to its 677 

minimum extent, marginal seas are mostly open waters. Salinity in the Beaufort (25 – 28 psu), 678 

East Siberian, Laptev and (part of) the Kara Seas (18 – 28 psu) is much lower than over most of 679 

the rest of the global oceans due to the large influx of fresh water from rivers and ice melt. 680 

Salinity in the Chukchi Sea is also low (30 – 33 psu), but it is still larger than the surrounding 681 

waters due to salinification by intrusions of Pacific Ocean water. Waters of the Atlantic Subpolar 682 

Gyre and northward (Barents, Norwegian, Labrador Sea and Baffin Bay) are substantially saltier 683 

than the other Arctic waters. The Barents Sea has two salinity and temperature regimes, with 684 

warmer and saltier (~35 psu) Atlantic water in the south and fresh stratified polar water in the 685 

North where the sea ice extends during the winter. SSS in the northern Barents Sea is about 34 686 

psu, which is 1.5 psu higher than two decades ago (SST increased by 2°C during the same 687 

period). This reduction in freshwater content, likely related to a weakened stratification triggered 688 

by the reduced freshwater input due to declining sea-ice (Lind et al., 2018), illustrates the tight 689 

coupling between sea ice extent, water mass formation, and circulation.  690 

River runoff from Arctic and subarctic drainage basins is another major aspect of Arctic 691 

Ocean interactions with the rest of the ABZ. Rivers are the main source of Arctic freshwater 692 

(Carmack et al., 2016) and SSS in the resulting plumes can be as low as 20 psu, or even lower 693 

close to the river mouths. Changes in this river input result from changes in ice and snow melt on 694 

land thousands of kilometers away. Also, the spatial distribution of the riverine freshwater can be 695 

influenced by changes in atmospheric circulation. Satellite SSS data from Aquarius have been 696 

used to monitor the shape of the large river plume in the Kara Sea in all weather conditions since 697 

L-band microwave wavelengths are not impacted by clouds; these observations thus provide an 698 
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advantage over the limited coverage of MODIS observations of chlorophyll-a (Kubryakov et al., 699 

2014). The extent and direction of plume propagation is influenced by the prevailing wind 700 

regime. However, the coarse spatial resolution of the Aquarius SSS maps hinders an accurate 701 

definition of plume boundaries, which in reality exhibits sharp SSS gradients over sub-100 km 702 

scales. When plume waters propagate toward the east along the coast, it is no wider than 100 km. 703 

River plumes in the Arctic tend to be deflected to the right and to form a Riverine Coastal 704 

Domain of low salinity in a narrow (~10 – 60 km) and shallow current (Carmack et al., 2015). 705 

The width of the currents and the salinity gradient (e.g., 6 psu) are larger in summer as a result of 706 

the spring freshet. As shown in Figure 6, satellite SSS observations are missing close to the 707 

coasts, or, if present, they tend to be biased due to land contamination of the relatively coarse 708 

footprints of current sensors. Another source of bias for satellite SSS is sea ice. Garcia-Eidell et 709 

al. (2017) compare several satellite SSS products in the northern high latitudes and show good 710 

agreement with in situ data, and freshening cycles consistent with ice melt. They also identify 711 

discrepancies in the products due to the treatment of the sea ice. Improving the characterization 712 

of sea ice (concentration and age) on the satellite measurements has a very large impact (Dinnat 713 

and Brucker, 2017). L-band radiometric measurements are also used to retrieve the thickness of 714 

thin sea ice, thinner than 1 m, and thus complements alternative altimeter-based sea ice thickness 715 

measurements which require thicker sea ice (Tian-Kunze et al., 2014).  716 

SSS monitoring by satellite in the ABZ is hindered by the coarse spatial resolution and 717 

reduced sensitivity of existing sensors. The latest Aquarius product has a global RMS error of 718 

~0.17 psu (Lagerloef et al., 2015), but that error increases to 0.2–0.3 psu at high latitudes where 719 

water temperature is low. Biases of 1 psu or more are also observed for a distance of up to 100 720 

km away from coasts and ice boundaries. This is due to the relative large footprint of the low 721 
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frequency radiometers used for SSS retrieval, which have a spatial resolution of the order of 40 722 

km (SMOS and SMAP) and 100 - 150 km (Aquarius). In situ data are also lacking near coasts 723 

and ice margins, in part because they tend to be shallow waters that limit opportunities for ship-724 

borne observations. As a result, regular monitoring of the SSS of coastal currents, such as the 725 

East and West Greenland Currents, is not yet possible despite their importance for the 726 

stratification of the Subpolar Gyre, including the Labrador Sea (Luo et al., 2016a). Monitoring of 727 

the salinity of these currents is also needed to project the impact of the melting ice sheet on 728 

future climate. Such coastal currents are typically only ~45 – 85 km wide (Sutherland and 729 

Pickart, 2008; Fratantoni and Pickart, 2007), with SSS fresher by 1 psu or more compared to 730 

surrounding waters which requires spatial resolution finer than 20 km, with revisit times of the 731 

order of days. Another challenge to SSS retrievals over cold waters is the decreased sensitivity of 732 

radiometric measurements to salinity as compared to warmer waters (See Fig 1.b and 1.c in 733 

Garcia-Eidell et al., 2017). This temperature effect results in larger errors and, when combined 734 

with the larger uncertainty on SST at high latitude, in regional biases. New technologies (e.g., 735 

microwave radiometers at frequencies lower than 1.4 GHz) need to be developed to increase the 736 

accuracy of SSS measurements. 737 

Sea Level 738 

There are two main sources of sea level information with which to constrain the 739 

geostrophic circulation in the Arctic: the 70 reliable coastal tide gauges (Proshutinsky, 2004) and 740 

satellite altimetry. The era of continuous satellite altimetry began with the launches of ESA’s 741 

European Remote Sensing (ERS-1) satellite in 1991 and Topex/Poseidon in 1992. The former 742 

was the first of a succession of European satellites maintaining a 35-day high inclination orbit. 743 

The latter was the first of another series of satellites, the latest being the multinational Jason-3 744 
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mission, in a 10-day repeat orbit with a more southerly turning latitude of 66°N. Additional 745 

satellites, such as the U.S. Navy’s Geosat Follow-On (GFO) satellite (17-day repeat), NASA’s 746 

ICESat and ICESat2, ESA’s CryoSat-2, China’s HY-1B and HY-2 (14-day and 168-day), and 747 

the joint ISRO and France’s Centre National d’Études Spatiales (CNES) Satellite with ARgos 748 

and ALtiKa (SARAL) (35-day), have added to the data density. When combined with ocean 749 

bottom pressure estimates from NASA’s and DLR’s GRACE and GRACE-FO, the 750 

measurements effectively constrain the barotropic and baroclinic circulation patterns (Kwok and 751 

Morison, 2016). Trends in sea surface height derived from satellite measurements of the Arctic 752 

are between 0.002 and 0.005 m/y (± 0.001 - 0.002 m/y) (Volkov and Pujol, 2012; Armitage et 753 

al., 2016). Error estimates are reported for the Norwegian coast. Further north, the signal to noise 754 

ratio is one or less partly due to the decrease in the number of available satellites. 755 

Conventional satellite altimeters require open water and thus are unable to monitor sea 756 

level in the ice-covered portion of the Arctic. However, new satellites technologies and new 757 

processing techniques offer the promise of making routine sea level measurements through leads 758 

(large linear fractures) in the sea ice, and thus providing estimates of sea ice thickness as well 759 

(e.g., Giles et al., 2008). 760 

 761 

Going forward, continuity and expanded capabilities of SSS, SST, and surface 762 

topography are two of the main objectives for satellite observations of the oceans. With the loss 763 

of the Aquarius instrument in June 2015, and given the age of SMOS (operating since late 2009), 764 

the continuity of SSS observations is uncertain. The recent SMAP L-band radiometer shows 765 

promise for observing SSS, but the instrument was optimized for soil moisture and its 766 

radiometric accuracy on footprint measurement is lower than Aquarius’. SMAP also suffers from 767 
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the loss of its radar, which is needed to estimate surface roughness. As a result, the accuracy of 768 

SMAP SSS retrievals is degraded and the roughness must be estimated from non-colocated 769 

estimates of wind speed. Future salinity observations should aim for higher spatial resolution (10 770 

- 20 km) with daily to weekly temporal resolution and increased sensitivity over cold waters to 771 

improve data quality at high latitude and near land and ice margins. Such improvements would 772 

open the way to improved monitoring of circulation in high latitudes, including, for example, the 773 

coastal currents around Greenland which transport fresh water into the subpolar North Atlantic. 774 

Together with subsurface profile measurements (e.g., the Argo network), this would permit the 775 

assessment of the total amount of freshwater contributed from ice melt. 776 

Although SST is the most mature ocean remote sensing measurement, accurate 777 

calibration in the ABZ, cloud masking, and the need for fine few-kilometer resolution remain 778 

important. Large differences between high latitude SST products remain and have been 779 

attributed to differences in the treatment of ice-contaminated data and bias correction schemes 780 

(Dash et al., 2012).  781 

The highest priority for the future is to continue to refine the record of high quality well-782 

calibrated infrared and microwave observations, and to combine these observations in a way to 783 

exploit both the fine resolution of the infrared observations and the spatial coverage of the 784 

microwave observations. Improvements in the inter-calibration of the various sensors are also 785 

necessary to better assess the SST diurnal cycle. Finally, theoretical analyses and laboratory 786 

demonstrations show that retrieving vertical profiles of temperature from lidar measurements can 787 

be expected in the future (Churnside, 2014; Rudolf and Walther, 2014; Rupp et al., 2017).  788 

3.3 Ocean Biology and Biogeochemistry (Cecile S. Rousseaux, Watson W. Gregg, Maria A. 789 

Tzortziou)  790 
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Changes in ocean temperature, salinity, circulation and sea ice coverage, freshwater 791 

fluxes and permafrost, atmospheric composition and deposition of pollutants can directly impact 792 

the biogeochemistry of the oceans. Permafrost thawing, changing hydrology patterns, and land 793 

erosion alter the amount and quality of sediments, organic matter and nutrient loadings to rivers 794 

and the ocean, modifying marine biological activity, microbial processes, and overall ecosystem 795 

functioning. Changes in terrestrial inputs and in the water column stratification can directly 796 

impact the amount of nutrients available for primary producers. Similarly, sea ice coverage can 797 

change the amount and spectral properties of light available for primary production.  798 

Over the last 30 years, large areas of the Arctic ocean have become free of sea ice in the 799 

summer (Comiso and Hall, 2014). This has led to many documented changes in marine biota, 800 

ranging from benthic algae to seabirds (Wassmann et al., 2011). As the base of the food chain, 801 

phytoplankton produce organic carbon necessary for higher trophic levels to thrive. The 802 

concentration and composition of phytoplankton depends on the amount of light, nutrients and 803 

predators present. Their variability is indicative of changes in physical and biogeochemical 804 

conditions. Any changes in phytoplankton concentration and composition can in turn affect the 805 

physical, biogeochemical conditions and recruitment of higher trophic levels. Despite the 806 

challenges and intrinsic limitations of satellite observations in high-latitude regions, ocean color 807 

remote sensing has provided a unique tool for monitoring these changes in phytoplankton 808 

concentration, dissolved organic carbon amounts, and suspended particle dynamics from space 809 

by relating surface ocean reflectance to in-water composition (Devred et al., 2015). Since the 810 

1990s, measurements from SeaWiFS, MODIS, MERIS, VIIRS, OLCI and other ocean color 811 

sensors, have provided continuous datasets that are critical for assessing changes in Arctic ocean 812 
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biology, biogeochemistry and biodiversity over the past decades and linking these changes to 813 

anthropogenic and natural pressures.  814 

Using ocean chlorophyll from these satellites, Arrigo and van Dijken (2008; 2011; 2015) 815 

have reported an increase in annual primary production in the ABZ of 134 Tg C or, 38% over the 816 

last 2 decades, with the largest increase on the continental shelf. MODIS (Aqua) retrievals of 817 

dissolved organic matter distribution over the past decade, revealed a change in the routing of the 818 

Mackenzie River discharge from an alongshore, eastward path through the Canadian Arctic 819 

Archipelago in 2002 to a cross-shelf, northwestward path to the Canada Basin since 2006 (Fichot 820 

et al., 2013), with important implications for the fate and processing of North American runoff. 821 

Satellite observations combined with modeling showed that photochemical production of CO2, 822 

through oxidation of colored dissolved organic matter in the southeastern Beaufort Sea increased 823 

over the period 1979 to 2003 by ~15% in response to decreasing sea ice extent (Bélanger et al., 824 

2006).  825 

Remote sensing of primary production and other ecological and biogeochemical 826 

processes in the Arctic Ocean faces unique challenges, including strong seasonality in terrestrial 827 

inputs of materials, under-ice phytoplankton blooms, insufficient understanding of Arctic 828 

phytoplankton physiology, and highly dynamic atmospheric properties (associated with the 829 

distinct seasonality of Arctic Haze, long range transport of anthropogenic pollution, as well as 830 

seasonally and regionally dependent forest and tundra fire emissions) that require new 831 

approaches for atmospheric correction of space-based ocean color retrievals (IOCCG, 2015). At 832 

the same time, seasonal darkness, low sun elevation, persistent clouds and fog, pixel 833 

'contamination' by ice, and the remoteness and harshness of the region result in a limited number 834 

of matchups between field measurements and satellite overpasses (Lund-Hansen et al., 2015; 835 
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Matsuoka et al., 2015; Chaves et al., 2015). Remote sensing observations from different 836 

platforms and both passive and active sensors are required for studying ocean processes in these 837 

regions and improving predictions of ABZ ecosystem responses to climate change. Lidar 838 

systems can retrieve the vertical structure in plankton communities and provide measurements 839 

between clouds, through significant fog and cloud cover, and at all times of the year (both day 840 

and night observations; e.g., Behrenfeld et al., 2013, 2017). Multiple polar orbiting satellites 841 

would also increase the number of successful overpasses in the coastal Arctic therefore 842 

decreasing the effects that clouds may have on the data. 843 

Extending the spectral range into the ultraviolet and increasing the spectral resolution of 844 

remote sensing measurements from orbital or suborbital platforms will improve monitoring of 845 

key biogeochemical variables in the ocean. In particular, higher spectral resolution and extended 846 

spectral range enable remote sensing algorithms to distinguish between dissolved organic carbon, 847 

non-algal particles, and phytoplankton pigments, monitor different phytoplankton taxonomic 848 

groups, and assess changes in carbon quality across systems. High spatial resolution, new 849 

generation optical imagers, such as the Sentinel 2/MultiSpectral Instrument (MSI) and Landsat 8, 850 

offer new opportunities to monitor biogeochemical processes in Arctic coastal waters, and 851 

improve understanding of climate change effects, such as permafrost thawing, changing riverine 852 

fluxes and coastal erosion, on ABZ ecology. 853 

Comprehensive field observations across seasonal and spatial scales are, thus, critical for 854 

understanding variability and change in ocean processes and ecosystems, improving 855 

development and validation of satellite products, such as phytoplankton pigments, dissolved 856 

organic carbon, and primary production in this region (Hill et al., 2013; Lee et al., 2015; Matrai 857 

et al., 2013), and developing improved parameterizations as well as evaluating model 858 



39 

simulations of biological processes and biogeochemical fluxes across multiple temporal and 859 

spatial scales. Previous field campaigns have collected bio-optical data to support satellite 860 

remote sensing observations in the Arctic Ocean. The NSF-funded Shelf-Basin Interactions 861 

(SBI) program (https://www.eol.ucar.Edu/projects/sbi/index.html) focused on understanding the 862 

physical and biogeochemical processes that link the Arctic shelves, slopes, and deep basins 863 

within the context of global change. The MALINA project (http://malina.obs-vlfr.fr/index.html) 864 

was launched in 2008 and included an expedition in 2009 to document the stocks, processes and 865 

boundary fluxes over a network of sampling stations. In 2010-2011, the Impacts of Climate on 866 

the Eco-Systems and Chemistry of the Arctic Pacific Environment (ICESCAPE; 867 

http://ocean.stanford.edu/icescape/) project, a multi-year project funded by NASA, focused on 868 

addressing the impact of climate change (natural and anthropogenic) on the biogeochemistry and 869 

ecology of the Chukchi and Beaufort Seas. Yet, our understanding of the ocean biogeochemistry 870 

in the Arctic Ocean remains limited. As highlighted in many reports, including the U.S. National 871 

Academies of Sciences, Engineering and Medicine (NASEM; “Thriving on Our Changing 872 

Planet: A Decadal Strategy for Earth Observation from Space”, National Academies of Sciences, 873 

Engineering, and Medicine, 2018) and the NASA Arctic COLORS community consensus report 874 

(Mannino et al., 2018; Tzortziou et al., 2019), more measurements are urgently needed to assess 875 

vulnerability, response, feedbacks and resilience of Arctic ecosystems, communities and natural 876 

resources to current and future pressures.  877 

The ABZ is a challenging region for remote sensing of ocean biology. The importance of 878 

ocean biology, and its rate of recent change, however, necessitates that monitoring activities be 879 

continued and intensified. Remote sensing is an essential component of this monitoring, but the 880 

challenges are such that an integrated and comprehensive ABZ-ON is required in order to 881 
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achieve the goal of understanding how the ABZ is changing and why. Enhanced remote sensing 882 

capabilities, such as lidar and higher spectral, temporal and spatial resolution sensors, and 883 

modeling development would contribute to this important effort. 884 

4 Observing Properties of the ABZ Land 885 

In this section, we discuss the 1) historical and current state of observations of the 886 

properties of the ABZ land biosphere, including land ice, snow, permafrost, tundra and boreal 887 

vegetation, wildfires, and wetlands, and 2) observational needs going forward, which are 888 

summarized in Table 1. 889 

4.1 ABZ Land Ice (Ludovic Brucker) 890 

ABZ land ice, which includes mountain glaciers (e.g., in Alaska and Svalbard), ice caps 891 

(e.g., on Iceland and Baffin Island), and one ice sheet (i.e., on Greenland), has experienced 892 

significant melting in recent decades, contributing to sea level rise (e.g., Gardner et al., 2013; 893 

Shepherd et al., 2012; van den Broeke et al., 2016; Fettweis et al., 2017; Moon et al., 2018). 894 

There are concerns about continued melting as, for instance, a sea level rise of 2 m would 895 

displace about 200 million people globally (Willis and Church, 2012). In addition, ABZ land ice 896 

masses, especially the Greenland ice sheet, release freshwater, which affects the ocean 897 

thermohaline circulation and may have far-reaching impacts on Earth’s climate (e.g., Bamber et 898 

al., 2012; Luo et al., 2016a; Frajka-Williams et al., 2016). Melting also alters Earth’s climate 899 

through significant changes in albedo and therefore energy fluxes across multiple spatial and 900 

temporal scales (e.g., Casey et al., 2017; Ryan et al., 2017). There are articles in the literature 901 

that give a more exhaustive list of land ice components at play in Earth’s climate system (e.g., 902 

Vizcaíno, 2014; Fyke et al., 2018). 903 
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Greenland suborbital observations started as early as the 1930s, and allowed the first 904 

photogrammetry studies to estimate terminal ice flow and thickness (e.g., Higgins, 1991, 905 

Korsgaard et al., 2016). Decades later, more sophisticated instruments were operated with flight 906 

lines repeated annually using a lidar altimeter and a coherent radar depth sounder to obtain 907 

extensive ice sheet elevation (Krabill et al., 1995) and ice thickness (Gogineni et al., 1998) 908 

measurements. These airborne observations enabled the collection of data in areas too difficult to 909 

access during a field traverse. Moreover, the data gave a first three-dimensional view of the ice 910 

sheet without drilling into ice several kilometers thick. 911 

Among the first properties monitored over land ice masses were surface melt using 912 

microwave radiometers (Section 3.1), surface temperature, and albedo using spectroradiometers 913 

(Section 2). For more details on these techniques and retrieved geophysical properties, the reader 914 

is referred to the following books: Bamber and Payne (2004), Massom and Lubin (2006), and 915 

Tedesco (2015).  916 

Remote sensing techniques commonly used to assess the Greenland ice sheet mass 917 

balance are radar and lidar altimetry for height change measurements (e.g., McMillan et al., 918 

2016; Zwally et al., 2011), gravimetry for mass change measurements (e.g., van den Broeke et 919 

al., 2009, Velicogna et al., 2014), and SAR interferometry (InSAR) for ice velocity change 920 

measurements (Joughin et al., 2010). Each technique presents pros and cons, and each is often 921 

combined with in situ measurements and model simulations (e.g., van den Broeke et al., 2016 922 

and references therein). However, independent satellite-derived ice mass loss estimates from 923 

satellite observations agree on accelerated ice mass loss (e.g., Shepherd et al., 2012). 924 

Altimetry (radar and lidar) gives an estimate of ice sheet height, or elevation, from which 925 

ice-mass variations may be inferred with some assumptions on snow density and compaction. 926 
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Gravity measurements give a more direct estimate of mass change, but offer a coarse resolution, 927 

and they are affected by ocean, land, and atmosphere mass changes. Satellite InSAR gives an 928 

estimate of ice velocity, which in conjunction with altimeter-derived ice thickness makes it 929 

possible to quantify ice flux. Altimetry for ice mass studies spans several decades, with the radar 930 

altimeters on ESA’s European Remote Sensing (ERS) (1992-1996), ERS2 (2003), and Envisat 931 

(2002-2012), and the laser altimeter on ICESat (2003-2009). Current missions include the ESA 932 

CryoSat-2 (since 2010), AltiKa (since 2013), and Sentinel-3 (since 2015). The ICESat-2 laser 933 

altimeter was launched in 2018.  934 

Studies using gravimetry, from NASA’s and Deutsche Forschungsanstalt für Luft und 935 

Raumfahrt (DLR’s) Gravity Recovery and Climate Experiment (GRACE) satellites (since 2003) 936 

reached the same conclusion that there is an increasing loss of land ice (e.g., van den Broeke et 937 

al., 2009, Velicogna et al., 2014). GRACE-FO, the follow-on mission, was launched in mid-938 

2018. 939 

To determine ice velocity, InSAR observations can be used from the Canadian Space 940 

Agency’s RADARSAT, JAXA’s Advanced Land Observing Satellite (ALOS) Phased Array type 941 

L-band Synthetic Aperture Radar (PALSAR), or DLR’s TerraSAR-X (e.g., Joughin et al., 2010) 942 

and clear-sky visible imagery can be used, for example, from Landsat time series (e.g., 943 

Fahnestock et al., 2016, Mouginot et al., 2017). Space-based technologies and algorithms to 944 

monitor ice flow are in place, but there is no dedicated mission for monitoring ice dynamics 945 

beyond the NASA Indian Space Research Organisation (ISRO) SAR (NISAR) instrument, which 946 

is scheduled for a 3-year nominal mission starting in 2020. 947 

Together, these satellite observations have allowed for the estimation of Greenland ice 948 

sheet mass loss. According to Rignot et al. (2008), it was losing 110±70 Gt/y in the 1960s, 949 
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30±50 Gt/y in the 1970s–1980s (when the ice sheet was near balance), and 97±47 Gt/y in 1996, 950 

increasing to 267±38 Gt/y in 2007. Another comprehensive study using an ensemble of different 951 

satellite observations revealed that the Greenland ice sheet lost 142±49 Gt/y between 1992 and 952 

2011 (Shepherd et al., 2012). This occurred primarily through surface meltwater runoff and ice 953 

dynamics, both of which have increased mass loss since the end of the 1990s (e.g., van den 954 

Broeke et al., 2016). Surface melt appears to be the dominant process, leading to >60% of the 955 

mass loss in recent years (Enderlin et al., 2014). Meltwater can flow directly on the land ice 956 

surface to the coast, and it can alternatively drain to the bottom of the outlet glaciers, lubricating 957 

their base and resulting in ice flow acceleration and hence more ice discharge into the ocean. 958 

Either way, this meltwater contributes directly to sea level rise. In contrast, meltwater may also 959 

be stored in sub/supra glacial lakes (e.g., Morriss et al., 2013, Hoffman et al., 2011), or as an 960 

aquifer in the ice sheet (e.g., Forster et al., 2014; Miege et al., 2016; Miller et al., 2017), 961 

buffering temporarily sea-level increase (Koenig et al., 2013; Poinar et al., 2017). The increased 962 

mass loss through ice dynamics in recent decades is complex, and likely a consequence of both 963 

the recent increase in surface melt lubricating the glacier-bedrock interface and ocean warming 964 

(Fettweis et al., 2017).  965 

While melt extent and duration were among the first variables monitored over Greenland 966 

from satellites, melt intensity or the amount of liquid water produced for a given area/duration 967 

remain unknown. This lack of information makes it challenging to assess modeling results (e.g., 968 

Cullather et al., 2016b). Interestingly, surface meltwater runoff and ice dynamics exhibit rapid 969 

short-term fluctuations and large spatial variability, indicating the complexity of surface 970 

processes and the ice sheet response to climate forcing (Csatho et al., 2014). Also, it appears that 971 
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gaining knowledge about Greenland hydrology (meltwater pathways (e.g., Smith et al., 2015) 972 

and retention (e.g., Miege et al., 2016)) from satellites is of increasing importance. 973 

Currently, there are two multi-year airborne missions that have as one of their goals to 974 

investigate the processes that determine mass loss of the Greenland ice sheet. Both missions are 975 

sponsored by NASA: Operation IceBridge (OIB) (Koenig et al., 2010) and Oceans Melting 976 

Greenland (OMG) (Fenty et al., 2016). 977 

OIB (2009-2019) surveyed extensively the Greenland ice sheet, as well as ice caps in the 978 

Canadian Arctic Archipelago and Svalbard, and glaciers in Alaska (as well as many ice masses 979 

in the Southern Hemisphere). There is typically a deployment to the Arctic every spring, with 980 

repeat observations, to monitor thickness and accumulation changes using lidar and radar 981 

altimeters; for several years, a gravimeter was also used. The OIB mission was designed to fill 982 

the gap in the spaceborne laser altimetry time series between ICESat (2003-2009) and its 983 

successor ICESat-2. IceBridge observations led to significant discoveries about ice sheet 984 

thickness and bedrock topography (e.g., Bamber et al., 2013, Morlighem et al., 2014). Studies 985 

using IceBridge observations have characterized annual changes in mass (and therefore the 986 

response of the land ice masses to climate change and resulting increase in sea level) and 987 

improved understanding of complex processes that may connect the ABZ with the global climate 988 

system. 989 

OMG, started in 2015 and expected to be a five-year mission, surveys ocean conditions 990 

and ice loss from outlet glaciers around Greenland, providing critical information about ocean-991 

driven ice mass loss in a warming climate. There is a focus on marine-terminated glaciers to 992 

understand their response to the presence of warmer Atlantic water. Based on bathymetric 993 

surveys, many glaciers terminate in deep water and are hence vulnerable to increased melting 994 
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caused by ocean-ice interaction (Fenty et al., 2016). Several marine-based sectors of the 995 

Greenland ice sheet totaling 1.1 m sea level equivalent are retreating rapidly (Mouginot et al., 996 

2015). As marine-based glaciers start retreating inland, the dominant process of ablation will be 997 

ice calving. OMG operates the Glacier and Ice Surface Topography Interferometer (GLISTIN-A) 998 

in order to generate high resolution, high precision elevation measurements of Greenland’s 999 

coastal glaciers. 1000 

In the next decade, to reduce uncertainties in sea level rise projections, there is a need to 1001 

understand changes occurring both in the margin and in the interior of the Greenland ice sheet, 1002 

and satellite observations should help in both areas. While changes in the interior are likely to be 1003 

subtle compared to the meter-scale vertical changes measured on the ice sheet margin and other 1004 

glaciers in the ABZ, the volume of interior ice and the area of its interface with the atmosphere 1005 

are large. Temporally continuous or overlapping satellite laser altimetry, gravimetry, 1006 

photogrammetry, and InSAR missions are required. These satellite missions will be for 1007 

quantifying changes in Greenland ice flow regime (and fluxes into the ocean), for improving our 1008 

understanding of glacier calving dynamics, and for measuring the present rate of change of each 1009 

component of land ice with high-enough temporal and spatial resolutions required for 1010 

investigating the forcing (atmospheric, oceanic, or internal). These satellite instruments are 1011 

fundamental for monitoring ice topography, elevation change, and ice mass balance during the 1012 

next decades. 1013 

For investigating feedback processes involving albedo (e.g., surface composition, 1014 

presence of impurities and biota, and deposition processes), it is important to maintain the 1015 

visible, infrared and near infrared instruments, such as VIIRS, MODIS, or the Landsat series. 1016 

Finally, for constraining snow accumulation and mass redistribution processes (e.g., blowing 1017 
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snow, snow depth) and their impacts on mass balance and on snow-atmosphere heat, recent 1018 

studies highlighted the benefit of using instruments (lidar and radar) primarily designed for 1019 

atmospheric research, such as NASA’s Cloud-Aerosol Lidar and Infrared Pathfinder Satellite 1020 

Observation (CALIPSO) (Palm et al., 2011, 2017) and NASA’s/JAXA’s Global Precipitation 1021 

Mission (GPM), but with orbits better covering the ABZ (Section 7). 1022 

4.2 Mapping Seasonal Snow Cover in the ABZ (Dorothy K. Hall) 1023 

Seasonal snow cover is a highly variable component of the Earth’s climate system, 1024 

having a strong positive feedback with Earth’s radiation balance. Because of the very high 1025 

reflectivity of snow, especially fresh snow, 80% or more of the incident solar radiation can be 1026 

reflected back to space. This has an overall cooling effect on the Earth’s surface, and is 1027 

especially important in the Northern Hemisphere springtime (e.g., Kukla, 1981; Groisman et al., 1028 

1994; Déry and Brown, 2007; Lettenmaier et al., 2015).  1029 

In years with extensive snow cover, approximately one third of the Earth’s total land area 1030 

can be snow covered during the boreal winter (Dahlman, 2018). When there is a significant 1031 

snowpack, the temperature of the surface and near surface of the ground may be warmer than the 1032 

temperature of the air. Changes in timing, density, and thickness of snow cover influence the 1033 

exchange of heat between the air and underlying ground (e.g., Goodrich, 1982). If there is a 1034 

sustained change in the timing of snow onset or snow melt with climate change, this will lead to 1035 

changes in the thermal regime of the underlying ground. Snow cover, because of its low thermal 1036 

conductivity, is an excellent insulator especially when it is dry and deep, and can affect the 1037 

presence of frozen ground or permafrost and the thickness of the active layer. 1038 
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In fact, changes in the timing and duration of snowfall and snow cover in the Northern 1039 

Hemisphere have already led to changes in the thermal state of the underlying ground according 1040 

to modeling studies (Park et al., 2015). On the North Slope of Alaska there is a trend toward 1041 

increased snowfall and warming of permafrost (Zhang et al., 1996; Osterkamp and Romanovsky, 1042 

1996). Modeling results for the period 1977–1998 revealed that permafrost warming, even at a 1043 

depth of 20 m, was attributable to both the effect of increased snow depth and increased air 1044 

temperature at Barrow, which is on the northern coast of Alaska. Changes in permafrost 1045 

temperatures on the North Slope of Alaska between 1983 and 1998 are consistent with decadal 1046 

scale variability in snow cover (Stieglitz et al., 2003). Warming of the near-surface ground in 1047 

permafrost regions can increase the rate of organic decomposition, and the resulting loss of 1048 

terrestrial carbon (Stieglitz et al., 2000).  1049 

The presence, extent and character of snow cover exert a major influence on life on 1050 

Earth. About one sixth of the Earth’s population relies on water derived from snowmelt for 1051 

agriculture and consumption (Barnett et al., 2005). In the forest, a thick snow cover may be 1052 

retained causing warmer conditions, or, alternatively, snow can be intercepted by the forest 1053 

canopy, where it may remain without reaching the ground, although the canopy often unloads the 1054 

snow to the ground later if the air temperature warms. Whether the snow stays on the canopy or 1055 

falls to the ground, this will influence the intensity of the snow albedo feedback (Thackeray et 1056 

al., 2014). Snow cover may also be important agriculturally and for wildlife habitat and feeding. 1057 

Additionally, the snow cover enables a variety of recreational activities during the winter months 1058 

and is economically significant (Sturm et al., 2017). 1059 

The documented warming trend in the ABZ of the Northern Hemisphere causes earlier 1060 

spring recovery which increases carbon uptake. Recent work by Pulliainenen et al. (2017) 1061 
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combined passive microwave satellite-derived estimates of snow clearance, with continuous in 1062 

situ CO2 flux measurements to retrieve the trends of boreal forest spring recovery for North 1063 

America and Eurasia. They found a statistically-significant positive trend of advanced spring 1064 

recovery of carbon uptake across the Northern Hemisphere boreal evergreen forest zone of 2.3 1065 

days per decade over a 36-year study period (1979 – 2014).  1066 

Earth-observing satellites carrying increasingly sophisticated sensors have revolutionized 1067 

the mapping and monitoring of the Earth’s snow cover over about the last 50 years (Lettenmaier 1068 

et al., 2015). Snow cover was first observed from space from TIROS-1, on April 1
st
, 1960. Snow 1069 

was easily distinguishable from most other natural features because of its high albedo, though it 1070 

was, and still can be difficult to distinguish snow from clouds and even from some other features.  1071 

The second major breakthrough came in 1966 when NOAA started the production of 1072 

maps of Northern Hemisphere snow cover using a variety of satellites and ground measurements 1073 

(Matson et al., 1986). At first, these snow maps were produced manually once a week, and later, 1074 

in 1999, digital production was started. Today twice-daily maps are produced by NOAA’s 1075 

National Ice Center (NIC) in the Interactive Multisensor Snow and Ice Mapping System (IMS) 1076 

(Ramsay, 1998; Helfrich et al., 2007), at a spatial resolution of up to 1 km, serving the needs of 1077 

NOAA’s operational government customers, the National Centers for Environmental Prediction 1078 

(NCEP)/Environmental Modeling Center and the NCEP/Climate Prediction Center, as well as 1079 

many other government and non-government users.  1080 

Using NOAA’s 52-year snow-cover record, the Rutgers University Global Snow Lab 1081 

(RUGSL) produces and maintains a climate data record of Northern Hemisphere snow cover 1082 

(http://climate.rutgers.edu/snowcover/) (Robinson, 1993; Frei and Robinson, 1999; Robinson et 1083 

al., 2013; Estilow et al., 2015). The NIC also produces a 4-km resolution fully-automated 1084 
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product. Both the IMS and the automated product are derived from several data sources 1085 

including the Polar-orbiting Operational Environmental Satellites (POES), and the AVHRR, 1086 

MODIS, AMSR (-E and -2), Advanced Microwave Sounding Unit (AMSU) and VIIRS 1087 

instruments. In situ observations from the Global Telecommunications System (GTS), Surface 1088 

Radar, and U.S. domestic surface observation networks have been applied since the 1990s to 1089 

augment the satellite-derived snow observations when clouds obscure the surface. 1090 

Another breakthrough in satellite snow mapping occurred with the launch of the first of 1091 

the Landsat series of sensors, called the Multispectral Scanner (MSS) in 1972. Using MSS 1092 

images, snow cover could be measured at 80-m spatial resolution from space (Rango et al., 1093 

1977), permitting snow-cover buildup and depletion to be observed and snow-cover depletion 1094 

curves to be constructed, though only once every 18 days, cloud-cover permitting from Landsats-1095 

1, 2 and 3 (http://landsat.usgs.gov/band_designations_landsat_satellites.php). The Thematic 1096 

Mapper sensor on the Landsat-4 satellite, with a 16-day repeat and a spatial resolution of 30 m, 1097 

was launched in 1982 with a shortwave infrared band centered at 1.6 µm, permitting a major 1098 

improvement in our ability to discriminate snow and clouds. In the shortwave-infrared bands, the 1099 

reflectance of snow declines, while the reflectance of most clouds remains high (because cloud 1100 

particles are smaller than surface snow grains), thus permitting snow and most clouds to be 1101 

distinguished.  1102 

Additional Landsat sensors were launched throughout the 1980s and 1990s, and the 1103 

Landsat series continues today with the 2013 launch of the Landsat-8 satellite, allowing still-1104 

more detailed satellite snow-cover mapping at the basin scale. With a repeat time of once every 1105 

16 days, as compared to 18 days for Landsats-1, -2 and -3, and a spatial resolution of 30 m (or 1106 

better for some bands) as compared to Landsats-1, -2 and -3, incremental improvements in our 1107 
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ability to map snow cover and snow melt are continuing to be made. Additionally, when more 1108 

than one Landsat is in orbit, more-frequent observations are possible (from different satellites).  1109 

The 1999 launch of the MODIS on the Terra satellite enabled another breakthrough in 1110 

satellite snow-cover mapping (Figure 7). A second, nearly identical MODIS was launched in 1111 

2002 on the Aqua satellite. These products permit twice-daily views of snow cover for most parts 1112 

of the Northern Hemisphere, when both Terra and Aqua data are available, cloud-cover 1113 

permitting. With 36 channels, of which seven are dedicated to land remote sensing, automated 1114 

global snow-mapping algorithms were developed (Hall et al., 1995), based on heritage work 1115 

using Landsat (e.g., Dozier and Marks, 1987; Dozier, 1989) and MODIS Airborne Simulator 1116 

(MAS) data (Hall et al., 1995). A suite of MODIS standard snow-cover products was produced 1117 

that continues today, serving hundreds of users internationally (Hall et al., 2002; Riggs et al., 1118 

2015, 2017). And thanks to the Earth Observing System Data and Information System 1119 

(EOSDIS), anyone in the world can download and use the snow maps for free (Wolfe and 1120 

Ramapriyan, 2010). The snow maps are archived and distributed through the National Snow and 1121 

Ice Data Center.  1122 

VIIRS, launched in 2011, has added another tool for mapping global snow cover from 1123 

space. With its 375 m spatial resolution and 22 bands in the visible, near thermal infrared and 1124 

infrared parts of the spectrum, automated algorithms are being developed by NASA to extend the 1125 

snow cover data record of MODIS (Justice et al., 2013; Riggs et al., 2016, 2017). 1126 

The 50-year RUGSL climate data record of snow-cover extent (SCE; Robinson, 2013) 1127 

has enabled breakthrough climate research to show that the maximum extent of seasonal snow 1128 

cover has been decreasing, and that snow cover has been melting earlier in springtime (e.g., 1129 

Stone et al., 2002; Déry and Brown, 2007; Derksen and Brown, 2012), contributing to climate 1130 
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warming in the Northern Hemisphere. Earlier snowmelt has been especially evident since the 1131 

mid-twentieth century (Hamlet et al., 2005; Mote et al., 2005). In fact, Foster (1989) and Foster 1132 

et al. (1992) found that the date on which the tundra became snow-free in Barrow, Alaska, had 1133 

occurred progressively earlier since the 1940s. Now, spring weather is arriving about 2 ½ weeks 1134 

earlier than it did 50 years ago in parts of the Arctic (Sturm et al., undated). As more lower-1135 

albedo land area is exposed, more incoming solar radiation can be absorbed by Earth’s surface, 1136 

and re-emitted as longwave radiation or heat.  1137 

Though earlier snowmelt has been documented for the Northern Hemisphere as a whole 1138 

using the RUGSL climate data record (Figure 8), increasing temperature and earlier snowmelt in 1139 

the western U.S. has also been documented using other observations and higher-resolution 1140 

imagery, and the date of snowmelt onset has been reported to be earlier by 20 days or more, as 1141 

compared to the middle of the last century (e.g., Cayan et al., 2001; Dettinger et al., 2004; 1142 

Stewart et al., 2005; Lundquist et al., 2009; Liston and Hiemstra, 2011; Frei et al., 2012). Using 1143 

44 years of Landsat-derived snow maps, earlier snowmelt by ~16 days has been documented in 1144 

parts of the Wind River Range, Wyoming (Hall et al., 2015).  1145 

The more-elusive measurement that is most desired by hydrologists is snow water 1146 

equivalent (SWE). The volume of water contained in the snowpack, the SWE, can vary greatly 1147 

from year to year even in the same location. Algorithms to map snow depth and SWE have been 1148 

developed and time series have been created since 1978 following the launch of passive 1149 

microwave sensors on the SSMI, providing estimates of SCE and SWE in snow-covered regions 1150 

throughout the world (e.g., Chang et al., 1987; Kelly et al., 2003). Important advantages of 1151 

passive microwave remote sensing of snow cover are its ability to map snow through cloud cover 1152 

and to sense radiation emanating from the snow/soil interface thus permitting the measurement 1153 



52 

of SWE. However, there are many factors that confound passive microwave measurements of 1154 

SWE from space, including (but not limited to) coarse resolution, obscuration by dense 1155 

vegetation and forest cover, snowpack layering and snowpack wetness. For these and other 1156 

reasons, the measurement of snow depth and SWE from space is not feasible using the passive 1157 

microwave instruments that are currently available from satellites. In addition, Takala et al. 1158 

(2011) have developed an algorithm that assimilates synoptic weather station data of snow depth 1159 

along with satellite passive microwave radiometer data for the Northern Hemisphere. The 1160 

retrieval performance for SWE is increased using this approach especially for SWE <150 mm. 1161 

However, the measurement of SWE in the Northern Hemisphere is greatly hampered by 1162 

confounding factors, such as forest cover (e.g., Foster et al., 2005). Both passive microwave 1163 

sensors, such as the SSMI, and active sensors, such as the SeaWinds on QuikSCAT (e.g., 1164 

Nghiem and Tsai, 2001), are also useful for measuring snow-covered area albeit at a coarse 1165 

resolution of ~25 km. Higher-resolution sensors operating in the visible and near-infrared 1166 

wavelength ranges are still the primary sensors used for snow mapping in spite of the major 1167 

limitation of their inability to obtain data through darkness and cloud cover. 1168 

Looking toward the future, it is desirable to extend the 19-year global data record of the 1169 

NASA MODIS standard snow-cover maps, with VIIRS standard snow-cover maps that began in 1170 

2011, to enable development of a CDR at a spatial resolution of 375 to 500 m to complement the 1171 

longer, but coarser-resolution RUGSL CDR of SCE of the Northern Hemisphere. The next 1172 

breakthrough in satellite remote sensing of snow may not be possible without the launch of 1173 

satellite-borne microwave sensors that allow mapping of snow extent, depth and SWE globally.  1174 

4.3 Permafrost (Jouni Pulliainen, Kimmo Rautiainen)  1175 
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The warming ABZ is causing shorter periods of seasonal ground frost and degrading 1176 

permafrost, which is defined as ground that stays below 0°C for two or more consecutive years 1177 

and covers about a quarter of the Northern Hemisphere land area (Van Everdingen, 1998; Smith 1178 

and Brown, 2009). Warming has caused an overall increase of permafrost temperature 1179 

(Biskaborn et al., 2019), decrease of permafrost depth and an increase of active layer thickness 1180 

(ALT; Luo et al., 2016b), which is defined as the soil layer above the permafrost exposed to 1181 

seasonal soil freezing and thawing, in summer. The rate of permafrost thaw will depend on 1182 

factors that determine the thermal dynamics of permafrost soils. As reviewed by Loranty et al. 1183 

(2018), these factors include vegetation (Sections 4.4-4.5), soil composition, snow cover (Section 1184 

4.2), hydrology (Section 4.7), wildfire (Section 4.6), and animal and human activities, and their 1185 

interactions are expected to evolve as the climate warms. Thawing permafrost will likely have a 1186 

significant impact on biogeochemical cycles, including soil carbon reservoirs (e.g., Grosse et al., 1187 

2016, and references therein; references in Section 4.5). Seasonal soil freeze has an important 1188 

effect on annual surface energy balance, surface and subsurface water flows - contributing to 1189 

possible inundation, and impacts on the carbon cycle (e.g., Skogland et al., 1988, Zhang, 2003, 1190 

Langer et al., 2011). Soil freezing also affects biogeochemical processes, the photosynthetic 1191 

activity of plants and the microbial activity within soils (Hollinger et al., 1999, Liebner et al., 1192 

2015). Vegetation characteristics, top-soil organic layer thickness, snow cover properties, soil 1193 

type and soil moisture conditions have a significant influence on soil freezing and thawing 1194 

processes.  1195 

An important concern of permafrost thaw is the carbon stored in ABZ frozen soils (e.g., 1196 

Turetsky et al., 2019), a reservoir estimated to be large (Tarnocai et al., 2009; Hugelius et al., 1197 

2014). This reservoir is 4-5 times greater than the amount of carbon estimated to have been 1198 
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released to the atmosphere from anthropogenic activities since 1750 (Flato et al., 2013), and has 1199 

been dubbed a potential “carbon bomb” that will greatly exacerbate global warming if rapidly 1200 

released (e.g., Treat and Frolking, 2013). The rate and depth of permafrost thaw will likely vary 1201 

substantially from region to region (e.g., Schaefer et al., 2014; Loranty et al., 2018) and be 1202 

driven mainly by air temperatures and exacerbated by wildfires (Zhang et al., 2015a, and 1203 

references therein; Abbott et al., 2016; Minsley et al., 2016; Loranty et al., 2018). However, 1204 

carbon release is currently expected to be relatively slow (e.g., National Research Council, 2013; 1205 

Shuur et al., 2018) and, thus, overshadowed by anthropogenic releases of carbon from fossil fuel 1206 

burning and global deforestation (Schuur et al., 2015). The potential offset by photosynthetic 1207 

uptake caused by increasing vegetation density or ‘greening’ of a warmer Arctic is uncertain 1208 

(e.g., Pearson et al., 2013; Abbott et al., 2016; Parazoo et al., 2018). 1209 

The Earth system models used for the IPCC AR5 did not simulate permafrost thaw and 1210 

the concomitant release of carbon to the atmosphere. Models that do simulate these processes 1211 

need improvements to credibly account for the complex interactions that are observed (Schuur et 1212 

al., 2015; Loranty et al., 2018) as they show a wide range of present-day permafrost extent as 1213 

well as predicted permafrost degradation (e.g., Schaefer et al., 2014). Recently, several studies 1214 

have been conducted to simulate and predict the effect of climate change on permafrost using 1215 

climate models from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) 1216 

(e.g., Koven, Riley and Stern, 2013; Slater and Lawrence, 2013; Guo and Wang, 2016; McGuire 1217 

et al., 2018). The predictions are highly dependent on the Representative Concentration 1218 

Pathways (RCP) future greenhouse gas emission scenarios used. Though all studies predict 1219 

losses in permafrost extent, there are large variations in the results. The most recent study by 1220 

McGuire et al. (2018) estimates the permafrost areal losses from 2010 to 2299 to be between 3 1221 
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and 5 million km
2
 and between 6 and 16 million km

2
 for RCP4.5 and RCP8.5, respectively. 1222 

Despite these differences in predictions between the CMIP5 models, the models consistently 1223 

show that the decrease in permafrost extent is linked to warming air temperature (Slater and 1224 

Lawrence, 2013).  1225 

The key parameters defining the permafrost physical state are the extent and temperature 1226 

of the permafrost. ALT is also a useful parameter. Systematic permafrost measurements began in 1227 

the late 1970s (Zhou et al., 2000; Osterkamp, 2007; Smith et al., 2010), although some 1228 

measurements in Russia were conducted as early as the early 1930s (Romanovsky et al., 2010) 1229 

and in North America in the late 1940s (Brewer, 1958). The permafrost temperature is measured 1230 

from the boreholes drilled into the permafrost. ALT has been historically observed using thaw 1231 

tubes or by measuring the soil temperature profiles. Measurements of seasonal soil frost are 1232 

identical with ALT, but the tube is called a frost tube. A frost/thaw tube is filled with liquid 1233 

having a freezing point at 0°C, typically added with a color indicator. 1234 

The permafrost temperature at depth of zero annual amplitude (ZAA; i.e., where 1235 

permafrost temperature is not affected by seasonal variations in surface air temperature) has been 1236 

used as an indicator for detecting the long-term variations in permafrost physical state. At most 1237 

borehole sites, the long-term trend in permafrost ZAA temperature has been increasing (e.g., 1238 

Vaughan et al., 2013; Biskaborn et al., 2019). The Global Terrestrial Network for Permafrost 1239 

(GTN‐P) was developed in the 1990s “with the long-term goal of obtaining a comprehensive 1240 

view of the spatial structure, trends and variability of changes in the active layer thickness and 1241 

permafrost temperature.” (http://gtnp.arcticportal.org). The GTN-P has two components: the 1242 

Circumpolar Active Layer Monitoring (CALM) network, focusing on active-layer 1243 

characteristics, and the Thermal State of Permafrost (TSP) network, focusing on measurement of 1244 
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ground temperatures in boreholes. Currently, TSP includes 1091 boreholes, whereas CALM has 1245 

242. 1246 

While permafrost cannot be directly observed using satellite remote sensing techniques, 1247 

freezing and thawing of the surface of the active layer and, in general, the behavior of seasonal 1248 

soil frost can be monitored using active and/or passive microwave instruments. The detection is 1249 

based on soil permittivity changes due to soil freezing. The large permittivity contrast between 1250 

liquid water and ice at low microwave frequencies is used to detect the soil transitions between 1251 

frozen and thaw states. Several studies have been conducted to detect soil or landscape freezing 1252 

and thawing. Global products have been developed using active microwave data, such as from 1253 

the Advanced Scatterometer (ASCAT; Naeimi et al., 2012), or passive microwave data at either 1254 

high frequencies (e.g., 37 GHz records from SMMR, SSMI, and SSMIS at 25 km resolution 1255 

from 1970 to 2016 (Kim et al., 2017) and 19-37 GHz records from AMSR-E and AMSR2) or 1256 

very low frequencies (L band; 1.4 GHz) with the Soil Moisture and Ocean Salinity (SMOS 35-50 1257 

km resolution; Rautiainen et al., 2016) and Soil Moisture Active Passive (SMAP 3-9 km 1258 

resolution; Dunbar et al., 2015; Derksen et al., 2017) missions. Additionally, many studies are 1259 

concentrating on regional scale freeze/thaw detection using both high spatial resolution SAR 1260 

instruments and lower resolution radiometers and scatterometers (Colliander et al., 2012; Podest 1261 

et al., 2014; Jagdhuber et al., 2014; Roy et al., 2015; Xu et al., 2016; Chimitdorzhiev et al., 2016; 1262 

Du et al., 2015; Du, Kimball, and Moghaddam, 2015). The L-band missions, SMOS (2010-1263 

present), Aquarius (2011 – 2015) and SMAP (2015-present), have shown the greatest potential 1264 

for monitoring the surface soil state globally (Brucker et al., 2014ab; Roy et al., 2015; Rautiainen 1265 

et al., 2016; Derksen et al., 2017). Figure 9 shows the date of soil freezing onset for 2012 as 1266 
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determined from the SMOS freeze/thaw product. For comparison, the map of Northern 1267 

Hemisphere permafrost areas is also shown. 1268 

Indirect methods to map and assess changes in permafrost are typically based on the 1269 

identification and change detection of characteristic landforms and surface features (e.g., 1270 

Westermann et al., 2015). Additionally, characteristic vegetation types can be mapped by optical 1271 

satellite instruments in some regions (Westermann et al., 2015). Since dynamic permafrost 1272 

processes include phase changes of water, they often induce changes in surface characteristics 1273 

over time. This makes interferometric SAR and other methods feasible to generate digital 1274 

elevation models (DEM) and map changes in elevation or surface roughness characteristics 1275 

applicable for permafrost monitoring (Kääb et al., 2005; Alasset et al., 2010). The InSAR 1276 

method is a powerful tool to monitor both (1) short term changes in landscape (summer surface 1277 

displacements) due to soil freeze/thaw cycle in the active layer (Strozzi et al., 2018; Rouyet et 1278 

al., 2019) and long-term changes in landscape potentially due to the changes in permafrost 1279 

condition (Liu, Zhang, and Wahr, 2010; Rouyet et al., 2019). Rouyet et al. (2019) also show that 1280 

InSAR observations can be used to contribute to investigations of geomorphology and ground 1281 

thermal conditions. Even larger degradation effects include surface deformations due to 1282 

landslides, formations of thermokarst terrain and expansions of thaw lakes. Additionally, 1283 

instruments measuring land surface temperature and snow cover properties provide quantitative 1284 

information relevant to the modelling of permafrost processes (Marchenko et al., 2009; Langer et 1285 

al., 2013).  1286 

Monitoring permafrost in a changing climate is recognized to be important and, as such, 1287 

permafrost is included in the Essential Climate Variable lists (World Meteorological 1288 

Organization (WMO) and United Nations Framework Convention on Climate Change 1289 
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(UNFCCC)). ESA’s GlobPermafrost was initiated in 2016 with one objective to develop and 1290 

validate means of indirect permafrost monitoring with multi-sensor satellites 1291 

(https://www.globpermafrost.info/). WMO’s Polar Space Task Group (PSTG) founded a SAR 1292 

Coordination Working Group (CWG) to organize space agencies to establish a collection of SAR 1293 

satellite data for cryospheric research and applications, one thematic area being permafrost 1294 

(Polar Space Task Group, 2016). Currently, many satellites are providing satellite data for 1295 

indirect permafrost monitoring (e.g., ESA’s Sentinel series of high resolution SAR data and 1296 

optical data). However, no dedicated mission for permafrost has been established.  1297 

The main deficiency in current satellite data regarding the indirect monitoring of 1298 

permafrost is low spatial coverage and infrequent, irregular observations. Typically, for example, 1299 

SAR missions have a repetition time of many days and narrow antenna swaths, a configuration 1300 

not suitable for providing high spatial and temporal resolution data. The L-band radiometer 1301 

missions, SMOS, Aquarius, and SMAP, have shown potential for global monitoring of the 1302 

cryosphere (e.g., seasonal frost and active layer surface freeze/thaw state; Brucker et al., 2014ab; 1303 

Roy et al., 2015; Rautiainen et al., 2016; Derksen et al., 2017). The deficiency of these satellite 1304 

datasets is their coarse spatial resolution (i.e., tens of kilometers) and the short temporal history. 1305 

Additionally, no new passive L-band satellite missions have been confirmed, potentially 1306 

jeopardizing the continuity of the passive L-band observations. Even though coarse spatial 1307 

resolution restricts the feasibility of radiometry, observations by L-band sensors are potentially 1308 

highly useful for permafrost thermal models through the use of data assimilation techniques, thus 1309 

reducing the limitations induced by the coarse spatial resolution. 1310 

Ideally, to further improve thermal permafrost models and the general understanding of 1311 

permafrost processes, a suite of satellite sensors optimized for monitoring the cryosphere needs 1312 
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to be established to provide global, daily data sufficient for assimilation (i.e., measurements that 1313 

are influenced by snow extent, snow water equivalent, surface soil status or soil moisture, and 1314 

that are accompanied with in situ monitoring data for calibration and validation). A plan for 1315 

continuously maintained missions is required in order to avoid possible data gaps between 1316 

satellites. An ideal cryospheric satellite network could include several high resolution SAR 1317 

satellites for monitoring landscape changes with a high repetition frequency (e.g., C- and/or L-1318 

band interferometric single pass SAR tandem missions).  1319 

4.4 Tundra Vegetation: Drivers, Feedbacks and Indicators of Systemic Change (Bruce C. 1320 

Forbes, Timo Kumpula) 1321 

The low arctic portions of the ABZ tundra biome exist as a relatively narrow strip of land 1322 

typically within 100-300 km from the margins of the Arctic Ocean (Walker et al., 2005). It is 1323 

characterized by low temperatures and precipitation, low biotic diversity, permafrost soils with 1324 

limited nutrient availability, and short growing seasons and reproduction cycles. Vegetation 1325 

structure is simple and monotonous relative to more temperate regions. However, the ecotone 1326 

between closed low arctic tundra vegetation and the boreal forest to the south varies widely. 1327 

Transitions can be relatively sharp, such as in the deciduous boreal highlands of northern 1328 

Fennoscandia, or extend 100-200 km or more, such as in the coniferous lichen-woodland 1329 

lowlands of the West Siberian Plain (Virtanen et al., 2015). To the north, mainly on islands in the 1330 

High Arctic of Canada and Russia, except for the mainland Taimyr Peninsula where they are 1331 

contiguous with low arctic tundra, polar deserts occur. Polar deserts lie geographically within the 1332 

tundra biome sensu lato, but are characterized by open ground with patches of vegetation where 1333 

there is enough moisture (cf. Serreze and Barry 2005, Fig. 2.12; Forbes, 2013).  1334 

Expected diminishment of the extent of the tundra biome as a whole is of strong interest 1335 
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given the huge potential loss of habitat for plants, animals and humans who depend on them, as 1336 

well as potential positive feedbacks to global climate change (Larsen et al., 2014; Osborne et al., 1337 

2018). Major terrestrial feedbacks are expected: (1) northward migration of the treeline into the 1338 

tundra and increases in tundra shrub height and cover, all of which would act to decrease Arctic 1339 

tundra albedo and further increase regional warming (Callaghan et al., 2005; te Beest et al., 1340 

2016); (2) stores of greenhouse gases are believed to have highly significant potential to 1341 

accelerate climate change (Larsen et al., 2014); and (3) the massive reservoirs of soil organic 1342 

matter in the northern boreal and tundra biomes may be vulnerable both to permafrost thawing 1343 

and warming (Karhu et al., 2014; Schuur et al., 2015), as well as to encroachment by plant 1344 

communities, which may accelerate decomposition and loss of soil carbon to the atmosphere 1345 

(Hartley et al., 2012; Loranty et al., 2018). There are also several studies where satellite time 1346 

series have shown arctic browning. Browning can be caused by a number of factors, such as the 1347 

effect of 1) herbivory (e.g., reindeer grazing, lemmings, geese, insect damage, including 1348 

autumnal moth outbreaks in Northern Fennoscandia, for example), 2) winter rain-on-snow 1349 

(ROS) events when deep freezing of the ground layer damages dwarf shrubs, and 3) fire ignited 1350 

by lightning or anthropogenic activity (Phoenix & Bjerke 2016; Bjerke et al., 2017; Veraverbeke 1351 

et al., 2017; Treharne et al 2018). 1352 

Even without a warming climate, vegetation composition, cover and height in the ABZ 1353 

are typically highly dynamic over diverse temporal and spatial scales. These are the properties 1354 

most commonly measured at ground level in both stand-alone and shared protocol studies 1355 

throughout much of the circumpolar Arctic (e.g., International Tundra Experiment; Elmendorf et 1356 

al., 2012a, b). Patterns and processes of vegetation change are best understood in the context of 1357 

various local and regional disturbance regimes. Disturbance ecology encompasses natural and 1358 
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cyclic phenomena, such as fires and insect outbreaks, but also anthropogenic forces like large-1359 

scale oil and gas extraction (Kumpula et al., 2011, 2012) and the huge semi-domesticated 1360 

reindeer herds of Northwest Eurasia (Forbes and Kumpula, 2009; Forbes et al., 2016). This 1361 

vegetation shift is expected to have a positive feedback on climate warming as taller vegetation 1362 

protrudes above the snowpack and decreases landscape albedo (Menard et al., 2014). 1363 

Our understanding of tundra vegetation dynamics has advanced greatly in recent decades, 1364 

particularly in the West, because of the advent of experimental population and community 1365 

ecology. Permanent plots came into vogue in the 1970s and now have proved their value since 1366 

the 2007-2008 International Polar Year led to resurveying many of the oldest and most carefully 1367 

sampled sites. In a review of circumpolar studies (Callaghan et al., 2011), the majority of the 1368 

plots were in the range of 40 years old, which encompasses the era of late 20
th

 century ABZ 1369 

warming. Elmendorf et al. (2012a, b) provide a complement to the latter by focusing on 1370 

population - and community-scale experimental warming trials, albeit of shorter duration, 1371 

pointing to a future decline in tundra biodiversity. However, while the latter two syntheses claim 1372 

to be “circumpolar,” there are no sites in Russia, which comprises nearly half of the tundra 1373 

biome.  1374 

Satellite imagery archives have an extensive legacy (e.g., Corona, Keyhole (KH-9), 1375 

Landsat, Satellite Pour l’Observation de la Terre (SPOT), Advanced Spaceborne Thermal 1376 

Emission and Reflection Radiometer (ASTER), and AVHRR-based product like Global 1377 

Inventory Monitoring and Modelling System (GIMMS) Normalized Difference Vegetation Index 1378 

(NDVI, = [NIR – Red]/[NIR + Red], where “NIR” is spectral reflectance data in the near-1379 

infrared region and “Red” is in the visible region) third generation (NDVI3g), SPOT10, MODIS, 1380 

Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) and new Sentinel-1/2 imagery; e.g., Figure 1381 
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10) that enable detection and examination of land cover trends and anomalies over the past 45 1382 

years. Capabilities for tundra vegetation classification and photosynthetic activity/biomass have 1383 

advanced considerably since the Landsat era. Long-term observations and datasets mean that 1384 

most spatial patterns can be analyzed at decadal time scales. However, we currently lack a 1385 

reliable method for detecting changes in the height of tundra vegetation, in particular erect 1386 

shrubs, the annual growth of which appears to be increasing in several regions (Macias-Fauria et 1387 

al., 2012; Myers-Smith et al., 2015). Novel approaches include also the applied use of very high-1388 

resolution satellite imagery (e.g., IKONOS-2, Quickbird-2, Worldview-2/3, Pleiades; e.g., Figure 1389 

11), and newly launched (October 2016) WorldView-4 data with a spatial multispectral 1390 

resolution of 1.24 m (Kumpula, 2006; Virtanen and Ek, 2016). Aerial photograph archives 1391 

enable examination of land cover trends over the past 60–70 years, although availability and 1392 

spatial coverage allow rather small scale and local studies. New radar and lidar products like 1393 

Terra Synthetic Aperture Radar X-band wavelength (TerraSAR-X) data have high potential to be 1394 

used in vegetation cover change applications, for example permafrost thaw-caused landslides and 1395 

Arctic lake drainage, and other environmental modelling applications (Stettner et al., 2017).  1396 

A serious challenge of earlier remote sensing approaches for detecting climate-induced 1397 

vegetation changes has been the reliability of datasets describing greening and browning trends 1398 

as well as choosing the suitable spatial resolution for mapping change in different geographic 1399 

regions. NDVI is a widely used proxy of vegetation productivity in global and regional remote 1400 

sensing studies (Verbyla, 2008; Raynolds et al., 2008; Walker et al., 2009; Beck and Goetz, 1401 

2011; Beck et al., 2011, Bjerke et al., 2014). However, a major drawback of the earlier studies 1402 

has been the rather coarse resolution of NDVI products (8 x 8 km
2
 grid size) that do not allow 1403 

detection of land cover change at more detailed scales. This has resulted in difficulties in 1404 
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distinguishing climate-induced vegetation change from interannual phenological differences 1405 

related to variations in short-term climate and weather conditions. Interannual fluctuations 1406 

include variations in snow melting, the intensity and duration of the annual flood season, 1407 

seasonal variations in the extent of lakes, variations in permafrost melting, and human activities 1408 

(Lara et al., 2018; Rocha et al., 2018). As an example, Guay et al. (2014) reported notable 1409 

differences between NDVI datasets in greening and browning trends that describe increases and 1410 

decreases in vegetation productivity, respectively. The difficulties in resolving these cross-scale 1411 

issues still remain, yet UAS (see below) will likely facilitate reconciliation between ground-level 1412 

and satellite-based productivity sensors in the near future. 1413 

Another major challenge in detection of climate-induced vegetation transitions is the 1414 

impacts of different forms of land use on vegetation in circumpolar areas. For example, reindeer 1415 

grazing can significantly constrain the shrubification process and result in lower NDVI values in 1416 

intensively grazed regions. Lichen-dominated tundra with whitish reindeer lichens has high 1417 

albedo, however intensive reindeer grazing has also been observed to enhance tree and shrub 1418 

growth (Tømmervik et al., 2009, 2012). Grazing-induced changes in vegetation may also 1419 

influence the local greenhouse gas balance (Cahoon et al., 2012; Väisänen et al., 2014; Ylänne et 1420 

al., 2015), in particular on wetlands where grazing may also alter methane (CH4) emissions 1421 

(Stark and Ylänne, 2015). Compared to reindeer grazing, more localized land use impacts can be 1422 

caused by, for example, mining and related infrastructure development that denude vegetation 1423 

cover (Forbes et al., 2009; Kumpula et al., 2011, 2012). At the southern tundra border, forestry 1424 

also creates a continuously changing mosaic of clear-cuts and forest patches with different age 1425 

structure that strongly affect NDVI trends (e.g., with MODIS vegetation indices - 250 m spatial 1426 

resolution and 16-day composites for each instrument or 8-day composites if instrument data are 1427 
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combined) (Kivinen and Kumpula, 2014). Satellite instruments with finer spatial resolution and 1428 

more frequent revisit times than MODIS would better allow the quantification of land use on 1429 

vegetation. 1430 

We recommend that the suborbital network be enhanced as it is essential in 1431 

understanding the spatiotemporal dynamics of ongoing and future changes in the ABZ and for 1432 

interpreting and evaluating satellite data. The study of spectral signature characteristics (e.g., 1433 

spectral libraries, leaf area index (LAI)) of the various tundra vegetation cover types can be used 1434 

in interpretation of satellite data. Also other ground measurements of vegetation cover, biomass, 1435 

carbon release with eddy towers, etc. are needed to link in situ field sampling and satellite 1436 

observations. UAS remote sensing used with new hyperspectral, thermal and lidar sensors allows 1437 

the building of clear linkages between ground and coarser-scale remote sensing data. 1438 

In addition, an enhanced suborbital network, in combination with satellite data, will 1439 

enable advances in process-based understanding. For instance, reliable quantification of changes 1440 

in high-latitude ecosystem productivity and land-atmosphere carbon balance form a cornerstone 1441 

in understanding and estimating future climate-induced change. So far, previous studies have 1442 

combined biotope-scale NDVI-values with carbon balance data (Shaver et al., 2013) or 1443 

incorporated models of carbon cycling to scenarios of global warming over vast areas (Sitch et 1444 

al., 2007; Abbott et al., 2016). However, the interpolated scale has been large and does not 1445 

account for small-scale differences in land use. Combining satellite data of vegetation with in 1446 

situ measurements of land–atmosphere carbon fluxes provides a way to quantify greenhouse gas 1447 

balances over vast landscapes. The fine-scale imagery of novel approaches (e.g., UAS and lidar 1448 

data) provides a tool to link in situ measurements of local carbon balance to land-use patterns, 1449 

such as grazing. 1450 
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We recommend that there is continuity of satellite data, which is essential for ecological 1451 

studies. Various polar orbiting satellites with multiple resolution and spectral characteristics are 1452 

needed to follow and quantify changes in albedo, NDVI, snow, water, vegetation, phenological 1453 

state, etc. in the ABZ. These parameters can be used to explain changes caused by either natural 1454 

processes or anthropogenic activity (e.g., reindeer herding, petroleum and other extraction 1455 

industry activities). MODIS data at a coarser resolution and Sentinel-2 data with a finer 1456 

resolution provide adequate satellite coverage of the ABZ, although clouds coverage is still a 1457 

limiting factor in high quality data acquisition. 1458 

Sensors change over time, which potentially limits their utility for long-term ecological 1459 

studies. It is important that data continuity is thoroughly evaluated when new satellite sensors 1460 

and systems are developed. Ideally, sensors (old and new) should operate and overlap for a 1461 

period that is long enough for data to be reliably calibrated. Landsat, as the longest running 1462 

program since 1972, has changed throughout the mission, yet continues to be invaluable. There 1463 

is an enormous amount of data to run ABZ vegetation monitoring from various platforms with 1464 

multiple scales. Further applications will increasingly combine optical and passive data for 1465 

analyzing vegetation-cryosphere-climate interactions for ABZ ecosystem change research. 1466 

4.5 Boreal Vegetation (Brendan M. Rogers, Alemu Gonsamo, Paul M. Montesano, 1467 

Christopher S. R. Neigh, Jennifer D. Watts, Amber J. Soja) 1468 

'Taiga' is the Russian term often used to describe the conifer forests that dominate ABZ 1469 

vegetation. These boreal forests cover roughly one third of Earth’s forested area and have 1470 

enormous importance for regional and global climate (Gauthier et al., 2015). Although 1471 

biodiversity is relatively low as compared to forests at lower latitudes, the structure and 1472 

composition of boreal forests is complex and varies dramatically by environmental conditions, 1473 
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such as permafrost prevalence, nutrient availability, soil moisture, temperature, disturbance 1474 

history, and evolutionary process (Rogers et al., 2015; Ranson et al., 2011; Montesano et al., 1475 

2009: Shugart et al., 1991). Local interactions between microclimate, topography, snow depth, 1476 

wind, and edaphic conditions impact forest canopy height and cover (Callaghan et al., 2002; 1477 

Elmendorf et al., 2012a; Holtmeier and Broll, 2005). Boreal vegetation has experienced rapid 1478 

environmental change during the last half-century, but remains poorly represented by in situ 1479 

monitoring networks (Schimel et al., 2015). Along with ABZ temperature trends roughly double 1480 

the rest of the globe (Hartmann et al., 2013), it has responded to increasing atmospheric CO2 1481 

concentrations, nitrogen deposition, intensifying fire regimes, and changes in hydrology and 1482 

nutrient availability as a result of deepening active layers and thawing permafrost (Thomas et al., 1483 

2016; Xia et al., 2017; AMAP, 2017). 1484 

Observations of ABZ vegetation from remote sensing platforms began as early as the 1485 

1920s, largely based on aerial photograph interpretation. Aerial photography, mostly in Canada, 1486 

complemented ground surveys for forest type classification with topographic information from 1487 

stereoscope images and visible characteristics of vegetation (Johnston and Sharpe, 1922; Losee, 1488 

1942). Decades later, the contrast in reflectance of infrared and visible wavelengths by 1489 

vegetation was leveraged through color infrared photograph films (CIR) to characterize 1490 

vegetation types, soil moisture, and vegetation stress. Beginning in the mid-1980s, active laser 1491 

technology (lidar) emerged as a powerful technology to directly estimate properties relevant for 1492 

forest inventory and monitoring (Wulder et al., 2012a). Airborne lidar sampling was initially 1493 

conducted for management practices in Canada, but has since evolved into a fundamental tool 1494 

for large-scale science applications. Russian boreal forests remain challenging for western 1495 

scientists to access, even though they represent roughly two thirds of the boreal forest biome 1496 
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(Hare and Ritchie, 1972). Nonetheless, these forests have been extensively surveyed, primarily 1497 

during the twentieth century using Gulag settlement workers, which resulted in extensive maps 1498 

and carbon accounting databases (Isachenko, 1988; Isaev, 1990; Alexeyev and Birdsey, 1998). 1499 

In the early 1990s, the landmark Boreal Ecosystem Atmosphere Study (BOREAS) 1500 

campaign was initiated by NASA with support from the Canada Centre for Remote Sensing 1501 

(CCRS) and the Natural Sciences and Engineering Research Council of Canada (NSERC) 1502 

(Sellers et al. 1997). BOREAS was actively funded for eight years and included a wide array of 1503 

field and remote sensing scientists. BOREAS tested the limitations of which boreal vegetation 1504 

properties can be characterized by remote sensing and advanced the capability of multiple 1505 

sensors, algorithms, and models (Gamon et al., 2004). NASA has continued to fund coordinated 1506 

airborne campaigns in the ABZ, including the Carbon in Arctic Reservoirs Vulnerability 1507 

Experiment (CARVE) (Miller et al., 2016) and the Arctic-Boreal Vulnerability Experiment 1508 

(ABoVE), which together have improved our ability to understand large-scale ABZ vegetation 1509 

dynamics and advanced fundamental remote sensing science (Miller et al., 2019). For instance, 1510 

ABoVE has provided a high level of detail in Alaska and western Canada using multiple sensors 1511 

including image spectrometers for broad applications (AVIRIS-NG) and solar-induced 1512 

fluorescence (CFIS), L- and P-band radar, and lidar.  1513 

Although field and airborne observations are fundamental, our ability to monitor large-1514 

scale changes in boreal vegetation is only truly possible through long-term and continuous 1515 

observations from space-based platforms. Their success for monitoring boreal vegetation relies 1516 

primarily on: (i) visible through shortwave-infrared; and (ii) microwave wavelengths. Visible 1517 

through shortwave-infrared science has mostly used passive multispectral imagery, although 1518 

imaging spectroscopy and active lidar have been used and are promising for future satellite 1519 
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missions (see below). Vegetation indices calculated directly from multispectral surface 1520 

reflectance, such as the NDVI, enhanced vegetation index (EVI), and photochemical reflectance 1521 

index (PRI), are correlated with many ecosystem properties related to vegetation extent, 1522 

composition, and productivity. Directional spectral reflectances captured by multi-angle 1523 

observations can also be used to derive bidirectional reflectance distribution functions (BRDFs) 1524 

and land surface albedo, which is an essential and changing climate variable (Liang and Strahler, 1525 

1994; Lucht et al., 2000). Either through direct correlations or by constraining forward process 1526 

models (e.g., radiative transfer and geometric-optical reflectance models), multispectral imagery 1527 

can be used to estimate key boreal vegetation properties, although there are inevitable issues 1528 

related to view angles, understory vegetation, cloud cover, and consistency between sensors. For 1529 

example, LAI and the fraction of absorbed photosynthetically active radiation (fAPAR) are 1530 

critical constraints on carbon cycling and have been derived from a variety of sensors (Zhu et al., 1531 

2013a; Myneni et al., 2015). Properties such as percent tree cover (Montesano et al., 2016b) and 1532 

land cover type, including forest genera and even species (Beaudoin et al., 2014), are essential 1533 

for quantifying large-scale vegetation distributions and their changes. Finally, forest volume 1534 

characteristics, such as biomass, tree height, and related canopy properties, can be derived most 1535 

successfully from lidar (Neigh et al., 2013). 1536 

Long-term datasets from multispectral sensors now span 30-40 years. The Landsat 1537 

satellites have been the primary data source at relatively high spatial resolution (~30 m). Landsat 1538 

science was revolutionized in 2008 when the USGS provided open access to the archive in a 1539 

consistent and user-friendly format (Wulder et al., 2012b; Kennedy et al., 2014). With 1540 

subsequent consolidation of the Landsat archive (Wulder et al., 2016) and increases in 1541 

computing power, a variety of processing tools (e.g., Google Earth Engine) and circumpolar data 1542 
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products related to tree cover, productivity, and disturbance history (e.g., Hansen et al., 2013; 1543 

Sexton et al., 2013; Montesano et al., 2016b; Ju and Masek, 2016; White et al., 2017) are now 1544 

available to the community. Although at a much coarser spatial resolution (1 - 8 km), the 1545 

AVHRR family of satellites has provided continuous data since 1978, and particularly since 1546 

1981 with the operation of AVHRR/2 on board NOAA-7. AVHRR was used for circumpolar 1547 

assessments much sooner than Landsat (e.g., Fung et al., 1987; Myneni et al., 1997; Walker et 1548 

al., 2003; Angert et al., 2005; Goetz et al., 2005) because of its smaller computing requirements 1549 

and consistent global area coverage; Landsat has a considerably longer revisit frequency of 16 1550 

days as compared to every day with AVHRR and more variable spatial coverage due to sparse 1551 

downlink stations across the ABZ, especially prior to 2000. However, the long-time series of 1552 

AVHRR comes at the cost of very coarse spatial resolution and inconsistent estimates of 1553 

vegetation indices with higher resolution MODIS (Jiang et al., 2017). Although not as long-1554 

running (2000-present), MODIS has become the gold standard for land-based remote sensing at a 1555 

moderate resolution (250 m - 1 km) in terms of radiometric fidelity and configuration for 1556 

terrestrial science, as well as open access to well-documented products spanning a range of 1557 

boreal vegetation properties. The launch of the Visible Infrared Imaging Radiometer Suite 1558 

(VIIRS) on the Suomi NPP satellite in 2011 and on NOAA-20 (formerly JPSS-1) in 2017 1559 

continues the MODIS record. Finally, European sensors, such as VEGETATION on SPOT 4 and 1560 

5 (1998-present, ~1 km resolution) and MERIS on Envisat (2002-2012, 300 m resolution), have 1561 

offered a similar standard of high-quality moderate-resolution observations and data products for 1562 

relatively long time periods. 1563 

Microwave remote sensing, both active and passive, has been equally valuable for 1564 

quantifying ABZ vegetation properties and long-term changes. Passive radiometry detects 1565 
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microwave energy naturally emitted from the Earth but requires a relatively large, frequency-1566 

dependent field of view (5 to > 40 km) for adequate signal detection (Woodhouse, 2006). Radar 1567 

sensors actively emit pulses of microwave radiation and detect the backscattered portion of the 1568 

signal, thereby improving the spatial resolution of the signal (McDonald and Kimball, 2006). 1569 

One of the most robust properties that can be calculated from microwaves in the ABZ is 1570 

landscape freeze-thaw state, given the strong sensitivity of the dielectric constant to the 1571 

abundance of liquid water (as discussed in Section 4.3; e.g., Hoekstra and Cappillino, 1971; 1572 

Warren, 2019). Freeze-thaw state represents a fundamental control on land surface water 1573 

mobility, vegetation phenology, and carbon cycling (Kim et al., 2012; Section 4.3).  1574 

In addition to freeze-thaw, long-term records of snow water equivalent (e.g., Derksen et 1575 

al., 2005; Rawlins et al., 2007; Takala et al., 2011; Section 4.2), soil moisture (Bartsch et al., 1576 

2011; Du et al., 2016b; Dorigo et al., 2017; Colliander et al., 2017), boreal wetland community 1577 

types and characterization of flooded land (Watts et al., 2014; Du et al., 2016a; Pringent et al., 1578 

2016; Section 4.7) have been obtained from combinations of the SMMR, SMMI, SSMIS, 1579 

AMSR-E, AMSR2, and TRMM Microwave Imager (TMI) sensors, including calibration with the 1580 

FY3B Microwave Radiation Imager (MWRI; Du et al., 2017). These key landscape indicators 1581 

provide necessary insight into highly dynamic landscape conditions that strongly influence 1582 

vegetation carbon assimilation, growth, structure and resistance or vulnerability to ecosystem 1583 

change.  1584 

Vegetation optical depth (VOD) is also an important contribution from passive 1585 

microwave sensing. The presence of snow can confound optical signals from satellites, making it 1586 

challenging to detect changes in vegetation greenness using traditional optical/NIR based remote 1587 

sensing indices (e.g. NDVI) in spring and autumn. Some success has been achieved using the 1588 
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Normalized Difference Water Index (NDWI; e.g. ratios of near-infrared and shortwave infrared; 1589 

Gao et al. 1996) to detect onset of green-up for boreal deciduous and needleleaf forests (Delbart 1590 

et al., 2005). NDWI infers changes in water availability within the vegetation that occur during 1591 

transition seasons. Microwave VOD presents an alternative to NDVI and NDWI and is derived 1592 

from daily 10.7 GHz (Ku band) brightness temperatures (e.g. from AMSR-E; Jones et al., 2011). 1593 

Satellite VOD has shown greater sensitivity to changes in leaf water content, including those 1594 

occurring during the seasonal changes in photosynthesis and following drought stress, relative to 1595 

optical and infrared methods. The VOD indicator has also tracked well with vegetation growth 1596 

and post-fire recovery in boreal forests (Jones et al., 2013). Yet microwave VOD is less often 1597 

used for local ecosystem assessments because of the coarse 25-km spatial footprint. A site level 1598 

alternative to VOD are L-band (1.5 GHz) microwave signals detected at GPS (global positioning 1599 

system) ground stations. Changes in vegetation canopy water content are determined through the 1600 

Normalized Microwave Reflection Index (NMRI) which accounts for the canopy water 1601 

interference of signals communicated between GPS stations and satellites (Larson and Small, 1602 

2014). Taking advantage of differential backscatter between forest and non-forest vegetation, 1603 

microwave remote sensing can also be used to estimate vegetation land cover types (Dobson et 1604 

al., 1996; Engdahl and Hyyppa, 2003; Maghsoudi et al., 2012), characterize the distribution of 1605 

water bodies and wetlands (Bartsch et al., 2012; Clewley et al., 2015a), detect disturbance events 1606 

(Pantze et al., 2014), and study post-disturbance recovery (Kasischke et al., 2007; Jones et al., 1607 

2013). 1608 

Two primary examples of changing boreal vegetation dynamics that have been explored 1609 

using these long-term data sources are (i) land surface phenology (LSP) and (ii) peak plant 1610 

productivity. Long-term satellite observations show a warming-induced lengthening of the 1611 
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growing season due to both earlier plant activity in the spring and delayed senescence in the fall 1612 

(Figure 12; Barichivich et al., 2013, Gonsamo and Chen, 2016; Kim et al., 2012), as well as 1613 

associated shifts in peak productivity (Gonsamo et al., 2017). Although these changes have 1614 

increased peak productivity in many temperature-constrained ABZ landscapes, the opposite has 1615 

been observed in moisture-constrained areas (Kim et al., 2014a; Barichivich et al., 2014; Zhu et 1616 

al., 2016). This is especially the case in the interior boreal forests of Alaska and western Canada 1617 

(Angert et al., 2005; Goetz et al., 2005; Beck and Goetz, 2011), where warmer and earlier 1618 

springs tend to cause higher immediate productivity but result in drought stress and decreased 1619 

productivity later in the summer (Buermann et al., 2013; Barichivich et al., 2014; Parida and 1620 

Buermann, 2014), ultimately leading to increases in regional tree mortality (Peng et al., 2011; 1621 

Zhang et al., 2015b; Chen and Luo, 2015; Hember et al., 2017). Indeed, the overall impacts of 1622 

lengthening growing seasons on net carbon uptake are uncertain due to longer and drier summers 1623 

(lack of sustained productivity) and increased soil respiration (McDonald et al., 2004; Angert et 1624 

al., 2005; Piao et al., 2007, 2008; Barichivich et al., 2012). 1625 

New improvements in sensor technology and processing techniques offer tremendous 1626 

promise for understanding changing ABZ vegetation dynamics, and potential for the initiation of 1627 

new long-term data products. Improvements have generally increased spectral and spatial 1628 

resolution for land-specific properties and have been aided by more receiving stations and 1629 

increased on-board storage. For example, the Sentinel-2 visible-near infrared satellite sensors 1630 

offer improved spatial (visible bands 2-4 and 8, 10 m; red-edge bands 5-7, 20 m) and spectral 1631 

resolution compared to Landsat, particularly in the red edge. Emerging techniques to merge 1632 

Landsat 8 and Sentinel-2 data (e.g., Claverie et al., 2017) promise global coverage every 2-3 1633 

days at 30 m resolution. Imaging spectroscopy measurements offer the potential to observe ABZ 1634 
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vegetation at a much higher spectral frequency, enabling for example consistent tree species 1635 

mapping. The Hyperion instrument, on the NASA Earth Observing One (EO-1) satellite, 1636 

demonstrated this technology (Middleton et al., 2013), which may become operational with the 1637 

upcoming NASA Surface Biology and Geology mission (HyspSIRI, 2018). High-resolution 1638 

radar measurements (e.g., L-band ALOS PALSAR 1/2, C-band RADARSAT 1/2, C-band 1639 

Sentinel-1, X-band TerraSAR, and S- and L-band NISAR), including the use of SAR and InSAR 1640 

data, have shown enormous capabilities to map ABZ land surface deformation (Short et al., 1641 

2011; Liu et al., 2014) and changing vegetation properties (Antropov et al., 2016; Chen et al., 1642 

2018) at high spatial resolution (5-100 m).  1643 

Recent advances in space-based observations of solar induced fluorescence (SIF) by 1644 

chlorophyll (Frankenberg et al., 2011a; Joiner et al., 2011) and enhanced retrieval of biochemical 1645 

properties of boreal plant leaves may also aid the study of the climate sensitivity of boreal 1646 

vegetation. In the case of SIF, all current observations are derived from satellites (GOME-2, 1647 

SCIAMACHY, GOSAT, OCO-2) that were initially intended to measure trace gases in the 1648 

atmosphere, but spectra contained the SIF signature in the visible-near infrared region. SIF is of 1649 

interest because it can be used as an indicator of the start, end, and intensity of the growing 1650 

season, can provide information on vegetation stress, and correlates well with GPP. Finally, 1651 

space-based lidar measurements offer enormous benefits in terms of quantifying ABZ vegetation 1652 

properties such as vegetation height, biomass, LAI, and class. However, we have yet to have 1653 

consistent lidar coverage at high latitudes with an optimal wavelength for vegetation properties. 1654 

The Geoscience Laser Altimeter System (GLAS) on ICEsat was the closest, but it was not 1655 

explicitly designed for land vegetation (Harding et al., 2005). ICESat2 will offer more coverage, 1656 

with improved in-track sampling using photon-counting technology. Unfortunately, the 1657 
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upcoming dedicated lidar mission to estimate forest structure, NASA Global Ecosystem 1658 

Dynamics Investigation (GEDI), will be limited to ±51.6° latitude from being based on the 1659 

international space station. However, the ESA BIOMASS satellite mission (planned launch in 1660 

2020) using P-band (435 MHz) SAR will aid in measuring boreal forest structure (Le Toan et al., 1661 

2011). 1662 

Unlike the above-mentioned satellite instruments, fine-scale spatial variability can be 1663 

resolved with commercial very high-resolution spaceborne sensors (0.3 - 4 m), first available 1664 

commercially from the IKONOS satellite in 2000 and expanding to a variety of others in the late 1665 

2000s (e.g., DigitalGlobe Worldview -1,-2,-3,-4, GeoEye-1, RapidEye, and Planet). The 1666 

emerging use of these data comes after decades of airborne photographic analysis of forest 1667 

extents, which included photogrammetry, and has continued with digital aerial photogrammetry 1668 

(DAP). Recent access by some to commercial sub-meter data (Neigh et al., 2013) has enabled 1669 

fine-scale investigations with mono and stereo image acquisitions. These passive optical data 1670 

have similar spectral wavelengths to Landsat (visible and near infrared channels), but they have 1671 

important fundamental differences due to image acquisition characteristics. The differences can 1672 

be seen as limitations, as sun-sensor geometry, pixel resolution, and irregular image extent, but 1673 

these observations can also provide new features to exploit (Montesano et al., 2017). Methods 1674 

that capitalize on the new features of these data will provide a means for resolving detailed 1675 

patterns of vertical and horizontal vegetation structure across remote portions of the boreal forest 1676 

(Montesano et al., 2019). Structural parameters, such as height, cover, stem density, and 1677 

aboveground biomass, can be informed by textural characteristics, which quantify the variation 1678 

in contrast according to the illumination of image features and their scattering (Wulder et al., 1679 

2000; Kayitakire et al., 2006; Wulder et al., 2008; Berner et al., 2012; Wood et al., 2012; 1680 
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Montesano et al., 2016a). These fine-scale properties will provide new insight into the 1681 

distribution of plant functional types, disturbances, productivity, land-atmosphere interactions, 1682 

and their changes through time.  1683 

Looking forward, it is a priority to maintain and update the long-term databases from 1684 

space-based remote sensing that capture both dramatic and subtle changes in boreal vegetation. 1685 

There will always be tension within the scientific community and funding agencies between 1686 

ensuring data continuity and providing new sensor improvements. In some instances, the two can 1687 

be accomplished in tandem by including instrument refinements that improve acquisition but 1688 

also maintain compatibility (e.g., Landsat OLI, SSM/I, and AMSR2). Nonetheless, key 1689 

vegetation properties have remained difficult or impossible for space-based remote sensing to 1690 

capture at large scales, and that would greatly improve our understanding and ability to 1691 

understand and project boreal vegetation. Among these include stand age (Lutz et al., 2008), 1692 

species composition (which is theoretically feasible for circumpolar boreal forests because of 1693 

low species diversity), fine-scale moisture and hydrologic properties (e.g., site moisture as in 1694 

Johnstone et al., 2008), and changing light use efficiency (either from SIF or PRI 1695 

photoprotection mechanisms; see Hilker et al., 2008). Thus, we recommend the continued 1696 

development and deployment of sensors that could provide information on these properties, such 1697 

as imaging spectroscopy, lidar, combined information from radar and radiometer L-band, and 1698 

high-resolution dual-frequency radar (e.g., L- and P-bands) with adequate revisit frequency. We 1699 

also recommend an increased focus on the Eurasian ABZ, which remains significantly 1700 

understudied compared to North America (Soja and Groisman, 2018, and references therein), as 1701 

well as expanded and strategically placed in situ networks of vegetation properties and trace gas 1702 

fluxes to better calibrate and extrapolate existing remotely-sensed metrics across the boreal zone. 1703 
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Improving the spatial resolution of SIF observations should occur with the next generation of 1704 

satellite missions, yet reducing uncertainties on the relationship with GPP requires improvements 1705 

in temporal resolution. Finally, increased access to very high-resolution imagery will facilitate a 1706 

greater understanding of boreal vegetation properties and changes at more ecologically-relevant 1707 

resolutions. 1708 

4.6 Fire Regimes: An Agent of Rapid ABZ Change (Amber J. Soja, Tatiana V. Loboda, 1709 

Randi Jandt) 1710 

Fire, which acts to cycle carbon and initialize ecosystem succession, is the dominant 1711 

disturbance across ABZ lands. However, understanding how one ecosystem responds to fire does 1712 

not equate to the entire ABZ given the diversity of interacting systems (e.g., section 4.3-4.5). 1713 

Fire is largely under the control of short-term weather (~7 days) and large-scale climate. Climate 1714 

determines the composition and structure of boreal forest cohorts, each of which is associated 1715 

with a fire return interval (e.g., P. sylvestris – lichen vaccinium understory 10-70 years; dark 1716 

coniferous forest 70-600 years) (Soja et al., 2006, and references therein). Additionally, severe 1717 

fire seasons have been associated with the Arctic Oscillation in central Siberia (Balzter et al., 1718 

2005) and the Pacific Decadal Oscillation in Alaska (Duffy et al., 2005). Moreover, fire impacts 1719 

weather and climate systems by altering radiative forcing (e.g., via smoke and land cover 1720 

change), inducing permafrost degradation (e.g., 2-5 decades to recover), as well as direct and 1721 

indirect emissions of aerosols and greenhouse gases to the atmosphere (e.g., Sections 4.3-4.5, 1722 

5.1-5.2; Michaelides et al., 2019). In addition to the potentially devastating effects on 1723 

communities and local economies (e.g., the 2016 Fort McMurray fire, the costliest disaster in 1724 

Canadian history with $9.9 billion in losses), fire smoke degrades air quality (Figure 1), affecting 1725 

human health (e.g., the 2010 Moscow peatland fires caused an estimated 56,000 deaths and $15 1726 
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billion in losses) (Rappold et al., 2011; Thelen et al., 2013). It is predicted that fire will increase 1727 

with respect to burned area and fire frequency, fire severity, fire season length, fire weather 1728 

severity, and ignitions from lighting (Price and Rind, 1994; Stocks et al., 1998; Flannigan et al., 1729 

2001, 2009; Wotton et al., 2010; Flannigan et al., 2013; Hu et al., 2015). The initial signs of fire-1730 

induced change are already evident across the boreal landscape (Soja et al., 2007). 1731 

Observations can be categorized as pre-fire, active-fire and post-fire. Pre-fire information 1732 

is required to understand fire potential (e.g., growth, direction, severity) and these include 1733 

information on pre-fire fuels (e.g., above- and below-ground biomass, availability, structure, 1734 

health) and fire weather (e.g., preceding temperature, precipitation, wind speed, lightning, and 1735 

relative humidity). Pre-fire vulnerabilities, such as fuel availability and fire weather, are not 1736 

discussed in this work. ABZ vegetation, or pre-fire “fuel,” is discussed in Sections 4.4-4.5. 1737 

Active-fire data include fire location, severity or depth of burn, fire radiative power, and smoke 1738 

plume injection height, detrainment, and transport, all of which are used by fire scientists, 1739 

operational fire management, and air quality communities. Post-fire analysis (e.g., Figure 13) 1740 

includes fire severity and burn scar mapping (i.e., burned area), evaluating relevant patterns of 1741 

change (e.g., fire return intervals, severity), smoke transport, deposition, and other potential 1742 

impacts (e.g., changes in landscape and atmospheric albedo, landslide and debris flow potential, 1743 

and air quality). 1744 

Estimates of long-term (~70 years), large fire (>200 ha) burned area data exist for Canada 1745 

and Alaska (Figure 14). Burned area has more than doubled across North America, when 1746 

comparing the first (1950-1979) and last (1987-2016) 30 years of the record. In Russia, historic 1747 

fire records were under-reported before 1988 for economic and political reasons, and fire was not 1748 

monitored, controlled, or documented in about 40% of the remote Russian Forest Fund region 1749 
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(Sofronov et al., 1998; Shvidenko and Nilsson, 2000; Soja et al., 2004). In addition, fire data are 1750 

not complete across the Arctic tundra because these data are difficult to obtain and the fire return 1751 

interval is large (from 180 to 1500 years; Soja et al., 2006; Hu et al., 2015). 1752 

Between 1995 and 2001, NASA participated in the controlled crown fire experiment in 1753 

Canada's Northwest Territories, the International Crown Fire Modelling Experiment (ICFME), 1754 

which was led by Canada and the U.S. (Stocks et al., 2004). The ICFME team provided 1755 

innovative data and insights into the characteristics of crowning forest fires, while NASA 1756 

suborbital aircraft measured some of the first boreal crown fire emissions and emission factors. 1757 

Following the opening of Russia to the western world, NASA collaborated with Russian and 1758 

other scientists to contribute to the historic Fire Research Campaign Asia-North (Firescan, 1996) 1759 

experiment. The goal of Firescan was to quantitatively understand the role of fire in boreal 1760 

ecosystems, motivated by the International Boreal Forest Research Association (IBFRA) and the 1761 

International Global Atmospheric Chemistry (IGAC) project. During this campaign, an 1762 

interdisciplinary team of scientists conducted a large forest fire experiment on Bor Island, 1763 

Krasnoyarsk, Russia on July 06, 1993. Then, also in this window of opportunity in Central 1764 

Siberia, the NASA FIRE BEAR (Fire Effects in the Boreal Eurasia Region) project began in the 1765 

late 1990’s and continued for over a decade, with the goal of investigating the complex 1766 

interactive effects of fire, weather, fire severity, fuel consumption, fire behavior and ecosystem 1767 

succession. These projects and the suite of scientific instruments, including suborbital and 1768 

satellite data, offered an unprecedented view of fire regimes, burned areas, ecosystem recovery, 1769 

trace gas and aerosol emissions, feedbacks to climate systems, and carbon storage in these 1770 

unique boreal forests. 1771 
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Historic satellite data that have been used to derive patterns of fire are the U.S. Corona 1772 

secret military reconnaissance program (1959-1972) and the Operational Linescan System (OLS) 1773 

on the U.S. Department of Defense Defense Meteorological Satellite Program satellites (DMSP, 1774 

polar orbit, first launch 1962). The Corona program series of satellites took photographs and 1775 

released the film canisters in capsules on parachutes that were retrieved by aircraft mid-air. 1776 

These data were declassified under the Gore-Chernomyrdin agreement in 1995 and could be 1777 

used to identify and quantify large fire scars that pre-date the historic suborbital fire databases 1778 

(available through the U.S. Geological Survey (USGS)). DMSP satellites were declassified in 1779 

1973, and the first systematic inventory of fire was produced using these data (Cahoon et al., 1780 

1992). DMSP satellites continue to orbit.  1781 

Satellite instruments on polar orbiters and geostationary satellites have been used to 1782 

locate or detect active fires (‘hot spots’ spectral maximum ~3.7 m) and map fire scars (visible 1783 

and near infrared wavelengths) since these capabilities were first observed (Matson and Dozier, 1784 

1981; Matson et al., 1984; Muirhead and Cracknell, 1984, 1985). In 1972, the first satellite in the 1785 

polar-orbiting Landsat series (Earth Resources Technology Satellite (ERTS)) was launched, 1786 

which provided the capability to detect and measure fire scars (80 m resolution, return interval 1787 

18 days). Subsequent Landsat satellites were launched with improved capabilities (15-30 m 1788 

resolution, return interval 16 days and additional channels). Landsat has provided an 1789 

unprecedented historic record of healthy vegetation and burned area, and currently Landsat 1790 

provides data that are used to assess fire severity and monitor active fire (Schroeder et al., 2016). 1791 

NASA and the USGS have started to design Landsat 9, which is targeted for a launch date of 1792 

2020. 1793 
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In 1978, NOAA launched a meteorological satellite, TIROS-N, with the AVHRR 1794 

instrument onboard (polar orbit; ~1.1 km
2
 at nadir; ~1 day, 1 night view), which unexpectedly 1795 

proved to be instrumental in detecting active fire and defining burned area from space. Finding 1796 

hot spots in water bodies using the 3.8 µm channel was unexpected, and Matson and Dozier 1797 

(1981) used nighttime imagery to conclude these high temperature fields were from steel mills 1798 

and gas flares (Smith and Rao, 1971). Since 1978, a series of AVHRR instruments has provided 1799 

the capability to identify active fire and quantify burn scars, even though the instrument was not 1800 

designed for these purposes. However, because of limited storage capability and the lack of 1801 

downlink stations (until ~late 1990s), consistent long-term global AVHRR coverage only exist 1802 

as Global Area Coverage data (GAC – mean value of 4 pixels stored for every 15 pixels). Still, 1803 

because most of the burned area in boreal regions is by large fires, AVHRR GAC data can be 1804 

used to quantify historic ABZ burned area. 1805 

Data from the two MODIS instruments provide improved active-fire locations, increased 1806 

saturation temperatures, higher spatial resolution (500 – 1000 m) and a new fire product, Fire 1807 

Radiative Power (FRP). Both these instruments are in extended operations, functioning well 1808 

beyond their 6-year design time. Thermal anomalies or active-fire detection data are consistently 1809 

provided in near-real-time, which makes these data valuable for both scientific analyses and fire 1810 

and smoke management (MOD14/MYD14 (Giglio et al., 2003; Giglio et al., 2006a)). With each 1811 

fire location, valuable ancillary data are provided, such as time, fire confidence and FRP (1 day, 1812 

1 night view from each MODIS instrument (Terra 10:30 and Aqua 13:30 equatorial crossing 1813 

time), swath overlap at high latitudes). Fire radiative energy is derived using FRP and takes 1814 

advantage of the energy released from a fire to evaluate fuel consumption, emissions and plume 1815 
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injection heights (Wooster et al., 2005; Ichoku et al., 2008; Val Martin et al., 2010; Ichoku and 1816 

Ellison, 2014).  1817 

Burned area provides the basis for fire emissions estimates and a consistent database for 1818 

fire science, management and change analysis. Two official MODIS global fire products exist, 1819 

one optimized for the tropics and savannahs (MCD45 (Roy et al., 2005, 2008)) and the other 1820 

optimized for northern forests (MCD64; Giglio et al., 2006b, 2009). MCD64 provides more 1821 

accurate estimates in the ABZ, however, a regionally-optimized MODIS-based burned area 1822 

algorithm provides estimates that compare best to ground-based data (Figure 14; Loboda et al., 1823 

2011). A comparison of the regionally-optimized product to official statistics in North America 1824 

results in mean differences of 19%, which demonstrates the ability of satellite data to provide 1825 

long-term accurate and consistent data in remote regions. However, Northern Eurasian burned 1826 

area products do not compare well (e.g., mean differences ~39%), which highlights challenges 1827 

that result from differences in ecosystems, fire regimes (e.g., dominant surface fires as opposed 1828 

to crown fires), and algorithms. These discrepancies in products also suggest that there is a need 1829 

for a comprehensive evaluation (Sukhinin et al., 2004; Ponomarev et al., 2016).  1830 

VIIRS active-fire detection data (375 and 750 m resolution for the IR bands; Schroeder et 1831 

al., 2014) provide higher resolution in comparison to MODIS data (1000 m for the IR bands), 1832 

although the VIIRS instrument equator crossing times are not optimized for morning or late 1833 

afternoon fire detection (~13:30 local time, at a location ~50 minutes apart with different view 1834 

angles). There are currently two VIIRS instruments (on S-NPP and NOAA-20), and these data 1835 

are actively used by operational agencies in the U.S. and globally to locate and manage fire. 1836 

Additionally, because of enhanced spatial resolution, these data are being used to initialize 1837 

predictive fire behavior models (Coen and Schroeder, 2013), which could provide higher-1838 
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resolution meteorological information to Incident Meteorologists, and this could translate to 1839 

increased situational awareness. 1840 

Cloud cover is pervasive in the ABZ, and thick cloud cover or smoke can inhibit active-1841 

fire detection. However, the high-pressure weather systems that act to dry fuels are synonymous 1842 

with clear skies, and high-pressure systems precede and often endure during large fires. During 1843 

the day, smoke is detrained, so smoke does not typically inhibit active-fire detection, but smoke 1844 

can limit the strength of FRP and impede near-field precipitation (Andreae et al., 2013; Lu and 1845 

Sokolik, 2013). Concurrently, the energy, moisture, and smoke particulates produced by large 1846 

fires can alter and generate weather (pyro-generated cumulus (pyroCu) and cumulonimbus 1847 

(pyroCb)), which can inhibit active-fire detection. Additionally, continuous tree cover often 1848 

limits or prevents the detection of surface fires, which is the dominate fire type in boreal Eurasia 1849 

(Korovin, 1996; Rogers et al., 2015). Reflective snow, ice or water bodies can be a source of 1850 

false fire detection, however algorithms have been developed that mask continuously reflective 1851 

surfaces. Post-fire burn scar mapping is straightforward in the ABZ where burn scars persist on 1852 

the landscape for months to years, yet burn scar mapping is challenging in boreal grasslands that 1853 

green-up quickly and following surface fires, where the forest can continue to remain green.  1854 

Currently there are two aging satellite instruments that are capable of capturing plume 1855 

injection height: Multi-angle Imaging SpectroRadiometer (MISR) and Cloud-Aerosol LIdar with 1856 

Orthogonal Polarization (CALIOP). Both instruments provide essential and unique information. 1857 

MISR has a larger swath width, thus a greater ability to estimate near-fire plumes, and the MISR 1858 

smoke-plume injection height database is advanced (Kahn et al., 2007; Val Martin, 2010). 1859 

However, MISR is on Terra, which is a morning overpass, so the largest smoke plume injection 1860 

heights are missed because fires and smoke plumes peak in the late afternoon when fuels are the 1861 
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driest and relative humidity is the lowest. Additionally, MISR requires distinct boundaries to 1862 

estimate plume heights, and large fires tend to lie down at night, where smoke is trapped in the 1863 

boundary layer, resulting in no distinct boundaries. CALIOP (active lidar, 30 m vertical 1864 

resolution) has an increased capability to detect optically thin smoke plumes and plumes from 1865 

extensive ambiguous smoke fields. When CALIOP data are paired with a back trajectory model, 1866 

these can enhance the MISR morning database, by defining afternoon plumes (Omar et al., 2009; 1867 

Soja et al., 2012).  1868 

Over recent years, the hemispheric transport of large smoke plumes has been recognized 1869 

as occurring on a regular basis (Damoah et al., 2004), and it has been suggested pyroCu and 1870 

pyroCb clouds may be more common than had been initially imagined (Fromm, 2010; Guan et 1871 

al., 2010). These largely unexplored pyroCb’s inject a huge amount of aerosols and greenhouse 1872 

gases into the upper troposphere and lower stratosphere and at times are equivalent to volcanic 1873 

eruptions (Peterson et al., 2018). Case studies have associated individual pyroCb events with 1874 

twofold to fivefold increases in zonal stratospheric aerosol optical depth (AOD) (Fromm et al., 1875 

2000, 2005). Persistence of stratospheric AOD enhancements following fire events (Fromm et 1876 

al., 2008ab), make this phenomenon the largest perturbation to stratospheric aerosol apart from 1877 

large volcanic eruptions and a noteworthy force on the climate system (Fromm et al., 2000; 1878 

Fromm and Servranckx, 2003). 1879 

It is challenging to infer the depth and extent of carbon stored below ground in the ABZ 1880 

from satellites or from the ground in these remote regions. As discussed in Section 4.3, this is 1881 

significant because the boreal zone holds the largest reservoir of carbon on Earth (minimum 27% 1882 

of global terrestrial carbon), which is predominantly stored belowground (permafrost, peatlands 1883 

and carbon-rich soil organic matter) (Apps et al., 1993; Zoltai and Martikainen, 1996; Alexeyev 1884 
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and Birdsey, 1998; Tarnocai et al., 2009; Scharlemann et al., 2014). Therefore, more extensive 1885 

fires or deeper consumption of organic forest floor by wildfires has the potential to release vast 1886 

amounts of carbon that has been stored for millennia (e.g., Figure 15; Walker et al., 2018, 2019). 1887 

For instance, the West Siberian lowlands are the largest bog region on Earth, and they hold 1888 

~40% of the Earth’s peat (Walter, 1979). Additionally, about two-thirds of the world’s boreal 1889 

forests are located in Russia (Hare and Ritchie, 1972), however these critical ABZ ecosystems 1890 

are under studied due to the political environment, their extent, and remote location. 1891 

Because fire is a key driver of landscape change, consistent long-term fire data records 1892 

are an integral component to environmental studies in the ABZ. Going forward, the larger air 1893 

quality, fire management and science communities have recommended an expansion of the 1894 

number of polar orbiters and/or higher-resolution geostationary satellites that can quantify ABZ 1895 

fire, which is important for assessing fire timing (e.g., time of day, season), quantifying short-1896 

lived or understory fires, defining burn scars (area, severity), calculating fire emissions, and for 1897 

assessing overall fire regimes. Because fires can be small and short-lived (morning cropland 1898 

burning) or travel rapidly (~10 – 22 km/hour, spotting to 35 km), the time an instrument is 1899 

overhead is significant to understanding fire regimes. Concurrently, instrument spatial resolution 1900 

is important for fire detection, burn scar and severity accuracy, but spatial resolution has often 1901 

been necessarily sacrificed for temporal resolution.  1902 

In order to evaluate and interpret satellite-derived fire and fuel (live vegetation and 1903 

ground carbon) properties, we also recommend an expansion of the suborbital observing 1904 

network, which is currently sparse in the ABZ, particularly in the Russian ABZ. Notably in 1905 

2019, there are ongoing field campaigns that are expected to provide substantial insights, 1906 

ABoVE (e.g., Section 4.5) and the  NASA/NOAA Fire Influence on Regional to Global 1907 
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Environments and Air Quality (FIREX-AQ) focused on linking fuels to the chemical transport of 1908 

emission in North America, which is the first NASA fire-fuel-atmosphere focused campaign, 1909 

although fire smoke has always presented itself for opportunistic sampling. Fire weather paired 1910 

with detailed biospheric mapping and SMAP-like data could hold promise for our ability to 1911 

quantify the depth, severity and extent of carbon consumed during fires. Even though the boreal 1912 

zone is floristically simple, Siberian ecosystems evolved separately from those in North America 1913 

and respond differently to the complicated interactions with soils, hydrology, fire regimes and 1914 

climate. For instance, surface fires, that burn under canopies, dominate fire regimes in Northern 1915 

Eurasia, and these burned areas are not currently accurately quantified.  1916 

Consistent long-term fire and fuel records are imperative to understanding the past, 1917 

current and future ABZ, because fire is integral to both initiating land and atmospheric change 1918 

and serving as an initial indicator of change (Soja et al., 2007). Instruments that are capable of 1919 

defining plume injection height and the vertical distribution of smoke in the atmosphere are in 1920 

extended operations, and there are currently no replacements. These data are important for 1921 

constraining models that would aid in predicting aerosol and cloud impacts on the climate. 1922 

Additionally, emissions factors are based on limited case studies and vary widely, likely due to 1923 

the limited number of studies and the exclusion of contributing influences, such as detailed 1924 

ecosystem fuels and fire weather. Finally, improved estimates for FRP are promising for linking 1925 

fire energy to emissions, fire severity and smoke plume injection heights. However, FRP 1926 

currently saturates, so this potential has not been fully explored. 1927 

4.7 ABZ Wetlands (Ben Poulter, Nicholas Steiner, Kyle C. McDonald, Mark L. Carroll) 1928 

ABZ wetlands include inland water bodies, such as shallow lakes, ponds and rivers, as 1929 

well as seasonally inundated systems characterized by emergent vegetation adapted to hydric soil 1930 
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conditions, as well as by treed or shrubby vegetation, such as peatlands (Cowardin et al., 1979). 1931 

From a remote sensing perspective, monitoring and mapping of inundated ABZ wetlands involve 1932 

classifying a continuum of ecosystems defined by both the duration and the areal extent of 1933 

surface flooding and inundation. Combined with differences in terminology for how wetlands are 1934 

defined, as well as challenges in observing small-scale and temporally varying hydrologic 1935 

conditions, there remains a large gap in the ABZ-ON that has led to uncertainties in monitoring 1936 

the location and dynamics of ABZ wetlands (McGuire et al., 2012; Bohn et al., 2015). These 1937 

uncertainties have led to concerns that wetland area, and thus CH4 emissions and other 1938 

ecosystem services, are easily ‘double counted’ (Thornton et al., 2016). The double-counting 1939 

problem is partly due to the broad definition of wetlands in the “Cowardin” classification, which 1940 

includes both vegetated “palustrine” wetlands and inland-waters or water bodies that are 1941 

included in the “lacustrine” category of Cowardin et al. (1979), but also due to remote sensing 1942 

limitations that stem from the use of coarse-spatial resolution satellites (e.g., passive microwave 1943 

instruments and scatterometers) as compared to moderate or fine-resolution optical satellites 1944 

(e.g., Landsat or Worldview) or Synthetic Aperture Radars (SARs) that are needed to detect 1945 

small isolated ponds or streams. In addition, monitoring of year-to-year changes in wetland area 1946 

associated with permafrost thaw (Section 4.3) and the creation of thermokarst lakes has stymied 1947 

biogeochemical accounting, particularly for assessing climate-driven changes in high-latitude 1948 

CH4 emissions (Section 5.2; Saunois et al., 2017). ABZ wetlands play an important role in the 1949 

Earth system and for a variety of ecosystem services (MEA, 2005), which include regulating 1950 

biogeochemical processes (e.g., carbon storage, CH4 emissions), biodiversity (e.g., providing 1951 

habitat for migratory waterfowl), and biophysical properties (e.g., albedo and Arctic 1952 

amplification). Thus documenting recent trends and remote-sensing opportunities for improved 1953 



87 

monitoring of wetlands is particularly important given their vulnerability to climate change 1954 

(Melillo et al., 2014). 1955 

The first efforts to document the distribution of ABZ wetlands were made by compiling 1956 

ground-based national inventories of vegetation and soil type, and combining this information 1957 

with a patchwork of aerial photograph interpretations of inundation, leading to an estimate of 1958 

~2.7 Mkm
2
 of wetlands above 60°N (Matthews and Fung, 1987). The approach of Matthews and 1959 

Fung (1987) was intended to provide a globally consistent methodology to map wetlands, yet 1960 

was limited to using coarse spatial resolution databases (1° resolution) that did not effectively 1961 

partition inland waters from vegetated wetlands. Global wetland area updates using the inventory 1962 

approach were carried out by Kaplan in Bergamaschi et al. (2007) and by Lehner and Doll 1963 

(2004) (i.e., the Global Lakes and Wetlands Dataset, GLWD), which classified wetlands based 1964 

on eleven categories related to duration of flooding, vegetation type, salinity and other factors 1965 

and by using higher-spatial resolution information. The inventory approaches only provide 1966 

approximate snapshots in time rather than temporal dynamics because the delineation of wetland 1967 

features is carried out over multi-annual periods (e.g., HydroLAKES (Messager et al., 2016) 1968 

contains 1.43 million polygons entered into a Geographic Information System). More recent 1969 

efforts have attempted to capture both seasonal and interannual variability, as well as separate 1970 

inland waters and vegetated wetlands by using remote sensing.  1971 

Fractional surface-water extent (Fw) is a measure of surface-inundation dynamics and is 1972 

derived by combining various microwave instruments in Low Earth Orbit (LEO) to create daily 1973 

time series from 1992 to present. The geophysical variable ‘surface inundation’ is only one 1974 

aspect of features that represent wetlands and for wetlands where surface water is not present, or 1975 

where dense vegetation canopies are present, the surface-inundation datasets only partly reveal 1976 
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the location of wetlands. These passive sensors include SSMI at 37 Ghz (0.81 cm), SSMIS, and 1977 

AMSR-E at 6.9 GHz, 18.7 and 23.8 GHz and the active sensors include the C-band ERS-1 1978 

scatterometer (5.25 GHz, 5.71 cm), QuikSCAT (Ku band, 13.4 GHz) and ASCAT (C-band, 5.25 1979 

GHz). There are various algorithms for relating brightness temperature to measure surface 1980 

inundation, and for fusing the datasets from the different instruments together. There are 1981 

currently three global Fw datasets available: the Surface WAter Microwave Product Series 1982 

(SWAMPS; Schroeder et al., 2015; Jensen and McDonald, 2019), the Global Inundation Extent 1983 

from Multi Satellites (GIEMS; Prigent et al., 2001), and the Land Parameter Data Record 1984 

(LPDR; Watts et al., 2014; Du et al., 2017). Of these, SWAMPS and GIEMS employ a mixture 1985 

model to infer Fw based on endmembers selected from salient landcover classes. The derivation 1986 

of the LPDR employs a radiometrically-derived retrieval that uses multi-frequency, multi-1987 

polarization microwave brightness temperatures to classify Fw. ABZ surface inundation varies 1988 

seasonally following freeze-thaw processes and interannually with climate variability; for 1992-1989 

2012, SWAMPS estimates surface inundation >50°N of ~1.7 Mkm
2
, and GIEMS estimates <1 1990 

Mkm
2
 above 55°N. As compared to the MODIS Open Water Bodies and permanent wetlands 1991 

dataset (i.e., MODIS LC and MOD44W) discussed below, the SWAMPS and GIEMS ABZ 1992 

surface inundation estimates are lower by about 0.5 and 1.2 Mkm
2
, respectively. The difference 1993 

between SWAMPS and GIEMS estimates with the MODIS-based estimate points to the 1994 

challenge of integrating heterogeneous surface inundation information within a 0.25° resolution 1995 

pixel versus a 250 m pixel. SWAMPS retrievals are generally in agreement with the results from 1996 

the LPDR. 1997 

SARs are active microwave imaging instruments that measure backscattered energy 1998 

(backscatter) from surfaces they illuminate. When observed off-nadir, open water surfaces are 1999 
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generally characterized by low backscatter. When vegetation is present, scattering processes 2000 

enhance backscatter and enable determination of vegetation structure and inundation under 2001 

vegetation canopies. SARs benefit from high spatial resolution (10-50 m) and are able to support 2002 

measurement of wetlands day and night, independent of solar illumination and largely unaffected 2003 

by cloud cover, thus supporting consistent, multi-temporal characterization of inundation 2004 

regimes. The L-band (1.275 GHz) HH-polarization JERS SAR operated from 1992-1998, 2005 

providing the first synoptically-collected imaging radar datasets appropriate for mapping 2006 

continental-scale landcover. Dual-season imagery from the JERS SAR was thus employed in 2007 

development of the first consistent mapping of wetlands across Alaska (Whitcomb et al., 2009). 2008 

ALOS, launched by JAXA, operated from 2006-2011. It carried the successor to JERS, 2009 

PALSAR. PALSAR incorporated a multi-polarization capability and a ScanSAR mode, allowing 2010 

broad, regional coverage across a 350 km wide swath and providing new data sets suitable for 2011 

seasonal inundation monitoring and vegetation mapping. PALSAR datasets are of sufficient 2012 

extent and temporal frequency of coverage to support regional to continental-scale mapping and 2013 

monitoring of changing ABZ wetlands (Clewley et al., 2015a,b) and differentiation of CH4 2014 

source areas in boreal landscapes (Bohn et al., 2007). Presently, the availability of L-band SAR 2015 

datasets continues with the ALOS successor mission ALOS-2/PALSAR-2, launched in 2014. 2016 

ESA’s C-band Sentinel-1A (launched in 2014) and -1B (launched in 2016) SARs have two 2017 

imaging radar systems, providing a combined capability for advancing the monitoring capability 2018 

of imaging radars. With the Sentinel-1C and -1D instruments presently in development, these 2019 

spacecraft establish a sustained long-term presence of SARs for the monitoring of wetlands 2020 

environments. 2021 
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Optical remote sensing at moderate spatial resolution has been used successfully at global 2022 

scales to create static maps of open/inland water bodies, (e.g., MOD44W; Carroll et al., 2009) 2023 

and wetland vegetation (Friedl et al., 2010). More recently, high-resolution data using 2024 

GeoCover2000 (i.e., GLOWaBo; Verpoorter et al., 2014) and Landsat (i.e., G3WBM; Yamazaki 2025 

et al., 2015) have been used to map seasonal dynamics of lakes, ponds and rivers. Using similar 2026 

algorithms and harnessing the full power of Google Earth Engine with the full Landsat archive, 2027 

Pekel et al. (2016) created the Global Surface Water (GSW) dataset, producing more than 30-2028 

years of surface-water dynamics and associated metrics at 30 m resolution. The moderate and 2029 

high-resolution mapping approaches are consistent with the inventory and microwave-based 2030 

approaches, for example the GSW dataset estimates permanent surface water in Canada, Russia, 2031 

Norway and Sweden to cover >1.9 Mkm
2
 in comparison with the MOD44W estimate of 2.1 2032 

Mkm
2
. Despite the high-resolution provided by Landsat, approximately 90 million lakes 2033 

worldwide are less than 0.01 km
2
 in size (Verpoorter et al., 2014) and thus 30 m resolution 2034 

introduces significant co-registration, spectral mixing, and other issues in mapping smaller 2035 

inland waters directly. These issues are partly overcome by using hybrid mapping approaches. 2036 

For example, using a combination of remote sensing observations, topography, inventory and 2037 

expert elicitation, Olefeldt et al. (2016) mapped up to 3.6 Mkm
2
 of thermokarst wetlands, which 2038 

is larger than the sum of the separate inland waters and vegetated wetlands estimates provided by 2039 

remote sensing alone. Optical remote sensing has also been applied to global mapping of river 2040 

and stream networks to enhance or provide additional insight into topographically derived 2041 

networks. For example, the Global Width Database for Large Rivers (GWD‐LR) applied 2042 

hydrologic routines to a 90-m digital elevation model to map bank-to-bank river widths 2043 
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(Yamazaki et al 2014). More recently, Allen and Pavelsky (2018) mapped river and stream 2044 

networks using Landsat finding more river extent that previous regional estimates for the Arctic. 2045 

The GSW dataset is the most robust global moderate resolution dataset depicting all types 2046 

of waterbodies because it uses multiple observations per year to map the waterbodies which 2047 

helps avoid anomalous conditions caused by drought and/or flood. Comparison of the GSW with 2048 

a locally derived product shows that many small waterbodies and edges are missed with the 2049 

global algorithm (Carroll and Loboda, 2017). The ABoVE field campaign funded decadal water 2050 

maps covering the periods 1991, 2001, and 2011 to provide a regional estimate with lower 2051 

uncertainties for the region (Carroll et al., 2016). A database of local and regional water products 2052 

for the circum-Arctic permafrost region is being maintained in Europe (Muster et al., 2017). 2053 

Cooley et al. (2017) used near daily data from Planet at 5m resolution to track intra-seasonal 2054 

changes in inland water bodies over the course of a year. Very high resolution stereo imagery has 2055 

also been used to generate a fine resolution (2 m posting) Digital Elevation Model which can be 2056 

used to map connectivity between inland waterbodies and wetlands (PGC, 2017). Expanded 2057 

coverage from cubesats offers new possibilities for identifying and monitoring seasonally 2058 

inundated areas as possible CO2 and CH4 emissions hotspots.  2059 

Determining how ABZ warming has affected CO2 and CH4 emissions requires a 2060 

combination of remote sensing observations coupled with biogeochemical models as also 2061 

discussed in Section 5.2. Direct observations of surface concentration records do not yet show 2062 

trends in ABZ CH4 emissions, despite significant warming (Sweeney et al., 2016; Cooper et al., 2063 

2017). Possible drying of wetland soils is exposing soil carbon to oxidation (Commane et al., 2064 

2017) leading to increases in CO2 emissions, but the monitoring network for CH4 emissions is 2065 

sparse and does not fully capture pulses of emissions that occur during the zero-curtain period 2066 
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(Mastepanov et al., 2008; Zona et al., 2016). Surface inundation trends from GIEMS and 2067 

SWAMPS qualitatively agree in a global decline in Fw (Prigent et al., 2012; Schroeder et al., 2068 

2015). Between 1992 and 2012, SWAMPS detected ABZ declines in wetland area of 145 km
2
 yr

-
2069 

1
 found mainly over Asia and Europe, with a slight positive increase in Fw in parts of Canada 2070 

north of the Hudson Bay. In contrast, the GSW Landsat-based approach show inland-waters 2071 

potentially increasing in area from the 1980s to 2014/15, with Russian inland waters increasing 2072 

from 0.45 to 0.47 Mkm
2
 and Canadian inland waters decreasing by 40,000 km

2
 (Pekel et al., 2073 

2016). 2074 

Presently, remote sensing of wetland area and dynamics is contributing to large 2075 

uncertainties in monitoring and modeling (Bloom et al., 2016; Poulter et al., 2017; Zhang et al., 2076 

2017), preventing a robust attribution to how wetlands are responding to climate change. Current 2077 

observing systems for ABZ wetlands are confronted by several key challenges that ongoing and 2078 

upcoming NASA LEO and airborne missions (e.g., SMAP, ABOVE and SWOT) and synthesis 2079 

research activities (e.g., the Global Carbon Project CH4 budget; Saunois et al., 2016) have the 2080 

potential to reconcile. The main observing system gaps include i) terminology over what 2081 

constitutes a wetland and how to include wetlands that are not flooded at the surface and thus not 2082 

detectable by passive remote sensing, ii) tools to improve detection of surface inundation below 2083 

closed vegetation canopies, iii) multi-sensor integrated approaches that harmonize time series of 2084 

radar, optical, lidar, and inventory simultaneously (Guo et al., 2017), and iv) high-resolution 2085 

topographic retrievals to better understand hydrologic and biogeochemical relationships 2086 

(Davidson et al., 2017). Ideally, longer wavelength microwave radar (i.e., L-Band) would be 2087 

combined with orbits that provide higher spatial resolution and temporal frequency than the 2088 

current array of active and passive microwave instruments provide. Higher spatial resolution 2089 
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imagery would help separate inland water bodies from vegetation wetlands (following the 2090 

standard definition of Cowardin et al. (1979) for wetlands), and longer wavelength would 2091 

penetrate closed canopy or dense vegetation more effectively than C-Band wavelengths, for 2092 

example. The NASA-ISRO SAR (NISAR) is a joint mission planned for launch in 2020. A 2093 

primary objective of NISAR is the monitoring of inundated landscapes with repeat coverage of 2094 

12 days. NISAR will continue advancing L-band SAR remote sensing of wetlands environments. 2095 

The NASA SWOT mission, a Ka-Band radar mission, will provide 5.5 x 10-60 m 2096 

resolution with 21-day frequency, and is designed to map surface inundation and water-surface 2097 

elevation. Applications from SWOT airborne emulator, AIRSWOT, as part of the NASA 2098 

ABOVE campaign may yield useful insights for how SWOT can help quantify Fw more 2099 

effectively. To fully address the observation gap of monitoring ABZ wetlands, multi-sensor 2100 

approaches need to be more completely used to fuse data that can improve temporal resolution 2101 

(e.g., combining Sentinel 2A and 2B with Landsat Climate Data Records) and to extract finer 2102 

scale features associated with topographic variation, surface waters, and vegetation properties 2103 

(both structural and spectral characteristics). The recent expansion of commercial high resolution 2104 

data coupled with the extended long term climate data record from moderate resolution 2105 

instruments offers new possibilities for future quantification of changes in surface water extent 2106 

that were not previously feasible. In addition to lentic waters, there are major rivers that flow into 2107 

the Arctic Ocean that account for over 10% of the freshwater discharge into the global oceans 2108 

(https://arcticgreatrivers.org/) and provide a critical link for the transport of carbon and other 2109 

constituents from land to the ocean (Cole et al., 2007; White et al., 2007). The discharge from 2110 

these rivers has been increasing in recent decades (Serreze et al., 2006; Rawlins et al., 2010), 2111 

which has an impact on both freshwater content and sea ice concentration (Stroeve et al., 2011). 2112 

https://arcticgreatrivers.org/
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The upcoming SWOT mission will provide a new way to obtain discharge measurements for 2113 

these rivers, filling a critical measurement gap in the data record (Alsdorf et al., 2003; 2114 

Biancamaria et al., 2016).  2115 

5 Observing Chemistry & Composition of the ABZ Atmosphere 2116 

In this section, we discuss the 1) historical and current state of observations of the 2117 

properties of the ABZ atmosphere, including short-lived pollutants (e.g., nitrogen oxides (NOx = 2118 

NO + NO2), carbon monoxide (CO), aerosols, and ozone (O3)), greenhouse gases (e.g., CH4, 2119 

CO2), clouds, surface UV radiation and stratospheric ozone, and the Arctic energy balance, and 2120 

2) observational needs going forward, which are summarized in Table 1. 2121 

5.1 Short-lived Pollutants in the ABZ (Ralph A. Kahn, Bryan N. Duncan)  2122 

Airborne particles (or aerosols) and trace gas pollutants affect the ABZ in a variety of 2123 

ways. First, light-absorbing particles can reduce the albedo of ice and snow, especially after 2124 

deposition occurs, accelerating melting and altering the ABZ’s radiative balance (Warren and 2125 

Wiscombe, 1980; Clarke and Noone, 1985; Doherty et al., 2010; Stone et al., 2014; Qian et al., 2126 

2015). Second, aerosols affect the microphysical properties of clouds, changing the 2127 

concentrations of cloud condensation nuclei and ice nucleating particulates (e.g., Borys et al., 2128 

1989) and, thus, indirectly affecting cloud shortwave albedo and longwave thermal emissivity 2129 

(e.g., Zhao and Garrett, 2015, and references therein; Zamora et al., 2016; 2018), as well as on 2130 

precipitation and possibly cloud lifetime (e.g., Morrison et al., 2012; Zamora et al., 2017;2018). 2131 

Third, light-absorbing aerosols, such as black and organic carbon, are expected to have the 2132 

greatest effect among the pollutant species on the ABZ’s radiation budget, with O3 and CH4 also 2133 

contributing (Quinn et al., 2008; Breider et al., 2014). 2134 



95 

The presence of widespread Arctic haze and cryoconite (i.e., powdery dust that is 2135 

deposited on and builds up on ice) was first recognized over a century ago (e.g., Garrett and 2136 

Verzella, 2008). The haze is composed of well-aged, anthropogenic particulates, primarily 2137 

sulfate and organic matter, with contributions from black carbon, mineral dust, ammonium and 2138 

nitrate (Quinn et al., 2007, and references therein). It accumulates during winter and early spring 2139 

when removal processes are slow in the cold, dark ABZ and the lower troposphere is relatively 2140 

isolated from mixing with lower latitude air masses (e.g., Barrie, 1986; Shaw, 1995; Quinn et al., 2141 

2007, and references therein). This wintertime dynamical isolation is referred to as the “polar 2142 

dome,” which is shallow (generally < 2 km) and bounded by the “Arctic front” (Stohl, 2006). 2143 

Pollutants emitted within the polar dome are primarily emitted at lower latitudes, especially in 2144 

northern Eurasia, where the polar dome can extend down to 40°N (e.g., Klonecki et al., 2003; 2145 

Stohl, 2006; Law and Stohl, 2007; Hirdman et al., 2010).  2146 

Pollution emitted outside the polar dome typically ascends above the polar dome as it 2147 

moves northward, creating layers of aerosols and trace gases that vary by source region (e.g., 2148 

Law and Stohl, 2007; Willis et al., 2019). Warm Conveyor Belts, which occur preferentially east 2149 

of Asia and North America in the mid-latitudes in colder months (Eckhardt et al., 2004), 2150 

frequently loft pollution well into the free troposphere, where it may then impact the ABZ free 2151 

troposphere (e.g., Law et al., 2017). The amount of pollution arriving to the ABZ varies from 2152 

year to year. For example, pollution from North America and Europe typically maximizes in 2153 

winter and spring when the North Atlantic Oscillation (NAO) meteorological phenomenon is in 2154 

the positive phase; the contribution from East Asia is not significantly dependent on the NAO 2155 

phase (Eckhardt et al., 2003; Duncan and Bey, 2004). Fisher et al. (2010) suggest that the El 2156 
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Niño phenomenon may also play a role in the transport of anthropogenic pollution from East 2157 

Asia to the ABZ.  2158 

Surface observations of some air pollutants (e.g., aerosols, CO, O3) were established at a 2159 

few high-latitude sites in the late 1970s and 1980s, and the data records are often short or 2160 

incomplete (e.g., Novelli et al., 1998; Helmig et al., 2007; Quinn et al., 2007; Stone et al., 2014). 2161 

Nevertheless, they indicate that levels of Arctic haze and some trace gases have decreased over 2162 

the past few decades (e.g., Sharma et al., 2004, 2006, 2013; Quinn et al., 2007, and references 2163 

therein; Hirdman et al., 2010). These decreases may be associated with the economic contraction 2164 

of the former Soviet Union and restrictions on emissions in North America and Western Europe 2165 

(e.g., Duncan and Logan, 2008; Gong et al., 2010; Mackie et al., 2016). There have been several 2166 

field campaigns in the ABZ over the last few decades (e.g., as presented by Law et al., 2014) 2167 

which had the goal of identifying pollution sources affecting ABZ atmospheric composition. For 2168 

example, the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites 2169 

(ARCTAS) and Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, 2170 

Climate, Chemistry, Aerosols and Transport (POLARCAT) field campaigns took place in 2008 2171 

(Fuelberg et al., 2010; Jacob et al., 2010; Law et al., 2014). These two campaigns highlighted 2172 

that important sources of pollutants in the ABZ include boreal wildfires and the long-range 2173 

transport of pollution from East Asian anthropogenic sources. The suite of scientific instruments, 2174 

including those on satellites, offered an unprecedented look at the spatial distribution of trace 2175 

gases and aerosols, including those relevant for climate, in the ABZ troposphere. Satellite 2176 

observations indicate that in just the last decade, air quality improved significantly over much of 2177 

East Asia, North America and Europe (e.g., Duncan et al., 2016; Krotkov et al., 2016), 2178 
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presumably with a concomitant decrease in pollution transported to the ABZ from these 2179 

anthropogenic sources.  2180 

There may be an increase in future pollution emissions within the ABZ given the likely 2181 

increase in wildfires, agricultural fires, and anthropogenic activities (e.g., shipping, oil and 2182 

natural gas extraction, fishing) in the warmer and increasingly accessible ABZ (e.g., Corbett et 2183 

al., 2010; Hegg et al., 2010; Peters et al., 2011; Arnold et al., 2016; McKuin and Campbell, 2184 

2016; Law et al., 2017; Gong et al., 2018; Marelle et al., 2018; Schmale et al., 2018). There are 2185 

several international efforts that have as part of their design to observe these changes. For 2186 

instance, the Arctic Climate Change, Economy, and Society (ACCESS) project has a goal of 2187 

studying the impact of anthropogenic ABZ emissions, such as oil and gas extraction and 2188 

shipping, on Arctic air quality and climate (Roiger et al., 2015). Additionally, the International 2189 

Arctic Systems for Observing the Atmosphere (IASOA) is currently working to strengthen 2190 

international cooperation to build a collaborative network of Arctic observatories, including 2191 

“supersite” observatories”, for aerosols, trace gases, clouds, radiation and other parameters (Uttal 2192 

et al., 2016). Yet, mining and industrial development in the warming Arctic, along with 2193 

increased high-latitude wildfire activity, have the potential to overwhelm the decreases in 2194 

transported pollution from lower latitudes. 2195 

In general, ABZ conditions (e.g., very bright surfaces at ultraviolet/visible wavelengths, 2196 

low light levels, steep sun angles, persistent clouds, including thin cirrus) create challenges for 2197 

trace gas and aerosol retrievals from satellite instruments. For instance, detecting clouds over sea 2198 

ice or snow, a necessary input for retrieval algorithms that use ultraviolet/visible wavelengths, is 2199 

difficult (Eastman and Warren, 2010b). Similarly, it is unlikely that black carbon deposits on 2200 

snow and ice surfaces can be identified using remote-sensing techniques alone (Warren, 2013). 2201 
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Individual observations of SO2 and formaldehyde (HCHO) are associated with relatively high 2202 

uncertainties. Another remaining challenge is retrieving surface O3 (e.g., Duncan et al., 2014). 2203 

Similar to retrievals of CH4 and CO2 (Section 5.2), retrieving CO at thermal infrared 2204 

wavelengths is challenging under ABZ conditions (e.g., Pommier et al., 2010; Monks et al., 2205 

2015). Additionally, for both aerosols and most trace gases, their ABZ levels are typically too 2206 

low, except during large wildfires or near large point sources, for current instruments/retrieval 2207 

algorithms to resolve with confidence. An additional challenge for all satellite observations is the 2208 

paucity of independent, suborbital data with which to validate and improve retrieval algorithms 2209 

for high latitudes. 2210 

Passive imagers that measure ultraviolet, visible and infrared wavelengths give 2211 

information directly related to particulates, such as aerosol optical depth (AOD) and other light 2212 

scattering properties. Examples include MODIS, MISR, and the upcoming European 2213 

Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Multi-Viewing-2214 

Channel-Polarisation Imager (3MI), which are on polar-orbiting satellites. They provide broader 2215 

and more frequent spatial coverage than active sensors and most sounding instruments, making 2216 

event-resolved studies of aerosols possible (e.g., wildfires; Mielonen et al., 2012, 2013). Passive 2217 

instruments that measure ultraviolet, visible and infrared wavelengths also provide information 2218 

on several trace gas air pollutants, including atmospheric columns (i.e., molecules/unit area) of 2219 

NO2, HCHO, CO, and SO2, which can serve as smoke and particulate pollution tracers for 2220 

constraining transport model simulations. Instruments that measure trace gas pollutants include 2221 

the EUMETSAT MetOp-A and MetOp-B Global Ozone Monitoring Experiment (GOME-2), 2222 

NOAA Ozone Mapping and Profiler Suite (OMPS), NASA Measurements Of Pollution In The 2223 

Troposphere (MOPITT), and the Dutch-Finnish Ozone Monitoring Instrument (OMI), which are 2224 
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on polar-orbiting satellites. Currently, large sources (e.g., smelters, volcanoes, gas flaring; Theys 2225 

et al., 2015; Ialongo et al., 2014, 2015; Schmidt et al., 2015; Li et al., 2016; Kashkin et al., 2018) 2226 

are detected by these instruments. Figure 16 shows that OMI NO2 data averaged over a single 2227 

summer in Finland are noisy, but when averaged over multiple years, the signals of small cities 2228 

become detectable. Relative to current similar satellites, the recently launched ESA Sentinel-5 2229 

Precursor TROPOspheric Monitoring Instrument (TROPOMI) offers a larger spectral range, 2230 

better signal-to-noise ratio, and finer footprint (3.6 x 5.6-7.2 km
2
), which improve the detection 2231 

of emission sources. TROPOMI NO2 data averaged over a single season (Figure 16) allow for 2232 

improved detection of emission sources at a finer spatial resolution and with less noise. As 2233 

compared to OMI (Figure 16), TROPOMI NO2 tropospheric columns show higher values 2234 

overall, as expected from the instrument’s increased resolution and sensitivity, and because of 2235 

differences in the retrieval algorithms. 2236 

Active satellite instruments have clear advantages over passive ones in the ABZ, and one 2237 

such system for aerosols currently exists. NASA’s CALIPSO lidar, in orbit since April 2006, is 2238 

the most sensitive and best available space-based source of total column and height-resolved 2239 

Arctic aerosol observations, especially at night, when signal/noise is highest (Figure 17). Despite 2240 

limited coverage from its very narrow cross-track sampling swath (~100 m), coverage is aided 2241 

by the polar orbit of this spacecraft, as the orbit tracks converge at high latitudes. Nevertheless, 2242 

data usually need to be spatially and/or temporally averaged to obtain statistical significance. 2243 

CALIPSO also allows for aerosol type classification based on spectral and depolarization ratios 2244 

(Omar et al., 2009). CALIPSO continues to operate well past its design life, yet there is no 2245 

follow-on capability planned within the U.S. program. There are active instruments, such as 2246 

ESA’s Earth Cloud Aerosol and Radiation Explorer (EarthCARE), planned by other programs. 2247 
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Given the strengths and limitations of each approach, the combination of active and 2248 

passive satellite measurements, suborbital observations for validation and providing additional 2249 

detail, and transport modeling constrained by observations, is required to complete the ABZ 2250 

aerosol picture. For example, Di Pierro et al. (2013) analyzed the spatial distribution of 2251 

CALIPSO layer-resolved ABZ seasonal aerosol extinction measurements between 2006 and 2252 

2012, along with surface and aircraft measurements and results from global aerosol transport 2253 

models, to create a general map of ABZ aerosol behavior. Generoso et al. (2007) used AOD 2254 

from MODIS and ESA’s Polarization and Directionality of the Earth Reflectance (POLDER) 2255 

instrument, mainly in the boreal sub-Arctic, along with MOPITT CO as a smoke tracer, to 2256 

constrain an atmospheric chemistry and transport model, allowing them to plot the advance of 2257 

biomass burning aerosols from Russia into the high Arctic during summer 2003. Zamora et al. 2258 

(2017; 2018) used the combination of lidar data from CALIPSO, radar data from CloudSat, and 2259 

an aerosol transport model, to quantify regional-scale aerosol-cloud microphysical interactions, 2260 

including changes in cloud phase and cloud fraction, under polar nighttime conditions, favorable 2261 

to active remote-sensing. 2262 

Despite the extensive spatial and temporal coverage offered by polar-orbiting satellites, 2263 

observing conditions in the ABZ severely limit the capabilities of many satellite instruments, 2264 

which create an even greater need for suborbital measurements in the ABZ than in more 2265 

favorable observing environments. Additionally, black carbon in Arctic snow is not likely 2266 

detectable by remote sensing (Warren, 2013). Many surface-based instruments, such as sun 2267 

photometers and radiometers sampling the visible and near-infrared, can operate only when there 2268 

is sufficient sunlight, but they can complement ground-based lidars, which perform best at night, 2269 

provided these instruments can be maintained under severe weather conditions. Research stations 2270 
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at Ny Alesund in Svalbard, Norway, Pallas-Sodankylä, Finland, Eureka, Canada, and Barrow, 2271 

Alaska, are examples of the few sites with experience operating atmospheric observatories at 2272 

high-latitudes (e.g., Stone et al., 2014). 2273 

There are a number of ongoing efforts to develop collaborative, comprehensive and 2274 

multi-disciplinary observing networks for air pollutants (this section), greenhouse gases (Section 2275 

5.2), clouds (Section 5.3) and ultraviolet radiation (Section 5.4), such as by ARCUS, the WMO 2276 

Global Atmospheric Watch (GAW) programme, the European Research Infrastructure for the 2277 

observation of Aerosol, Clouds, and Trace gases (ACTRIS) program, and IASOA (Uttal et al., 2278 

2016). The PEEX “Pan-Eurasian Experiment” aims, in particular, to enhance surface-based 2279 

observations in Russia and China (Kulmala et al., 2015). This development is often guided by 2280 

international efforts to prioritize air pollution research, such as the International Global 2281 

Atmospheric Chemistry (IGAC) Air Pollution in the Arctic: Climate, Environment and Societies 2282 

(PACES) project (https://pacesproject.org/). 2283 

From the satellite perspective, we recommend that the siting of surface instruments also 2284 

consider the need for evaluating and interpreting satellite observations. First, there is a need for a 2285 

network of instruments that measures surface levels and the vertical profiles of aerosols and trace 2286 

gases, given the highly complex vertical structure often observed in the stably stratified ABZ 2287 

atmosphere, as discussed in this section. Co-located spectrometers and instruments that measure 2288 

surface pollutant concentrations (e.g., AOD and surface particulates; column NO2 and surface 2289 

levels of NO2) will be particularly valuable to aid in the interpretation of satellite data. Second, 2290 

additional long-term, continuous observations of aerosols and trace gases should be established 2291 

to aid in the evaluation and interpretation of long-term trends observed from space-based 2292 

platforms. This should include direct measurements of light-absorbing aerosol concentrations on 2293 
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snow and ice surfaces. Third, a coordinated effort to include, in an ABZ-ON, observations of 2294 

input parameters to retrieval algorithms, which are necessary to optimize algorithms for ABZ 2295 

high latitudes. These parameters include surface reflectivity, vertical profiles of temperature, 2296 

cloud separation from ice/snow, and cloud top height. This recommendation has important 2297 

implications for the creation of long-term data records and estimating trends. Improper 2298 

accounting of changes in input parameters over space and time can introduce space- and time-2299 

dependent biases. Although this recommendation applies to all satellite observations of 2300 

atmospheric gases globally, it is particularly relevant as the ABZ has experienced rapid change 2301 

over the last few decades, which is anticipated to continue in the coming decades. Fourth, siting 2302 

of additional coastal monitors near potential new ABZ shipping lanes, ports, areas of mining and 2303 

industry, etc. should be considered; concentrated human activity at such locations would also 2304 

help in finding staff to maintain the instruments. These recommendations will also benefit 2305 

scientific research (e.g., source apportionment studies) and aid monitoring potential ABZ 2306 

pollutant changes.  2307 

Finally, an innovative orbit option of ABZ aerosols and trace gases is discussed in 2308 

Section 6. 2309 

5.2 Long-Lived Greenhouse Gases in the ABZ (Bryan N. Duncan, Stephen R. Kawa, James 2310 

B. Abshire, James S. Wang, Lesley E. Ott, Ray Nassar) 2311 

CO2 and CH4 are the two dominant anthropogenic, radiatively-important gases driving 2312 

Arctic and global warming. Although CO2 is a larger contributor to climate change overall 2313 

because of its higher abundance, the 100-year and 20-year global warming potentials (GWP) of 2314 

CH4 are 28-32 times and 84-86 times larger than those of CO2 (Myhre et al., 2013; Holmes et al., 2315 

2013). Therefore, both anthropogenic CO2 and CH4 are seen as critical targets for climate change 2316 
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mitigation (e.g., Kirschke et al., 2013). Anthropogenic sources of CO2 and CH4 may increase in a 2317 

more accessible ABZ because of increased access to areas with oil, natural gas, and minerals, the 2318 

development of new ports and industry, and increased shipping. Possible changes in natural ABZ 2319 

sources and sinks, which include vegetation changes (Sections 4.4-4.5), wildfires (Section 4.6), 2320 

wetlands (Section 4.7), and permafrost thaw (Section 4.3), are highly uncertain (e.g., Pastick et 2321 

al., 2017). The rate at which the vast stores of soil organic carbon are being released and their 2322 

feedback to the rapidly warming ABZ are a major uncertainty and potential ‘tipping point’ in 2323 

climate projections. A key challenge of constraining ABZ CO2 and CH4 emissions and sinks is 2324 

that they often have high spatiotemporal variability and different source/sink types are often co-2325 

located.  2326 

While direct observations of atmospheric CO2 and CH4 at Arctic baseline observatories 2327 

have been and will continue to be essential, the characterization of carbon fluxes will benefit 2328 

from ancillary observations of the hydrological, atmospheric and terrestrial factors, many of 2329 

which can be observed from space, that control these carbon fluxes. Large uncertainties 2330 

associated with process-based understanding of natural carbon source fluxes have seriously 2331 

limited our ability to estimate future fluxes in a warmer and more hydrologically active world 2332 

(e.g., McGuire et al., 2009). For example, present-day ABZ wetland CH4 emissions, as shown in 2333 

a recent model inter-comparison of the West Siberian Lowlands that included process-based 2334 

models and inversions, are not well constrained (Bohn et al., 2015). The large spread of emission 2335 

estimates results because, for instance, the factors that affect microbial CH4 production are not 2336 

well constrained (e.g., Meng et al., 2012), and land cover, including wetlands, is not well 2337 

categorized (e.g., Frey and Smith, 2007). Though the ABZ is currently a net sink for CO2 2338 

because ecosystems absorb more carbon than they emit (McGuire et al., 2009), studies differ on 2339 
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whether the magnitude of this sink is increasing (e.g., Rawlins et al., 2015) or decreasing (Hayes 2340 

et al., 2011). Substantial uncertainties also exist for carbon emissions associated with permafrost 2341 

thaw (Section 4.3; e.g., Schuur et al., 2015, 2018; Gao et al., 2013; Zhu et al., 2013b; National 2342 

Research Council, 2014b; Koven et al., 2015; Lawrence et al., 2015; McGuire et al., 2016), lake 2343 

sediments (e.g., Tan and Zhuang, 2015), and ocean hydrates (e.g., Kort et al., 2012; Ruppel and 2344 

Kessler, 2017) in a warmer ABZ. 2345 

Before the satellite era, ABZ data on CH4 and CO2 concentrations were sparse and 2346 

mostly from a handful of high-latitude stations established mainly after 1980 (Worthy et al., 2347 

2009; Dlugokencky et al., 2015). While these data are invaluable, including in the satellite era, 2348 

the small number of stations are not sufficient to reveal a complete picture of the heterogeneity in 2349 

sources and sinks throughout the ABZ and are insufficient for attribution to specific 2350 

anthropogenic or natural sources/sinks. Independent data that could be used to differentiate 2351 

historical CO2 and CH4 source/sink types are also limited, complicating efforts to disentangle the 2352 

relative roles of changes in ABZ vegetation (e.g., solar-induced fluorescence), fossil fuel 2353 

combustion (e.g., NOx, isotopic measurements), ocean, wetlands (e.g., fluctuations in wetland 2354 

extent and temperature), wildfires (e.g., annual area burned), and fugitive emissions from natural 2355 

gas production and transport (e.g., Uvarova et al., 2014), such as in the former Soviet Union 2356 

(e.g., Reshetnikov et al., 2000). For example, there are only a few recent observations of carbon 2357 

fluxes from Eurasian Arctic wetlands, which indicate that wetland CH4 emissions may be higher 2358 

than previously thought (e.g., Schneider et al., 2016). 2359 

Current satellite retrievals of CO2 and CH4 are from polar-orbiting passive instruments 2360 

that observe spectra using thermal infrared or reflected solar near infrared/shortwave infrared 2361 

wavelengths (e.g., Sellers et al., 2018). CO2 and CH4 observations from thermal infrared 2362 



105 

instruments, such as the NASA Aqua AIRS (Xiong et al., 2008; Chahine et al., 2008), NASA 2363 

Aura Tropospheric Emission Spectrometer (TES; Payne et al., 2009; Kulawik et al., 2010) and 2364 

EUMETSAT MetOp Infrared Atmospheric Sounding Interferometer (IASI; Crevoisier et al., 2365 

2009; Razavi et al., 2009; Turquety et al., 2004), provide limited information on the vertical 2366 

structure of concentrations in the mid- and upper troposphere, but lack sensitivity in the lower 2367 

troposphere where concentrations respond most strongly to surface fluxes. 2368 

CH4 and CO2 satellite retrievals from near infrared/shortwave infrared wavelengths give 2369 

total atmospheric columns that can be used in conjunction with models to infer CH4 and CO2 2370 

fluxes (e.g., Yokota et al., 2009; Butz et al., 2011; Schepers et al., 2012; Zhang et al., 2013; 2371 

Chevallier et al., 2014; Turner et al., 2015; Houweling et al., 2015; Eldering et al., 2017ab). 2372 

Retrievals are only possible during daylight, cloud-free conditions. Initial long-term column CH4 2373 

and CO2 products are from the ESA Envisat SCanning Imaging Absorption SpectroMeter for 2374 

Atmospheric CHartographY (SCIAMACHY; 2002 – 2012; e.g., Schneising et al., 2011, 2012) 2375 

and the JAXA Greenhouse gases Observing Satellite (GOSAT; 2009 – present) Thermal and 2376 

Near Infrared Sensor for carbon Observation instrument (TANSO; e.g., Yokota et al., 2009; Butz 2377 

et al., 2011; Schepers et al., 2012). Though the two instruments overlapped in time, 2378 

SCIAMACHY experienced detector degradation in October 2005, resulting in lower sensitivity 2379 

thereafter (e.g., Frankenberg et al., 2011b; Schneising et al., 2012). Buchwitz et al. (2015) 2380 

describe the efforts to reconcile differences and biases among current SCIAMACHY and 2381 

GOSAT CH4 and CO2 retrieval algorithms so as to improve accuracy of the data products. 2382 

Despite observational uncertainties, the time series analysis of GOSAT CO2 data compare well 2383 

to ground-based measurements, showing that the seasonal cycle, both the amplitude and the 2384 

phase, of CO2 can be detected at high latitudes (Lindqvist et al., 2015). The NASA Orbiting 2385 
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Carbon Observatory-2 (OCO-2) was launched in 2014, with the goal to provide CO2 column data 2386 

with the precision, resolution, and coverage needed to characterize regional sources and sinks 2387 

(Eldering et al., 2017ab). Obtaining robust flux estimates remains challenging, especially at high 2388 

latitudes (Chevallier et al., 2014; Houweling et al., 2015; Wang et al., 2018). Initial flux 2389 

inversion results using OCO-2 data are largely focused on low latitude regions (Eldering et al., 2390 

2017ab and references within). GOSAT and OCO-2 were joined in orbit by the Chinese Carbon 2391 

Dioxide Observation Satellite Mission (TanSat; Liu et al., 2013; CO2) launched in December 2392 

2016 and the Chinese Feng-Yun 3D Greenhouse-gases Absorption Spectrometer (GAS; CO2, 2393 

CH4) launched in November 2017. TROPOMI was launched in October 2017 and observes CH4 2394 

(Hu et al., 2018), among other species. JAXA’s GOSAT-2 (CO2, CH4) was launched in October 2395 

2018 and CNES’s MicroCarb (CO2) is expected to launch by ~2021. NASA’s newest greenhouse 2396 

gas mission, OCO-3 (launched in May 2019; CO2) and its next one, GeoCarb (CO2, CH4), will 2397 

not observe latitudes greater than about 52°N, because OCO-3 is on the International Space 2398 

Station (Eldering et al., 2018) and GeoCarb will use a geostationary orbit (Moore et al., 2018). 2399 

Jacob et al. (2015) provide a table comparing the capabilities of various CH4 past, current, and 2400 

near-term instruments. 2401 

There remain substantial observing challenges that result in sparse high-quality data over 2402 

the ABZ relative to lower latitudes. This occurs even though current passive instruments are on 2403 

polar-orbiting satellites, which have more frequent and overlapping overpasses over the ABZ 2404 

than over the tropics. Detecting CH4 and CO2 over the ABZ is particularly difficult for passive 2405 

sensors, which rely on reflected sunlight, because of low sun elevation angles in spring and fall 2406 

and no sun in winter, and because of atmospheric scatter from clouds and aerosols. Early 2407 

inversion results from OCO-2 suggest that it is challenging to accurately infer fluxes in high 2408 
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latitude regions because of seasonal changes in coverage (e.g., Crowell et al., 2018). Although 2409 

the surface albedo of snow and ice are high in the visible and near infrared regions, they are very 2410 

low in the shortwave infrared CO2 and CH4 bands, resulting in lower signal-to-noise ratios from 2411 

passive sensors when observing over these surfaces. These challenges are minimized in mid-2412 

summer, but the ABZ is a cloudy region and aerosols from boreal fires in summer often lead to 2413 

hazy conditions. All near infrared passive datasets have contained biases in raw retrieved data 2414 

(e.g., because of aerosols, solar zenith angle, or observing mode) that do not meet the very strict 2415 

accuracy requirements needed for flux inversions (~0.25% for CO2) and therefore require 2416 

correction before they can be used to infer fluxes (e.g., Wunch et al., 2017). This is currently 2417 

done using data collected by the Total Column Carbon Observing Network (TCCON), which is a 2418 

system of ground-based, high spectral resolution Fourier Transform Spectrometers at more than 2419 

20 sites globally that records direct solar spectra in the shortwave infrared (Wunch et al., 2011). 2420 

Despite these efforts, biases that remain in the data can exert a strong influence in resulting flux 2421 

estimates making new calibration and validation datasets and techniques particularly critical. 2422 

Because they do not depend on reflected sunlight, the planned polar-orbiting active 2423 

sensors (i.e., lidar) will significantly augment the data from polar-orbiting passive sensors in the 2424 

ABZ by providing more precise CH4 and CO2 column data with better temporal coverage and 2425 

complementary spatial coverage (e.g., Kawa et al., 2010; Hammerling et al., 2015; Crowell et al., 2426 

2018; Kawa et al., 2018). This is important as carbon fluxes in the ABZ occur in all seasons, 2427 

times of day, and sky conditions (e.g., Oechel et al., 2014; Zona et al., 2016; Treat et al., 2018). 2428 

The first CH4 lidar mission, called the MEthane Remote sensing Lidar missioN (MERLIN; 2429 

Kiemle et al., 2014; Ehret et al., 2017) expected to launch in 2024, will demonstrate the 2430 

capability to constrain CH4 fluxes in cloudy and/or low-light environments, such as the ABZ, 2431 
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although its 3-year design lifetime may not address the need for long-term, continuous 2432 

observations. As part of a potential active mission to measure CO2 (NASA Active Sensing of 2433 

CO2 Emissions over Nights, Days, & Seasons (ASCENDS) mission; National Research Council, 2434 

2007), NASA has supported the development of several lidar technologies, as well as a series of 2435 

flight campaigns to demonstrate the capabilities of airborne precursor instruments (Kawa et al., 2436 

2018 and references within). Data from these flights has also been used to demonstrate retrieving 2437 

column CO2 to several types of cloud tops (e.g., Mao et al., 2018), though the errors are larger 2438 

than for measurements to the ground. 2439 

As mentioned above, there is an important need for observations of the factors that 2440 

control CH4 and CO2 fluxes, which will allow for a better process-based understanding of these 2441 

fluxes and enhance the predictive capability of Earth system models. As discussed in Section 4.7 2442 

and relevant to CH4, data of gravity anomalies, such as NASA’s and DLR’s GRACE (2002-2443 

present), and from microwave instruments, such as AMSR-E (2002-2011) and SMOS (2009-2444 

present), provide soil moisture data that may also be used as proxies for inundation (e.g., Bloom 2445 

et al., 2010; Watts et al., 2012). For observing in the ABZ, microwave instruments have the 2446 

advantage that they do not rely on reflected solar radiation and are not hampered by clouds. 2447 

Observations of vegetation (Sections 4.5-4.6) continue to provide critical information on the 2448 

trends and spatiotemporal variability of CO2 flux. The strategy of measuring both carbon 2449 

greenhouse gases and factors that control their fluxes is integral to the NASA Carbon in Arctic 2450 

Reservoirs Vulnerability Experiment (CARVE; http://science.nasa.gov/missions/carve/; Miller 2451 

and Dinardo, 2012) and Arctic Boreal Vulnerability Experiment (ABoVE; 2452 

http://above.nasa.gov/) suborbital missions. 2453 
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Similar to the recommendations in Section 5.1 for pollutants, we recommend that the 2454 

siting of surface instruments also consider the need for evaluating and interpreting satellite 2455 

observations. First, a comprehensive ABZ suborbital observing network of instruments that 2456 

measure surface concentrations and give vertical profile information of CH4 and CO2 is essential 2457 

for evaluating and interpreting satellite observations. The primary network that measures both 2458 

gases for validating satellite observations is TCCON (Wunch et al., 2011). Some operating ABZ 2459 

sites include East Trout Lake (54.4°N) and Eureka (80.0°N) in Canada, and Sodankylä, Finland 2460 

(67.4°N). There are sparse observations of the vertical structure of CH4 and CO2 concentrations 2461 

from a relatively new technique, the AirCore system (Karion et al., 2010). Second, a coordinated 2462 

effort to include, in an ABZ-ON, observations of input parameters to retrieval algorithms, which 2463 

are necessary to optimize algorithms for ABZ high latitudes.  2464 

Finally, an innovative orbit for observing ABZ CH4, CO2, SIF and other observables is 2465 

discussed in Section 6. 2466 

5.3 ABZ Clouds (Dong Wu)  2467 

The significant changes in the ABZ, including reduction of sea ice and albedo (Section 2468 

3.1), Greenland ice sheet loss (Section 4.1), and increases in atmospheric water vapor (Serreze et 2469 

al., 2012), have affected ABZ cloud formation. To what extent ABZ clouds interact with large-2470 

scale dynamics, temperature and moisture has been an active area of research. Generally 2471 

speaking, the Arctic experiences a warming effect from longwave (LW) radiation in all seasons 2472 

except summer when its shortwave (SW) cooling effect offsets the LW warming (Curry and 2473 

Ebert, 1992). The warming to the surface from low-level semi-transparent liquid clouds is 2474 

thought to be very effective, because these clouds allow the incoming SW solar radiation to heat 2475 

the surface while trapping the outgoing LW radiation (Bennartz et al., 2013). However, overall 2476 
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cloud-radiative feedbacks on the Arctic warming appear to be complex and coupled with other 2477 

processes (Curry et al., 1996). Current climate model simulations still disagree in terms of the 2478 

estimated cloud amount and radiative fluxes over the Arctic (Klein et al., 2009; Vavrus et al., 2479 

2009). Observations of cloud properties and their variations on a basin scale are critically needed 2480 

for improving our understanding of cloud roles in the Arctic amplification and associated 2481 

feedback processes. 2482 

A long-term cloud climatology has been derived from ground-based visual observations, 2483 

which are limited to monthly statistics from weather stations primarily on land (Hahn and 2484 

Warren, 2007). Reports from drifting stations on sea ice are used for the ocean. The stations from 2485 

the high Arctic report a dominance of low stratiform clouds, showing more cloudiness in 2486 

summer than winter and significant correlations of interannual variability with surface air 2487 

temperature, total sea ice extent, and the Arctic Oscillation (Eastman and Warren, 2010a). There 2488 

is an increasing trend in cloud cover over the Arctic Ocean in all seasons, but this trend is most 2489 

significant during spring and autumn. In addition to the station observations, several extensive 2490 

sea-ice-based, ship-based and airborne campaigns were conducted over the Arctic including the 2491 

Surface Heat Budget of the Arctic Ocean (SHEBA) in 1997-1998 in the Beaufort and Chukchi 2492 

seas (Uttal et al., 2002), Arctic Ocean summertime expeditions from Japanese research vessel 2493 

Mirai (Inoue et al., 2015), the Mixed Phase Arctic Cloud Experiment (M-PACE, Verlinde et al., 2494 

2007), and the Arctic Summer Cloud Ocean Study (ASCOS) on the central Arctic sea-ice pack in 2495 

late summer 2008 (Tjernstrom et al., 2014).  2496 

Polar-orbiting satellite sensors play an essential role in determining cloud cover and 2497 

variations in the ABZ. Using the thermal infrared sounding channels from AVHRR, Comiso 2498 

(2003) and Wang and Key (2003) were able to estimate surface, cloud, and radiation properties, 2499 
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but reported conflicting trends in the retrieved Arctic cloudiness for the period of 1982-2000. 2500 

The trends of Wang and Key (2005) also differed markedly from the trends obtained from visual 2501 

surface observations (Eastman and Warren 2010b). The AVHRR data also constitute the most 2502 

polar coverage of a global data set from the International Satellite Cloud Climatology Project 2503 

(ISCCP), which formulated cloud detection using narrowband channels at 0.6 and 11 microns 2504 

(Rossow and Garder, 1993). Beginning in 2000, NASA has been providing much improved 2505 

cloud measurements at a high (1 km) spatial resolution from the multi-channel MODIS 2506 

(Ackerman et al., 1998; Platnick et al., 2003; Frey et al., 2008) and MISR (Wu and Lee, 2012). 2507 

The MODIS cloud fraction is more robust in daytime detection but exhibits a systematic 2508 

dependence on sea ice concentration at night (Liu et al., 2010). The MISR stereo technique is 2509 

most skillful for boundary-layer cloud detection among passive satellite sensors (Wu et al., 2510 

2009). Analyzing the AIRS data from 2002-2015, Boisvert and Stroeve (2015) show that the 2511 

Arctic atmosphere has become warmer and wetter. In addition, the Clouds and the Earth’s 2512 

Radiant Energy System (CERES) sensor on Terra and Aqua satellites is used to estimate Arctic 2513 

cloud radiative properties at the top of atmosphere (TOA) and the surface (Kato et al., 2006; 2514 

Loeb et al., 2009).  2515 

The most complete characterization of Arctic 3-D cloud distribution is from active 2516 

satellite sensors, namely, the CloudSat 94-GHz radar and CALIOP. Despite limited sampling 2517 

from their nadir views, the combined radar/lidar observations are able to produce valuable global 2518 

cloud climatology on a monthly basis (Mace and Zhang, 2014). Studying the CloudSat/CALIOP 2519 

data of the 2006–08 period, Kay and Gettelman (2009) found more low clouds over open water 2520 

in the Arctic autumn than summer. The observed vertical cloud profiles help to further constrain 2521 

radiative flux calculations at the TOA as well as at the surface; the dominant error source is from 2522 
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cloud uncertainty. Analyzing data of observed TOA radiative fluxes from Clouds and the Earth’s 2523 

Radiant Energy System-Energy Balanced and Filled (CERES-EBAF) and observationally 2524 

constrained radiative flux calculations (2B-FLXHR-LIDAR), Kay and L’Ecuyer (2013) obtained 2525 

a more reliable cloud and radiation climatology over the Arctic Ocean, showing an annual cloud 2526 

warming (+10 W/m
2
) at the surface and cooling (-12 W/m

2
) at the TOA. 2527 

While low-level clouds play a more important role than high clouds in warming the 2528 

surface, their radiative effects are complicated by their mixed-phase type (Morrison et al., 2012) 2529 

and semi-transparent layers (Bennartz et al., 2013). When upper-level clouds do not hide lower 2530 

levels, satellite sensors have some skill in distinguishing between liquid and ice types (Baum et 2531 

al., 2000; Hu et al., 2010). The space-borne lidar systems are able to classify transparent and 2532 

opaque clouds, based on the absence of surface echoes (Vaughan et al., 2009). Figure 18 shows a 2533 

climatology of Arctic transparent and opaque clouds from CALIOP, showing dominance of 2534 

opaque clouds during all seasons. 2535 

Arctic clouds and their processes, especially cloud radiative effects, remain poorly 2536 

represented in most modern-era climate models. Reliable observations on a basin-scale are still 2537 

lacking, including cloud properties (e.g., water and ice content, particle size), formation, and 2538 

interactions with aerosol and precipitation processes. Because the majority of Arctic clouds 2539 

reside in the PBL and vary dramatically across surfaces of different types, orbital and suborbital 2540 

sensors with high vertical resolution, as well as horizontal coverage, are critically needed. 2541 

  2542 

5.4 Surface Ultraviolet Radiation and Stratospheric Ozone (Johanna Tamminen, Erkki 2543 

Kyrölä, Alexey Karpechko) 2544 
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Biologically-harmful surface ultraviolet radiation (UV-B; 280-320 nm) has both positive 2545 

and negative effects on humans and the biosphere, and plays an important role in tropospheric 2546 

chemistry. Atmospheric O3 attenuates solar UV radiation reaching the surface with stratospheric 2547 

O3 having a large effect on surface UV-B. For example, the effects of the large springtime O3 2548 

depletion over the Arctic in 2011 lasted through the following summer and increased cumulative 2549 

spring-summer UV-B radiation by up to 4% (Karpechko et al., 2013). Year-to-year variations in 2550 

UV-B radiation are largely caused by variations in stratospheric O3 and cloudiness, though it is 2551 

also modulated by aerosols and surface albedo. For instance, Bernhard et al. (2007) show that in 2552 

Barrow, Alaska, clouds reduce UV radiation (at 345 nm) by 4% in spring (when surface albedo 2553 

is high from snow) and by more than 40% in autumn (when cloud cover is higher). Aerosols 2554 

reduce UV radiation by ~5%, but the decrease can be larger in ABZ haze events. 2555 

Very little data of surface UV radiation and O3 exist before the expansion of observations 2556 

following the discovery of the Antarctic “ozone hole” (Farman, Gardiner, and Shanklin, 1985). 2557 

Surface O3 was measured at about 300 sites in Europe after 1850. By 1881, it was realized that 2558 

there is more O3 in the middle atmosphere than near the surface. The first high quality surface O3 2559 

measurements were collected in 1918 and accurate total vertical columns of O3 (3 mm in STP) 2560 

were measured in 1921 as determined by the Umkehr method, which led to the discovery of the 2561 

ozone layer in 1934. Since then, O3 in the middle atmosphere has been monitored using optical 2562 

and in situ methods from special observatories. Systematic measurements, which are archived by 2563 

the World Ozone and Ultraviolet Data Centre (WOUDC), began in the early 1950s. Many new 2564 

O3 monitoring stations were established in the Arctic during the 1957-58 Polar Year. The 2565 

international Network for the Detection of Atmospheric Composition Change (NDACC) 2566 

includes 17 Arctic measurement stations, with data records starting mainly in the 1990s.  2567 
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Estimates of surface UV radiation can be derived globally using satellite observations of 2568 

O3, aerosols and cloudiness. The GOME-2 and OMI surface UV radiation products include, for 2569 

example, spectral irradiance at selected wavelengths and erythemally-weighted daily maximum 2570 

dose rate (Tanskanen et. al. 2006; Kujanpää et. al. 2015). Recent validation of satellite UV 2571 

radiance at high northern latitudes by Bernard et al. (2015) shows relatively good agreement 2572 

(within 20%) with satellite and ground-based observations, except when albedo values used in 2573 

satellite estimates are uncertain. The satellite-based surface UV radiation data sets will be 2574 

extended with data from the recently launched TROPOMI (Lindfors et al., 2018).  2575 

The first orbital total vertical column O3 measurements were collected by the Nimbus-4 2576 

Backscatter UltraViolet (BUV) instrument in 1970 (e.g., Singh et al., 2003; Grant, 1989) and 2577 

followed by the Solar Backscatter Ultraviolet (SBUV) instrument and Total Ozone Mapping 2578 

Spectrometer (TOMS), which were launched on Nimbus-7 in 1978. Versions of these two latter 2579 

instruments have been flown nearly continuously since on a series of Nimbus and NOAA 2580 

satellites. Several instruments, including GOME, GOME-2, SCIAMACHY, OMI and OMPS, 2581 

have measured total vertical column O3 over the last twenty years with the more recent 2582 

instruments having increased spatial resolution. TROPOMI continues the record and has even 2583 

finer spatial resolution. All these instruments use back-scattered solar light and, therefore, cannot 2584 

collect observations during night and Arctic winter. 2585 

While the distribution of O3 within a vertical column has some direct impact on the 2586 

amount of UV radiation reaching the surface, knowledge of O3’s vertical profile is important for 2587 

identification of causes of variations in the total vertical column O3 which lead to variations in 2588 

UV surface radiation. Additionally, O3’s vertical distribution may influence surface UV radiation 2589 

indirectly as it affects stratospheric dynamics, which influences tropospheric composition and 2590 
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weather (e.g., clouds), such as through the Arctic Oscillation phenomenon. Links between 2591 

cryospheric changes and surface climate variability via polar stratospheric variability have 2592 

recently been investigated in several modeling studies (e.g., Kim et al., 2014b; Sun et al., 2015; 2593 

Seviour, 2017). The somewhat diverse results of these studies emphasize the importance of 2594 

continued monitoring of upper tropospheric and stratospheric composition, especially O3 and 2595 

water vapor, as well as temperature.  2596 

Satellite instruments measure O3’s vertical profile in the stratosphere using a limb-2597 

viewing technique and several wavelength regions. They use scattered solar light, stellar light or 2598 

thermal emission from the atmosphere as a source of radiation. Instruments using scattered or 2599 

occulted solar light are not able to measure through the Arctic winter whereas stellar occultation 2600 

or thermal emission instruments can. The first instrument in this category was the NASA 2601 

Explorer 60 Stratospheric Aerosol and Gas Experiment (SAGE-I) instrument (1979-1981), but a 2602 

more important instrument was the Earth Radiation Budget Satellite (ERBS) SAGE-II 2603 

instrument, which measured O3 profiles from 1984 to 2004. These data have been combined with 2604 

more recent O3 measurements for trend studies (Kyrölä et al., 2013; Harris et al., 2015; Sofieva 2605 

et al., 2017). In addition to O3 profiles, SAGE-II provided stratospheric NO2, H2O, and aerosol 2606 

profiles.  2607 

Observations of some trace gases (e.g., hydrochloric acid (HCl), bromine monoxide 2608 

(BrO)) and aerosols provide insight into the complex chemistry and dynamics that influence 2609 

stratospheric O3, and subsequently, surface UV radiation. Many of these relevant trace gases and 2610 

aerosols in the stratosphere have been measured at least for a limited time by SAGE-II and the 2611 

instruments that followed (e.g., SPARC, 2017). These instruments include the NASA Upper 2612 

Atmosphere Research Satellite (UARS) Halogen Occultation Experiment (HALOE), MLS, 2613 
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Canadian Space Agency (CSA) Odin Optical Spectrograph and InfraRed Imager System 2614 

(OSIRIS), Swedish National Space Board Odin Sub-Millimeter Radiometer (SMR), ESA Global 2615 

Ozone Monitoring by Occultation of Stars (GOMOS), ESA Envisat Michelson Interferometric 2616 

Passive Atmosphere Sounder (MIPAS), SCIAMACHY, AIRS, SAGE III, NASA Thermosphere 2617 

Ionosphere Mesosphere Energetics Dynamics (TIMED) Sounding of the Atmosphere using 2618 

Broadband Emission Radiometry (SABER) instrument, and CSA Atmospheric Chemistry 2619 

Experiment (ACE) Fourier Transform Spectrometer (ACE-FTS). Data from these instruments 2620 

raised stratospheric composition studies to a new level. For instance, Manney et al. (2011) use 2621 

MLS and OMI data to show that, for the first time in the observational record, constituent 2622 

evolution within the 2010/2011 Arctic polar vortex approached that in the Antarctic. As another 2623 

example, the SAGE data indicate a seasonal decrease in Arctic particle size from ~0.35 to ~0.25 2624 

µm from spring to summer, based on the ratio of mid-visible - 1 µm limb observations 2625 

(Treffeisen et al., 2006).  2626 

Arctic UV-B radiation levels are expected to decrease by 2100 from a few percent to 2627 

some tens of percent as compared to 1950 because of decreasing Arctic sea ice and surface 2628 

reflectivity together with increased cloudiness and the expected O3 “super recovery” (due to both 2629 

removal of O3-destroying chlorofluorocarbons (CFCs) and acceleration of the Brewer-Dobson 2630 

circulation; e.g., Watanabe et al., 2011; Fountoulakis et al., 2014). However, as compared to the 2631 

decrease in UV-B irradiance at the surface, a far greater increase is projected for UV-B 2632 

irradiance entering the ocean by 2100 because of sea ice loss (Fountoulakis et al., 2014). 2633 

Therefore, a comprehensive and internally-consistent suite of observations, including clouds, 2634 

surface albedo, aerosols, and ozone, is necessary to attribute the causes of trends and variations 2635 

in ABZ UV-B radiation. 2636 
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Going forward, there is an important need to continue observations with MLS and 2637 

MIPAS types of instruments, which provide important data of the vertical distributions of a 2638 

number of trace gases which are used to study the chemical and dynamical processes that 2639 

determine Arctic ozone variations and trends. These instruments are able to measure during day 2640 

and night, which is important for Arctic studies. Similarly, solar occultation instruments that 2641 

observe UV-visible wavelengths (e.g., SAGE II) are needed for estimating long-term trends and 2642 

as a transfer standard between different instruments and over data gaps. The Atmospheric Limb 2643 

Tracker for the Investigation of the Upcoming Stratosphere (ALTIUS) instrument promises to 2644 

extend limb scatter, solar and stellar occultation observations (Fussen et al., 2016). It is being 2645 

developed in collaboration with Belgium and ESA with an expected launch date in 2021. 2646 

NASA’s/NOAA’s OMPS limb scatter observations of O3 are also planned for continuation in 2647 

upcoming JPSS missions. Finally, it is important to continue data collection at existing ABZ 2648 

observatories, which is critical for satellite validation activities. 2649 

5.5 Observing the Arctic-Boreal Energy Budget (Patrick C. Taylor, Seiji Kato) 2650 

The energy budget is a critical variable for understanding changes in the ABZ. For 2651 

instance, the annual mean top-of-the-atmosphere (TOA) budget of incoming and outgoing 2652 

radiation is approximately balanced by large-scale horizontal transports of the ocean and 2653 

atmosphere because the storage term (i.e., the energy used to melt sea ice and warm the ABZ) is 2654 

negligible at time scales longer than annual. The energy budget at the surface, including radiative 2655 

and turbulent fluxes and surface temperature, determines the seasonal timing of sea ice and snow 2656 

melt/freeze-up. The TOA and surface energy budgets are also influenced by ABZ climate 2657 

feedback processes, including the surface albedo feedback, the lapse rate feedback, and the 2658 

permafrost carbon-feedback (Screen and Simmonds, 2010; Serreze and Barry, 2011; Pithan and 2659 
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Mauritsen, 2014; Schuur et al., 2015; Stuecker et al., 2018). As a consequence, the uncertainty in 2660 

the ABZ surface energy budget is, in part, responsible for the inter-model spread in Arctic 2661 

climate projections (Boeke and Taylor, 2018). Monitoring changes in the ABZ energy budget is 2662 

necessary for observationally determining the causes and consequences of amplified ABZ 2663 

climate change and to constrain models and projections.  2664 

Observations indicate that energy budget fluxes have changed over the last 30 years 2665 

across the ABZ. Most evident is the increase in absorbed shortwave radiation (sunlight) at the 2666 

surface and TOA associated with the decreases in sea ice and snow cover (Brown and Robinson, 2667 

2011; Stroeve et al., 2012). Pistone et al. (2014) used both the Clouds and the Earth’s Radiant 2668 

Energy System (CERES) and the passive microwave measurements to estimate that an additional 2669 

6.40.9 Wm
-2

 of shortwave radiation was absorbed by the ABZ since 1979. Considering the 2670 

CERES Energy Balanced and Filled (EBAF; Loeb et al., 2018; Kato et al., 2018) data product 2671 

alone, a -1.30.6 Wm
-2

 decade
-1

 trend in reflected solar radiation at TOA is found since 2000 2672 

(Figure 19a), consistent with Pistone et al. (2014). The observed greening of Arctic tundra and 2673 

the shift in boreal vegetation type are also contributing to changes in the ABZ surface albedo and 2674 

energy budget (Meyers-Smith et al., 2011; Mao et al., 2016), evident in the CERES data as a -2675 

1.10.3% decade
-1

 in surface albedo over land regions poleward of 60
o
N (Figure 19b). 2676 

Significant changes are also evident in the longwave radiative fluxes. Increased 2677 

downwelling longwave radiation at the surface has received the most attention because of its 2678 

connection to the hypothesized Arctic amplification process (e.g., Boeke and Taylor 2018), a 2679 

signal that also appears in reanalysis data sets (Lee et al., 2017). At TOA, CERES data indicate 2680 

an increase in outgoing longwave radiation of 1.10.4 Wm
-2

 decade
-1

 in association with warmer 2681 

ABZ temperatures (Loeb et al., 2018). A recent study by Peterson et al. (2019) exploits spectral 2682 
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data from AIRS, revealing that increased surface temperatures contribute more than increased 2683 

atmospheric temperature and humidity to the observed broadband longwave fluxes changes. 2684 

Changes in surface turbulent fluxes across the ABZ are much more uncertain than 2685 

radiative fluxes (Bourassa et al., 2013). However, all indications are that significant changes are 2686 

occurring during fall and winter in the regions of the Arctic Ocean that are experiencing delayed 2687 

sea ice freeze onset (Barents-Kara Sea and Beaufort Chukchi Sea regions). These trends are 2688 

supported by both satellite retrievals of surface turbulent fluxes (Boisvert et al., 2013; Taylor et 2689 

al., 2018) and from meteorological reanalysis (Screen and Simmonds, 2010). The significance of 2690 

ABZ energy budget changes and their central role in understanding and credibly predicting ABZ 2691 

climate change warrants long-term, high quality observations of these variables. 2692 

Suborbital observations from surface sites provide detailed information of the ABZ 2693 

energy budget at specific locations and within the ABZ; however, few sites exist. Examples of 2694 

surface energy budget observation networks for the Greenland ice sheet include the Greenland 2695 

Climate Network beginning in 1996 (GC-Net; Steffen et al., 1996) and the Programme for 2696 

Monitoring of the Greenland Ice Sheet (PROMICE; van As and Fausto, 2011) beginning in 2697 

2007. In addition, the Baseline Surface Radiation Network (BSRN; 64 global sites) is a global 2698 

network of high-quality surface radiation budget data and has the goal to monitor change in 2699 

longwave and shortwave surface radiation by providing validation data for satellite retrievals and 2700 

global climate models. Even though seven BSRN sites exist poleward of 60
o
N, only four of these 2701 

are currently operating and have at least 10 years of observations. These sites include Alert, 2702 

Canada, Ny-Ålesund, Spitsbergen, Barrow, AK, US, and Lerwick, Shetland Island, UK. Similar 2703 

to BSRN, FLUXNET is also a global network of surface flux towers to measure surface 2704 

turbulent and gas flux exchanges between the atmosphere and ecosystem using eddy covariance 2705 
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techniques (https://fluxnet.fluxdata.org). Data from 20 FLUXNET sites have been collected 2706 

within the ABZ and many also provide surface radiation flux data. FLUXNET data have been 2707 

used to evaluate satellite measurements and climate models, representing critical data to assess 2708 

the exchanges of energy and gases between the atmosphere and ecosystems (Baldochi, 2014). 2709 

Observations of the ABZ surface energy fluxes at these surface sites are difficult to 2710 

maintain. High-quality surface energy flux observations are challenging in the unique ABZ 2711 

meteorological conditions, such as strong winds that tilt/damage sensors, riming on sensors, 2712 

severe cold temperatures, and snowfall covering sensors. Moreover, the remoteness of the ABZ 2713 

limits access to these sites to repair instrumentation, especially during winter. Despite these 2714 

challenges, suborbital observations are critical for validating satellite data products. Increasing 2715 

the number of these high-quality ground sites is needed to improve our ability to monitor 2716 

changes in the ABZ surface energy budget and to validate satellite-based surface energy budget 2717 

data. 2718 

Since permanent surface sites are confined to land, periodic suborbital observations over 2719 

the Arctic Ocean are needed to constrain the ABZ surface energy budget. These periodic 2720 

suborbital missions take the shape of airborne campaigns, ice camps, drifting stations, and buoys 2721 

(e.g., Rigor et al., 2002; Taylor et al., 2018). More than 20 suborbital field campaigns have 2722 

provided surface energy budget observations across the ABZ since 1975. Here, two campaigns 2723 

are highlighted. Arguably the most important modern suborbital field campaign to date was the 2724 

Surface Heat Budget of the Arctic (SHEBA) experiment (Uttal et al., 2002). The first of its kind, 2725 

SHEBA established an ice camp in the Beaufort Sea and maintained it for a full year from 2726 

October 1997 through September 1998; these data provided the first annual cycle of the ABZ 2727 

surface energy budget over sea ice (Persson et al., 2002). More recently, the Arctic Radiation 2728 
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IceBridge Sea ice Experiment (ARISE; Smith et al., 2013) took place in September 2014 as a 2729 

radiation-focused mission designed to evaluate CERES radiative fluxes and provide data to 2730 

understand how cloud radiative effects are influencing the ABZ surface energy budget over sea 2731 

ice. Readers are referred to Taylor et al. (2018) for a more complete list of ABZ field missions 2732 

gathering surface energy budget data. More campaigns like ARISE and SHEBA are needed to 2733 

accumulate the statistics required to reduce uncertainty in our understanding and our ABZ 2734 

surface energy budget data sets. The Multidisciplinary drifting Observatory for the Study of 2735 

Arctic Climate (MOSAiC; https://www.mosaic-expedition.org) set to deploy into the eastern 2736 

Arctic in Fall 2019 and drift for one-year with the sea ice is an example of such a field mission. 2737 

MOSAiC is expected to produce an unprecedented data set to understand the surface energy 2738 

budget in the ABZ. 2739 

Observing the ABZ energy budget from space is challenging. The unique thermodynamic 2740 

conditions of the ABZ (e.g., frequent surface-based temperature inversions), low thermal 2741 

contrast between the ABZ atmosphere and surface, and highly reflective snow and ice surfaces 2742 

creating a small brightness contrast between clouds and the surface make passive remote sensing 2743 

of the ABZ difficult. Moreover, the dynamic nature of sea ice and its albedo, especially its 2744 

spectral character, adds uncertainty because of noisy and inaccurate boundary conditions for 2745 

satellite retrievals. 2746 

Despite the challenges of observing the ABZ from space, long-term satellite observations 2747 

represent the only feasible option for monitoring change of the energy budget at broad spatial 2748 

scales required to address climate change science. Satellite observations of the ABZ TOA energy 2749 

budget have been measured by the Earth Radiation Budget Experiment (ERBE) on NOAA-9 2750 

(2/1985-1/1988), NOAA-10 (11/1986-5/1989), and since 2000 with the six CERES instruments 2751 
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aboard Terra, Aqua, and NPP. Retrieval of TOA fluxes from the ERBE scanner and CERES 2752 

instruments requires the inversion of radiances to fluxes using empirical angular distribution 2753 

models. The angular distribution of radiances depends upon the specifics of the scene, including 2754 

surface type and cloud properties. Key error sources in the retrievals of ABZ TOA energy fluxes 2755 

include instrument calibration, angular distribution models and scene identification (Loeb et al., 2756 

2009). 2757 

Alternatively, ABZ TOA and surface radiation flux information has been obtained using 2758 

radiative transfer model calculations constrained with satellite retrievals of clouds, sea ice cover, 2759 

and thermodynamic properties (e.g., Zhang et al., 1995; Rossow et al., 1995; Zhang et al., 2004). 2760 

Uncertainty in the radiative fluxes computed from the International Satellite Cloud Climatology 2761 

Project (ISCCP) cloud property retrievals is estimated to be 10-15 Wm
-2

 at the surface and 2762 

5-10 Wm
-2

 at TOA (Zhang et al., 2004). However, these values refer to global flux uncertainty 2763 

and do not represent the ABZ. CERES data products also use radiative transfer model 2764 

calculations and satellite retrievals to provide surface radiative fluxes; these calculations serve as 2765 

the basis for the CERES Surface EBAF dataset. Kato et al. (2018) estimate uncertainty values for 2766 

individual ABZ surface radiative flux terms ranging from 12-16 W m
-2

 (1) at the monthly mean 2767 

11 gridded scale.  2768 

Satellite measurements of ABZ surface turbulent fluxes are more limited than their 2769 

radiative flux counterparts. Traditional satellite-retrieved surface turbulent fluxes (such as 2770 

SEAFLUX; Curry et al., 2004 or OAFLUX; Yu and Weller, 2007) do not allow for retrievals 2771 

over sea ice. Boisvert et al. (2013; 2015) demonstrate a methodology tailored to the ABZ using 2772 

thermodynamic profile information from AIRS to retrieve ABZ surface turbulent fluxes. 2773 

Comparisons of satellite-retrieved surface turbulent fluxes with available buoy and ship data 2774 
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indicate root mean square errors of 0.74 and 5.32 W m
-2

 in latent and sensible heat fluxes, 2775 

respectively. Taylor et al. (2018) also show that variability in the air-surface temperature 2776 

difference drives variability in ABZ surface turbulent fluxes over both sea ice and ocean. 2777 

Improved, satellite-retrieved surface turbulent fluxes require an improved ability to detect the 2778 

air-surface temperature difference from space. Meteorological reanalysis has also been used to 2779 

provide surface turbulent flux information, however, the accuracy of these data is unknown and 2780 

discrete jumps and discontinuities in the record make it inappropriate for trend analysis (Taylor 2781 

et al., 2018). 2782 

The current satellite observing system provides the data required to make reasonable 2783 

estimates of the ABZ energy budget. However, some key issues need to be highlighted in order 2784 

to monitor the ABZ energy budget with an accuracy to accelerate climate research. First and 2785 

foremost, continuity of the TOA radiative flux measurements and climate data record from space 2786 

must be maintained to advance ABZ energy budget science. A multi-decadal record of the ABZ 2787 

TOA energy budget provides an understanding of how the ABZ is changing during times when 2788 

the radiative forcing is increasing and serves as a valuable constraint on Arctic climate 2789 

projections. Overall, ABZ TOA energy fluxes are well observed since the launch of CERES 2790 

aboard Terra with the record starting in March 2000 and continuing this record is vital. 2791 

Second, ABZ energy budget science requires reduction in the uncertainty of surface 2792 

fluxes determined using satellite instruments. Larger uncertainty in the satellite-derived TOA and 2793 

surface fluxes as compared to the uncertainty for tropics and mid-latitude occurs because of the 2794 

uncertainty in input variables used to compute surface fluxes. Specifically, the bias (with 2795 

unknown sign) in fluxes comes from large uncertainties associated with surface conditions (e.g., 2796 

snow and ice cover), cloud properties (especially during polar night), and thermodynamic 2797 
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profiles (especially near the surface). The first step to reduce the bias in these properties is to 2798 

quantify these individual contributions. To obtain statistically significant results in quantifying 2799 

the bias, a single campaign or a few surface sites with short record lengths are insufficient 2800 

because of diverse range of surface types (e.g., ocean, land, and with and without snow and sea 2801 

ice) and dependence of key variables on the surface type. Over the Arctic Ocean, this requires a 2802 

series of carefully designed suborbital airborne and/or ship-based campaigns to accumulate 2803 

observations of key variables over a wide range of scene types (e.g., clear-sky ocean, clear-sky 2804 

sea ice, partly cloudy sea ice, etc.). These suborbital campaigns should be coordinated with 2805 

satellite observations, in special cases incorporating unique satellite instrument scan modes, as 2806 

was done in ARISE (Smith et al., 2017), to focus on specific scene types or variables. When 2807 

possible, field campaigns should leverage existing surface sites (e.g., ARM facilities in Barrow, 2808 

AK and Ny-Alesund, Spitsbergen) to provide context and a full-characterization of the 2809 

atmospheric column. In addition, suborbital instruments can observe variables that are difficult to 2810 

derive from satellite instruments. These variables include temperature and humidity profiles 2811 

under clouds or surface skin temperature under overcast conditions. Because of radiative cooling 2812 

during clear polar nights, we expect that near surface temperature and humidity would be 2813 

different from those under cloudy conditions, much larger than the differences occurring in the 2814 

tropics and mid-latitudes. In addition, there is a surface type dependence of the skin temperature 2815 

uncertainty, such that uncertainty is larger over sea ice than ice-free ocean.  2816 

Over ABZ land, irradiance observations at surface sites are important to assess CERES 2817 

EBAF surface flux uncertainty. However, the number of these high-quality (e.g., BSRN) surface 2818 

radiometer sites is limited (i.e., four across the Arctic). More sites in a more diverse set of 2819 

locations would enable the quantification of the uncertainty in the ABZ surface radiation budget. 2820 
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Placing instruments on buoys to observe near surface variables over the Arctic Ocean is ideal to 2821 

obtain measurements at remote sites. Overcoming the harsh environment and technical 2822 

difficulties to maintain the accuracy is, however, challenging, if not impossible. A complete 2823 

strategy should include at least one surface site in each ABZ surface type (open water, sea ice, 2824 

tundra, boreal forest, etc.). Then, surface and satellite observations can be used together to assess 2825 

changes in the ABZ energy budget.  2826 

Uncertainties currently exist in our knowledge of surface albedo and its spectral and 2827 

angular variations, especially in the presence of melt ponds and over first-year sea ice. Improved 2828 

modeling of spectral and angular variations of sea ice surface albedo would enable reduced 2829 

uncertainty in satellite cloud retrievals and therefore TOA and surface radiative fluxes. 2830 

Moreover, continued effort and validation of satellite-retrieved surface turbulent fluxes is 2831 

needed. 2832 

6 Highly Elliptical Orbits for Remote Sensing of the ABZ (Ray Nassar)  2833 

Low Earth Orbit (LEO) satellites typically orbit in a plane near Earth’s poles to provide 2834 

global sampling. For a sun-synchronous LEO, observations at a given location are repeatedly 2835 

made at the same time of day. Geostationary Earth Orbit (GEO) satellites orbit at Earth’s 2836 

equatorial plane from a much farther distance of 35,786 km and are synchronized with the 2837 

Earth’s rotation, enabling continuous observations over a given region. From GEO, the temporal 2838 

evolution of the atmosphere can be observed with a revisit time on the order of minutes to hours 2839 

(instead of days from LEO), but viewing angles become too large at latitudes poleward of ~55°. 2840 

The constellation of satellites supporting modern weather forecasting consists of multiple LEO 2841 

and GEO satellites. Observations of atmospheric composition focused on air quality are now 2842 

moving from only LEO missions to include an internationally-coordinated GEO component to 2843 
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the constellation that will be in place in the early 2020s (CEOS-ACC, 2011). A coordinated GEO 2844 

component to a constellation of greenhouse gas missions from multiple nations may soon 2845 

materialize (Crisp et al., 2018), beginning with NASA’s planned Geostationary Carbon Cycle 2846 

Observatory (GeoCARB; Moore et al., 2018). For both air quality and greenhouse gases, the 2847 

synergy of a LEO-GEO constellation is highly desirable, but results in a gap in continuous 2848 

observations at high latitudes over the ABZ. Observations from a highly elliptical orbit (HEO) 2849 

have the potential to fill this gap to complement the measurements from LEO and GEO. 2850 

The use of HEOs for Earth observation was first suggested by Kidder and von der Haar 2851 

(1990). More recently, the value of this class of orbits for high latitude observations has been 2852 

recognized in the WMO Vision for a Global Observing System in 2025 (WMO, 2009), the 2853 

follow-on vision for 2040 (WMO, 2019) and CEOS air quality and greenhouse gas strategy 2854 

papers (CEOS-ACC, 2011; Crisp et al., 2018). How exactly do HEO satellites provide quasi-2855 

geostationary observations? Figure 20 illustrates the orbital path of a satellite in an HEO. Since 2856 

angular momentum is conserved in any satellite orbit, a satellite in an elliptical orbit with the 2857 

Earth at one focus will move quickly when it is close to the Earth and slowly when it is far from 2858 

the Earth. Near the farthest point in the orbit from Earth (the apogee) the satellite will move very 2859 

slowly and dwell over a given spot enabling geostationary-like observations. By selecting the 2860 

inclination of the orbit to situate the apogee near the critical inclination of 63.44°N, a single 2861 

satellite can make quasi-geostationary observations of the ABZ for a limited time before 2862 

accelerating toward perigee, where it no longer views the ABZ. With two HEO satellites, 2863 

continuous GEO-like viewing is possible (aside from external factors like the available sunlight) 2864 

with a number of different HEO options with periods typically in the range of 12-24 hours and 2865 
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apogee altitudes that are comparable to GEO (Trishchenko et al., 2011; Trichtchenko et al., 2866 

2014). 2867 

The Canadian government considered a HEO mission called Polar Communications and 2868 

Weather (PCW) that would provide meteorological observations of the high latitudes (Garand et 2869 

al., 2014), using similar instrumentation as the NOAA Geostationary Operational Environmental 2870 

Satellite system (GOES). Mission enhancements were also considered to measure CO2, CH4, 2871 

CO, O3, NO2, SO2, aerosols, temperature and water vapor (McConnell et al., 2012; LaChance et 2872 

al., 2012). An OSSE demonstrated that the CO2 observations from HEO would provide much 2873 

improved constraints on ABZ terrestrial biospheric CO2 fluxes relative to GOSAT (Nassar et al., 2874 

2014), especially during the summer months when the expected CO2 fluxes (due to boreal forest 2875 

growth or disturbances or permafrost thaw) and their uncertainties would both be largest. Other 2876 

advantages, including the diurnal coverage available from HEO and imaging capability, were not 2877 

assessed in the OSSE, but would contribute further information needed to reduce uncertainty in 2878 

ABZ CO2 and CH4 fluxes.  2879 

The Atmospheric Imaging Mission for Northern regions (AIM-North, www.aim-2880 

north.ca) is a new HEO concept currently undergoing Phase 0 studies for the CSA (Nassar et al., 2881 

2019). AIM-North would measure CO2, CH4, CO, SIF, NO2, O3, BrO, HCHO, SO2, aerosols, 2882 

clouds and other species. AIM-North has stricter precision requirements for greenhouse gases 2883 

and air quality gases than earlier HEO plans and smaller proposed image pixel size (4x4 km
2
), 2884 

which would enable better quantification of localized sources (natural or anthropogenic) in the 2885 

ABZ.  2886 

Due to the high altitude of HEO as compared to LEO, much more of the Earth is visible 2887 

from the satellite vantage point at any given instant, which can be a major advantage for dealing 2888 
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with clouds. At any given moment, about 70% of the Earth is covered by clouds (Stubenrauch et 2889 

al., 2013), which results in a loss of greater than 70% of observations for species like CO2 for 2890 

which retrievals are very sensitive to clouds. During the Arctic summer, monthly mean cloud 2891 

cover may reach 85% (Kay et al., 2016), suggesting that it is an even bigger challenge for the 2892 

ABZ. With information on cloud cover from a cloud imager (or another source) to inform 2893 

pointing from HEO, instruments making observations very sensitive to clouds can spend their 2894 

time observing only the clearer regions, resulting in less data loss due to clouds than from LEO, 2895 

for which pointing options are much more limited. 2896 

Although a particular set of observables has been proposed for AIM-North, the list of 2897 

species or parameters that could be measured from HEO is almost limitless and could be 2898 

extended to clouds, winds, vegetation and wildfire parameters, snow cover, sea ice, etc., but like 2899 

GEO, active measurements (radar or lidar) are especially challenging due to the high orbit 2900 

altitude. The European Copernicus Programme, ESA, and EUMETSAT along with industrial 2901 

partners, are currently investigating measuring other ABZ variables from HEO in a series of 2902 

ongoing studies, such as the Nordic and Arctic Imager Mission Requirements Consolidation 2903 

(Kennedy and Arthurs, 2018). Ultimately, international partnership on a HEO mission dedicated 2904 

to multiple observables may be the best way to obtain enhanced observations of the ABZ. 2905 

7 Synthesis of ABZ Satellite Observation Priorities 2906 

In this section, we present our recommendations for prioritizing new satellite 2907 

observations of the ABZ. In Section 7.1, we make general recommendations for satellite 2908 

observing strategies, and, in Section 7.2, we discuss specific observational priorities, which are 2909 

summarized in Table 1. Finally, in Section 7.3, we discuss considerations for the development of 2910 

a comprehensive and integrated ABZ Observing Network (ABZ-ON) and make a 2911 
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recommendation. Application of these recommendations will require international and inter-2912 

agency collaboration on satellite mission design through existing initiatives (e.g., CEOS). 2913 

7.1 Recommendations Common to All ABZ Components 2914 

In this section, we make the following general recommendations that are common to all 2915 

satellite observations of ABZ components, including those in a comprehensive ABZ-ON. Many 2916 

of our general recommendations echo the recommendations given in the scientific literature and 2917 

reports for the ABZ, such as those discussed in various sections (e.g., Section 1) of this review, 2918 

and for the Earth system (e.g., Simmons et al., 2016).  2919 

Enhanced and Coordinated Suborbital Network: We recommend the development of a 2920 

comprehensive and robust suborbital portion of an ABZ-ON, which can act to fill some temporal 2921 

gaps in satellite coverage, can provide detail unobtainable from space, and is necessary for 2922 

validation and interpretation of satellite data. This suborbital network would complement the 2923 

satellite data via strategic sampling and coordinated satellite “underpass” measurements. To 2924 

achieve this goal, we recommend the establishment of international and multi-disciplinary 2925 

observing ground sites and other platforms (e.g., aircraft), which will constrain and distribute the 2926 

costs of building and maintaining observational platforms in the challenging ABZ research 2927 

environment. The development of this suborbital network to support space-based observations 2928 

should leverage existing efforts to coordinate the development of a suborbital observing network 2929 

and data sharing, such as the Integrated Arctic Observation System (INTAROS), U.S. National 2930 

Science Foundation’s Arctic Observing Network (AON) program, the International Arctic 2931 

Systems for Observing the Atmosphere (IASOA; Uttal et al., 2016), the Arctic Science 2932 

Ministerial (Arctic Science Ministerial, 2018), and Sustain Arctic Observing Networks (SAON; 2933 

IDA Science and Technology Policy Institute and Sustaining Arctic Observing Networks, 2017). 2934 
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Multi-Generational Datasets: We recommend that a priority be the continuation, 2935 

enhancement, and/or creation of long-term, multi-satellite, climate-quality, and self-consistent 2936 

data records of ABZ components, such as surface temperature, energy fluxes, or sea ice extent 2937 

and volume, for improved quantitative determination of ABZ trends. Long-term passive satellite 2938 

observations currently represent the only feasible option for monitoring change of the ABZ at 2939 

broad spatial scales required to address pressing climate change science challenges. Application 2940 

of consistent retrieval algorithms to multiple satellite data sets, as well as a careful 2941 

characterization of satellite instruments and their temporal evolution, helps to ensure data quality 2942 

and cross-sensor consistency.  2943 

Urgency: We recommend that development of a comprehensive ABZ-ON begin 2944 

immediately given the time necessary to design, build and implement an ABZ-ON. For example, 2945 

the time from initial concept to launch of a satellite is typically years and often more than a 2946 

decade. 2947 

Community Engagement and Capacity Building: We recommend that Earth scientists 2948 

work in parallel with policy and other decision-support organizations and stakeholders to 2949 

formulate strategies that pursue innovative, informed, and practical uses for Earth science data in 2950 

science-based decision-making (e.g., the development of tools that support mitigation and 2951 

adaptation strategies). We acknowledge that a high degree of technical skill is often required to 2952 

access, process, and properly interpret ABZ satellite datasets and Earth System model output. As 2953 

a result, some governmental and non-governmental entities, such as the NASA Applied Sciences 2954 

Program and others mentioned above, have initiated programs to foster capacity building. At the 2955 

same time, we understand that governments, non-governmental agencies, and private companies 2956 

have existing structure under which decisions are made. The goal is to integrate Earth science, 2957 
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technology, and data into stakeholder organizations as seamlessly as possible, so that mitigation 2958 

and adaptation decisions are based on sound, comprehensive science. 2959 

7.2 Specific ABZ Observational Priorities  2960 

In this section and Table 1, we summarize the information and recommendations in 2961 

Sections 2-5, in which we reviewed the strengths and limitations of current satellite observations 2962 

for various ABZ components, identified important ABZ properties that are not observed at all or 2963 

are observed inadequately, and discussed the potential of some upcoming satellite missions and 2964 

observing strategies. We also prioritize observational capabilities with the goal to address 2965 

observational deficiencies in an ABZ-ON that hinder process-based understanding of the ABZ, 2966 

especially for those processes that have the potential to impact human society in profound ways. 2967 

Our recommendations include for current observational capabilities to be improved upon for 2968 

many specific ABZ components, which may be achieved with existing technological 2969 

improvements (as compared to current instruments) and ones feasible in the near-term (e.g., <10 2970 

years) with further development. The observational priorities in Table 1 should be reassessed 2971 

periodically as the ABZ evolves in a warming world.  2972 

Prioritization is necessary and pragmatic given the large expense associated with satellite 2973 

mission design and operation. To be clear, we believe that all satellite observations discussed in 2974 

Sections 2-5 are important for the creation of a comprehensive and integrated ABZ-ON. In Table 2975 

1, we prioritize our 44 satellite recommendations with designations of “Most Important”, “Very 2976 

Important”, and “Important” based on the following considerations: 2977 

 “Most Important” observational needs are ones for which the variable is poorly observed 2978 

currently, and the current process-based understanding of the factors that determine that 2979 
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variable’s trends and variations are poorly known (e.g., Hinzman et al., 2013). Seven 2980 

(16%) recommendations ranked as “Most Important”. 2981 

 “Very Important” observational needs are ones for which the variable is insufficiently 2982 

observed, and more or better observations are necessary to advance process-based and/or 2983 

large-scale understanding related to that variable. Twenty-two (50%) recommendations 2984 

ranked as “Very Important”. 2985 

 “Important” observational needs are ones for which the current and anticipated future 2986 

observational suite for that variable is adequate in comparison to those for other 2987 

variables. Fifteen (34%) recommendations ranked as “Important”. As discussed in 2988 

Section 7.1, we recommend the creation of multi-generational datasets that necessarily 2989 

requires the continuation of the capabilities (at a minimum) of current satellite 2990 

instruments. However, based on our criteria, some of these highly valuable observations 2991 

are ranked as “Important”, such as thermal infrared observations of surface temperature, 2992 

visible observations of burned area, and gravimetry for land ice mass change (Table 1). 2993 

Among the observational needs that are ranked as “Most Important” are those associated 2994 

with gaining a process-based and large-scale understanding of the ABZ carbon cycle and 2995 

hydrologic cycle (which includes sea level rise) as they have the potential to affect a large 2996 

portion of Earth’s population via economic loss, displacement, etc. For the carbon cycle, these 2997 

observational priorities are 1) CH4 and CO2 lidar instruments (technology exists) to observe their 2998 

atmospheric concentrations, which will allow for the inference of fluxes from ABZ wetlands, 2999 

permafrost, and wildfires in the low-light conditions that are typical of the ABZ; 2) microwave 3000 

radars (L-Band) with higher spatiotemporal resolution to develop consistent, multi-temporal 3001 

characterization of wetland inundation regimes; 3) enhanced spectral range (to include 3002 
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ultraviolet) and spatiotemporal resolution of ocean color sensors for assessing changes in 3003 

plankton diversity and carbon quality, and increased spatial resolution for assessing land-ocean 3004 

exchanges; and 4) improved spatial resolution for observations to detect surface-feature changes 3005 

(e.g., L-band interferometric SAR) and more suborbital observations of soil carbon content to 3006 

better characterize permafrost. For the hydrologic cycle, the observational priorities are 1) finer 3007 

spatial observations from passive microwave instruments to better define the coast and sea ice 3008 

edge; 2) new technology to better observe ice and snow albedo and snow-water equivalent; and 3009 

3) improved observations of wetlands and permafrost as discussed for the carbon cycle. 3010 

The satellite recommendations in Table 1 highlight the importance of active sensors (e.g., 3011 

lidar) in ABZ-ON design going forward. Active sensors do not depend on reflected sunlight and 3012 

so join passive microwave sensors in having a significant advantage over passive visible and 3013 

infrared sensors in the low-light conditions that are typical of the ABZ for several months of the 3014 

year. Lidar measurements provide other advantages. First, the spatial footprint is smaller for 3015 

active than passive instruments, allowing more opportunity of observing clear skies between 3016 

clouds. Second, lidar observes in a single nadir-zenith path over both land and oceans (i.e., no 3017 

changes with surface or latitude). Third, this single path is less impacted by clouds than the two 3018 

separate paths (i.e., illumination and observation) required by some passive sensors. 3019 

Furthermore, the lidar measurements are range-gated which minimizes the impact of scattering 3020 

from thin clouds, haze and aerosols. And, fourth, lidar observations are independent of sun angle 3021 

and so are available over all local times of year and at different times of day (e.g., once at night 3022 

and once in the daytime). 3023 

Our prioritization of observational needs is largely consistent with the science and 3024 

application priorities presented in the recent consensus study from the U.S. National Academies 3025 
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of Sciences, Engineering, and Medicine (NASEM; “Thriving on Our Changing Planet: A 3026 

Decadal Strategy for Earth Observation from Space”, National Academies of Sciences, 3027 

Engineering, and Medicine, 2018), even though the study used a different set of prioritization 3028 

criteria (i.e., Chapter 3 of the NASEM study) than we employ in this review article. While the 3029 

charge of the study did not include making recommendations explicitly for a comprehensive 3030 

ABZ-ON, it emphasized the critical need for a comprehensive suite of ABZ observations: "The 3031 

Arctic has never been static, but recent changes have been exceptionally dramatic. The needed 3032 

scientific exploration has only begun, and the practical capabilities necessary to successfully 3033 

manage and adapt to these changes require additional development. With the scientific, 3034 

economic, political, and strategic landscape evolving so rapidly, the need for frequently-3035 

updated, large-scale information about the ice, ocean, land, and atmosphere in this remote 3036 

region has never been greater.” The NASEM recommendations include a set of global 3037 

observational capabilities that require ABZ observations to “enable substantial progress” in 3038 

science and application areas, such as:  3039 

 “Understanding the sources and sinks of carbon dioxide and methane and the processes 3040 

that will affect their concentrations in the future.”  3041 

 “Determining the extent to which the shrinking of glaciers and ice sheets, and their 3042 

contributions to sea-level rise, is accelerating, decelerating, or remaining unchanged.” 3043 

 “Improving understanding of ocean circulation, the exchanges between the ocean and 3044 

atmosphere, and their impacts on weather and climate.” 3045 

 “Assessing the evolving characteristics and health of terrestrial and aquatic ecosystems, 3046 

which is important for understanding key consequences such as crop yields, carbon 3047 

uptake, and biodiversity.”  3048 
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7.3 Recommendation and Considerations for Designing an ABZ-ON 3049 

Building Blocks: We recommend an interdisciplinary and stepwise approach to 3050 

developing an ABZ-ON, beginning with an initial focus on observing networks designed to gain 3051 

process-based understanding for individual ABZ components. The justification for the 3052 

recommendation to initially focus on individual ABZ components is based on a desire to keep 3053 

early development efforts feasible and to recognize pragmatic financial constraints. This 3054 

approach should help to lay the foundation for designing observing networks for more complex 3055 

ABZ subsystems (e.g., the hydrological cycle) that could, at some point in the future, serve as the 3056 

building blocks for a comprehensive ABZ-ON and, ultimately, an Earth system observing 3057 

network. We emphasize that a systems approach to observing is necessary to support a predictive 3058 

understanding of Earth system science and to ensure a strong return on investment for future 3059 

ABZ-relevant satellite missions.  3060 

To aid in the identification of variables that should be monitored for a specific complex 3061 

ABZ subsystem, we list in Table 1 the primary drivers of change for each ABZ component 3062 

discussed in Sections 2-5 and ancillary data for variables that cannot be observed or observed 3063 

well from space, including the desired spatial and temporal scales. To illustrate this concept, we 3064 

briefly discuss the carbon and hydrologic cycles because of their complexity and potential to 3065 

impact regions far beyond the ABZ. Both cycles were recognized as important in the NASEM 3066 

consensus study as discussed above. For the carbon cycle, observations of atmospheric chemical 3067 

concentrations with greater spatial and seasonal coverage are required to monitor changes in 3068 

carbon dioxide and methane fluxes (Section 5.2). Tracking atmospheric changes of greenhouse 3069 

gas concentrations to integrated ecosystem components requires advanced measurements of 3070 

vegetation (Sections 4.4-4.5), fire regimes (Section 4.6), wetlands (Sections 4.7), ocean biology 3071 
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and biogeochemistry (Section 3.3) and the geophysical variables influencing these subsystems, 3072 

including soil moisture, surface inundation, and air and sea temperatures, all of which are 3073 

observable from space. To complement satellite data, the collection of suborbital data on active 3074 

layer thickness (ALT) and carbon content of soils is critical. For the ABZ hydrologic cycle, 3075 

simulating and predicting sea-level rise requires a process-based understanding of the snow 3076 

lifecycle. Observations of surface temperature (Section 2), land ice velocity and mass change 3077 

(Section 4.1), observations of precipitation, snow accumulation and redistribution (Section 4.2) 3078 

are all required to simulate possible future sea-level. 3079 
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Numerous datasets are discussed in this review, so it is not feasible to list where each 3087 

may be accessed. Instead, we refer the reader to international efforts to organize Arctic-relevant 3088 

datasets. For instance, the Arctic Data Committee (https://arcticdc.org/) has the mission to “to 3089 

promote and facilitate international collaboration towards the goal of free, ethically open, 3090 

sustained and timely access to Arctic data through useful, usable, and interoperable systems.” On 3091 

their website, numerous international, national and non-governmental data archives are listed, 3092 

such as the U.S. National Snow and Ice Data Center (NSIDC; http://nsidc.org/) and the WMO 3093 
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Global Cryosphere Watch (GCW; http://globalcryospherewatch.org/). Most satellite and field 3094 

campaign datasets funded by NASA and ESA may be found at the Earthdata 3095 

(https://earthdata.nasa.gov/) and Earth Online (https://earth.esa.int/) archives, respectively. 3096 
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Figure Captions 5900 

Figure 1: A true color image from the NASA Aqua/Moderate Resolution Imaging 5901 

Spectroradiometer (MODIS) taken on June 28, 2010. The image captures many of the important 5902 

ABZ components, including sea ice, glaciers, boreal forests, tundra, smoke from wildfires, 5903 

clouds, and ocean. Image courtesy of NASA. https://worldview.earthdata.nasa.gov/?v=-5904 

6086656,-4689920,6086656,4689920&p=arctic&t=2010-06-28-T18%3A20%3A28Z. 5905 

Figure 2: The Arctic Boreal Zone (ABZ) has complex and often poorly understood interactions 5906 

between the cryosphere, biosphere, hydrosphere, and atmosphere. A change in one process often 5907 

triggers changes and feedbacks in numerous interconnected processes (e.g., polar amplification). 5908 

Figure reproduced from Figure 1 of Hinzman, L. D., Deal, C. J., McGuire, A. D., Mernild, S. H., 5909 

Polyakov, I. V. and Walsh, J. E. (2013), Trajectory of the Arctic as an integrated system. 5910 

Ecological Applications, 23: 1837-1868. doi:10.1890/11-1498.1. Copyright © 1999-2019 John 5911 

Wiley & Sons, Inc. All rights reserved. 5912 

Figure 3: Plots of monthly averaged surface temperature data (>60°N) as derived from AVHRR 5913 

over (a) land and (b) sea ice. Contributions from the AVHRR sensors from NOAA-07 to NOAA-5914 

19 are shown in different colors. Plots of monthly anomalies of surface temperatures over (c) 5915 

land and (d) sea ice (SIT). The anomalies were derived from the monthly data by subtracting the 5916 

climatology for each month. The trends as indicated are the result of linear regression. 5917 

Figure 4: Mapped monthly average sea ice concentrations (percent areal coverage of sea ice) for 5918 

the mid-winter month of February and the mid-summer month of August, for both 1979 and 5919 

2018, the first and last full years to date of the satellite multi-channel passive-microwave sea ice 5920 

record. The black circles centered on the North Pole in each image identify areas of missing data, 5921 

due to the satellite orbits not reaching the Pole. 5922 

Figure 5: (Left) Map of the Arctic Ocean and its marginal seas (red labels), major rivers (blue 5923 

labels) and major straits (red lines and black labels) in the ABZ. Colors report the bathymetry 5924 

and topography (data from IBCAO Version 3.0; Jakobsson et al., 2012). (Right) Location of in 5925 

situ measurements of ocean surface (10 m deep or less) salinity and temperature for the year 5926 

2016. Measurements are from the Argo network of drifting floats (red dots), research vessels or 5927 

ships of opportunity (e.g., orange tracks in the Baffin Bay and off the southern tip of Greenland, 5928 

black tracks originating from northern Europe, yellow dots in Norwegian sea). The magenta dots 5929 

report represent observations mostly from Ice Tethered Profilers that measure ocean properties 5930 

under below the sea ice cover. Data are from the Coriolis Ocean database ReAnalysis (CORA) 5931 

database and the R/V Polarstern (black tracks). 5932 

Figure 6: Maps of SSS (psu) in (left) mid-spring (week centered on May 12th) and (right) late 5933 

summer (week centered on September 12th) of 2017, which were derived from the 5934 

NASA/JPL/CAP product Level 2 observations from the Soil Moisture Active Passive (SMAP) 5935 
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satellite. Sea ice concentration for the same periods from the AMSR2 Level 3 product from 5936 

JAXA is also shown. 5937 

Figure 7: Terra MODIS Collection 6 (C6) Normalized Difference Snow Index (NDSI) snow-5938 

cover map of a 1685 km
2
 area of the boreal forest in central Alaska, acquired on 1 March 2016. 5939 

The NDSI provides information that can be tuned to a specific study area to estimate fractional 5940 

snow cover (FSC) in each pixel if a user has detailed information about the snow cover in their 5941 

study area. The red areas represent “no decision” by the snow-mapping algorithm. 5942 

Figure 8: Twelve-month running mean snow-cover extent (SCE) departures from the 1981-2010 5943 

mean for the Northern Hemisphere, 1967 – 2019. Note the decline in snow cover beginning 5944 

around 1985 and continuing to the present. Figure courtesy of Rutgers University Global Snow 5945 

Lab. 5946 

Figure 9: (left) Date of onset of soil freezing inferred from SMOS freeze/thaw product for 2012 5947 

(note that for Eurasian central latitudes SMOS data are not available). (right) The distribution of 5948 

permafrost (Brown et. al., 2002). 5949 

Figure 10: Sentinel-2 image (false color composition NIR, Red & Green bands, note that the 5950 

colors of the lakes range from black to almost light cyan, due to differences in lake turbidity) 5951 

from Bovanenkovo gas field Yamal Peninsula, West Siberia, Russia dated September 1, 2016, 5952 

with 10 m multispectral resolution. (left) Infrastructure expansion can be studied with various 5953 

optical satellite imageries, where yellow represents different types of anthropogenic disturbance 5954 

visibly affecting land cover. Landsat and SPOT data cover the period from the early 1970’s to 5955 

late 1990’s with 20-60 m resolution. Since early 2000, very high resolution imagery, such as 5956 

IKONOS-2 and Quickbird-2, has allowed detailed study of infrastructure development (Kumpula 5957 

et al., 2010). (inset right) A portion of the image on the left (inside the square box) is enlarged, 5958 

showing a gas condensation plant with buildings. 5959 

Figure 11: (left) WorldView-3 image (NIR-Red-Green) from July 22, 2015 from the Norwegian-5960 

Finnish border area showing lichen-rich pastures (lighter color) on the Norwegian side. A 5961 

reindeer fence separates the border’s pastures. The Norwegian pastures are only grazed in winter, 5962 

when snow provides some protection for the lichens, while the Finnish pastures are grazed in 5963 

summer. (inset top right) UAS-based orthomosaic (RGB) of July 28, 2016 clearly demonstrates 5964 

variations in lichen coverage also on Norwegian pastures, where lichen is heavily grazed in areas 5965 

where snow depth is less than approximately 1 m. (inset bottom right, same area as above) A 5966 

digital elevation model (DEM) map created from UAS image acquisition. Fine-scale DEM 5967 

datasets combined with other very high resolution data allow detailed habitat analysis. 5968 

Figure 12: Spatial distributions of the mean length (LOS) of the growing season (left) and LOS 5969 

trends (right) extracted from the circumpolar vegetation dynamics product (Gonsamo and Chen, 5970 

2016) during 1999–2013 at 4 km spatial resolution. Categories in the left panel are mapped in 10 5971 

equal quantile classes, meaning each category of the legend contains 10% of the valid 5972 
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circumpolar land pixels. “NS” is not significant trend at p = 0.05 (two tailed Student's t-test). 5973 

Reprinted from Gonsamo, A., & Chen, J. M. (2016) with permission from Elsevier. 5974 

Figure 13: Map highlighting land cover in Fort McMurray, Alberta following the 2016 Horse 5975 

River Fire. This map was created by combining burn severity from Landsat 8 OLI imagery with 5976 

land cover data. Land cover, topography, climate and soils data were used to predict post-fire 5977 

erosion with the Water Erosion Prediction Project (Dr. Mary Ellen Miller; 5978 

http://www.mtri.org/post_fire.html). 5979 

Figure 14: Historic burned area (M ha/y; red line) for Alaska and Canada compared with the 5980 

satellite record (blue line) that has been optimized specifically for these ecosystems as described 5981 

in Loboda et al. (2011). 5982 

Figure 15: (a.) Residual soil organic material (SOM) or peat in an Alaska tundra burn (photo: E. 5983 

Miller, BLM-Alaska Fire Service). About 20 cm of organic material remained after a light 5984 

severity burn. (b.) Burned SOM and peat in Shushenskoe, Russia, showing the depth of burn in 5985 

this region was greater than 40 cm (photo courtesy of Dr. Elena Kukavskaya, V.N. Sukachev 5986 

Institute of Forest). 5987 

Figure 16: (a.) OMI NO2 data (molecules/cm
2
) for May-August 2005 over Finland at 0.05° 5988 

latitude x 0.05° longitude resolution. The data were filtered by wind speed (< 5 m/s) to minimize 5989 

the effect of dispersion. The letters correspond to the locations of cities. Because of relatively 5990 

low signal-to-noise, the data are noisy. (b.) To improve the detectability of small sources, the 5991 

average signal of surrounding pixels (1° latitude x 1° longitude) is removed from every grid pixel 5992 

so that red pixels correspond to NO2 levels larger than the local background. This procedure 5993 

leads to the small cities around Helsinki, the largest source in Finland, to appear below 5994 

background levels. (c.-d.) The same as the top row, but as the average of May-August 2005-5995 

2018. The average of multiple years reduces noise, allowing smaller sources to become apparent. 5996 

(e.-f.) The same as the top row but using TROPOMI NO2 tropospheric columns averaged over 5997 

the period May-August 2018 at 0.02° latitude x 0.02° longitude resolution. TROPOMI smaller 5998 

pixels and higher signal-to-noise ratio improve the detection of emission sources (cities). 5999 

Figure 17: Mean AOD (unitless) from CALIPSO for (left) January during night, (center) March 6000 

during night, and (right) March during day. The mean data are for “all sky” conditions and 6001 

averaged from 2007 to 2018. CALIPSO does not detect AOD values below a detection threshold, 6002 

so the mean AOD is biased to higher AOD events in spatial and temporal averages. It has lower 6003 

detection sensitivity in daylight, only detecting the strongest Arctic aerosol events (center and 6004 

right). Consequently, the daytime data are systematically biased low (Di Pierro et al., 2013). 6005 

CALIPSO’s detection sensitivity is lowest in summer, which leads to a large low bias (not 6006 

shown) that is compounded by the fact that AOD values tend to be seasonally lowest in summer. 6007 

There are missing data over the pole because the instrument is on a satellite in sun-synchronous 6008 

orbit and because of instrument design. 6009 
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Figure 18: Transparent (top row) and opaque (bottom row) Arctic cloud climatology from 6010 

CALIOP for DJF (December-February), MAM (March-May), JJA (June-August) and SON 6011 

(September-November) in 2008-2014. Over Greenland, the ICESat digital elevation model 6012 

(DEM) is used to reduce systematic false detection of low-level clouds seen from the previous 6013 

DEMs. 6014 

Figure 19: Time series of the annual (a) TOA reflected shortwave (RSW; blue) and outgoing 6015 

longwave radiation (OLR; red) anomalies and (b) the TOA mean albedo for the Arctic Ocean 6016 

(blue), ABZ land (green), and the total ABZ region poleward of 60°N (red) from CERES TOA 6017 

EBAF-Edition 4.0. Numerical values provided in the panels correspond to the annual mean TOA 6018 

radiative fluxes and the linear regression trends with 1 uncertainty bounds. (Figure courtesy of 6019 

Robyn Boeke, SSAI). 6020 

Figure 20: (a.) A 12-hour HEO or Molniya orbit with an apogee altitude of ~39,000 km and 6021 

perigee altitude of ~800 km. The number of hours before/after apogee for the satellite in the orbit 6022 

is indicated on the figure, showing that for at least 6-8 hours of the 12-hour period, the satellite 6023 

would have a favorable view of the north. (b.) The nadir and ±60° from the nadir for GEO and 6024 

HEO are indicated by lines in the figure. The red dot is a point of interest at ~57°N. From GEO, 6025 

the viewing angle for a point at this latitude is very large and far from vertical, while from a 6026 

HEO near the critical inclination (i=63.44°N), the point is viewed with a favorable viewing angle 6027 

when the satellite is near apogee. Any longitude offset (not shown) increases the viewing angle 6028 

further, compounding the difficulty of high latitude viewing from GEO. 6029 
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Table 1. Recommended satellite observations, significant ABZ drivers and ancillary data for each ABZ component. 

Ranking Criteria (as abbreviated from Section 7.2) 

• “Most Important (MI)” observational needs are ones for which the variable is poorly observed currently, and the current process-based understanding of the 

factors that determine that variable’s trends and variations are poorly known.  

• “Very Important (VI)” observational needs are ones for which the variable is insufficiently observed, and more or better observations are necessary to 

advance process-based and/or large-scale understanding related to that variable.  

• “Important (I)” observational needs are ones for which the current and anticipated future observational suite for that variable is adequate in comparison to 

those for other variables.  

ABZ Component Recommended Satellite Observations Significant Drivers 

that Affect ABZ 

Component 

Recommended Ancillary Data Collection 

Surface 

Temperature 

1) Existing: Continue thermal infrared observations (I). 1) Sea ice.  

2) Land ice.  

3) Snow cover.  

4) Permafrost.  

5) Fire regimes.  

6) Clouds, including 

for identification of 

clear sky conditions. 

1) Existing, but more required: Surface stations for 

validation of satellite surface temperature. 

A. Observing Properties of the Oceans 

Sea Ice 1) New technology development required: Finer-

resolution (5 km) satellite passive microwave instrument 

to better define the coast and sea ice edge (MI).  

2) Existing, well-established: Continue passive-

microwave observations of sea ice concentration, 

distribution, and extent (VI: the current observations are 

adequate, but there are major concerns regarding 

whether these observations will be maintained long-

term).  

3) Existing, but recent: Continue sea ice thickness 

observations from radar and laser altimetry (VI).  

4) New technology development required: Enhanced 

SAR for high-resolution, daily determination of sea ice 

concentration, ice type, ice motion, deformation, 

ridging, and leads, especially for the operational 

community (VI; SARs are in orbit but are not providing 

daily, high resolution coverage of the full Arctic sea ice 

cover).  

1) Surface 

temperature.  

2) Atmospheric 

temperature and 

winds.  

3) Ocean salinity, 

temperature, and 

circulation.  

4) Incident solar 

radiation.  

5) Freshwater 

discharge (rivers, 

land ice). 

6) Snowfall. 

1) Nonexistent: Solar-powered unmanned aircraft 

(e.g., large drones) with a snow radar to make 

repetitive, high-resolution measurements of the 

snow on sea ice and the snow-ice interface.  

2) Existing but more required: Field programs to 

validate the satellite data and address uncertainties. 



5) Two instruments on same satellite platform: Radar 

and laser altimeters for coincident measurements of the 

thicknesses of the sea ice and the snow on sea ice (VI). 

Ocean Salinity, 

Temperature and 

Circulation 

1) Existing, but new technology required: sea surface 

salinity (SSS) observations are too coarse and 

microwave instruments not sensitive enough. Need 

microwave radiometers at frequencies lower than 1.4 

GHz (VI).  

2) Existing: Continue infrared and microwave 

radiometers of sea surface temperature (SST), but higher 

spatial resolutions desired (I).  

1) Sea ice.  

2) Freshwater 

discharge (rivers, 

land ice).  

3) Precipitation. 

1) Existing, but more required: Improve 

spatiotemporal coverage of suborbital data of 

salinity and temperature, such as collected by the 

ARGO network. 

Ocean Biology and 

Biogeochemistry 

1) New, technology exists: Extend current instruments to 

(i) include increased spatial resolution for assessing 

land-ocean exchanges in the ABZ, and (ii) include 

ultraviolet wavelengths and higher spectral resolution to 

assess changes in plankton diversity and carbon quality 

in the ocean (MI).  

2) Existing: Continue ocean surface reflectance 

observations to infer chlorophyll, dissolved organic 

carbon amount, and suspended particle dynamics (I). 

1) Sea ice thickness 

and extent.  

2) Freshwater 

discharge (rivers, 

land/landfast ice, 

permafrost thaw) of 

carbon and nutrients.  

3) Coastal erosion. 

4) Winds. 

5) Ocean salinity, 

temperature and 

circulation. 

1) Existing, but more required: Field programs that 

include measurements of water optical and 

biogeochemical properties from surface platforms 

(all terrain vehicles, sleds, small boats, research 

vessels, icebreakers) across the continuum of Arctic 

rivers, estuaries and the ocean, for validation of 

satellite products and development of improved 

ABZ models. 

2) Existing, but more required: Measurements from 

autonomous sensors (moorings, floats, buoys, 

gliders) to sustain continuous in situ observations. 

3) Existing, but insufficient: High spatial resolution 

remote sensing from airborne sensors.  

4) Existing, but insufficient: Detailed 

characterization of atmospheric properties over 

Arctic rivers, estuaries and ocean for improved 

atmospheric correction of ocean color. 

B. Observing Properties of the Land Biosphere  

Land Ice 1) Existing, but new technology required: Ice and snow 

albedo (MI).  

2) Existing: SAR interferometry for ice velocity change 

(VI).  

3) New: Meltwater pathways and retention (VI).  

4) Existing: Radar and lidar altimetry for height change 

(I).  

5) Existing: Continue gravimetry for mass change (I).  

1) Clouds.  

2) Surface 

temperature.  

3) Ocean temperature 

and circulation.  

4) Anthropogenic 

short- and long-lived 

pollutants. 

1) Existing: Satellite observations of variables that 

impact feedback processes involving albedo (e.g., 

visible, infrared, and near infrared data).  

2) Existing: Satellite lidar and radar for monitoring 

ice loss and velocity. 



Snow 1) New technology required: snow-water equivalent 

(SWE) (MI).  

2) New, some technology exists: Snow cover extent, 

snow depth, and snow water equivalent from microwave 

sensors (VI).  

3) Existing: Continue high-resolution observations of 

snow cover (I).  

1) Surface 

temperature.  

2) Permafrost.  

3) Tundra and boreal 

vegetation. 

1) Existing, but more required: Surface stations exist 

for validation of snow-covered area, but in most 

areas the network of meteorological stations in the 

ABZ is sparsely populated. 

2) Required: Field programs needed to validate the 

existing and future satellite data to measure SWE 

and address uncertainties, especially in forested 

areas. 

Permafrost Permafrost, which contains large amounts of carbon that 

may be released to the atmosphere upon thawing, is not 

directly observable. It may be inferred from satellite 

observations of soil permittivity changes due to soil 

freezing in the top of the active layer and by identifying 

characteristic landforms and surface features (MI). 

1) Surface 

Temperature.  

2) Snow extent, snow 

depth, and water 

equivalent.  

3) Tundra and boreal 

vegetation.  

4) Fire Regimes.  

5) Wetlands, rivers, 

and lakes. 

1) Existing: Satellite active and passive microwave 

observations to detect freezing and thawing of the 

surface of the active layer and the behavior of 

seasonal soil frost.  

2) Existing, but higher spatiotemporal coverage 

required: Data of change detection of surface 

features (e.g., C-band interferometric SAR).  

3) Existing, but more required: Surface observations 

of soil carbon content, ALT. 

Tundra Vegetation 1) Existing: Continue observations of land cover trends 

and anomalies, including greening/browning trends 

(VI).  

2) New: Vegetation height observations (VI). 

3) Existing: Leaf area index (I). 

1) Snow cover and 

thickness.  

2) Fire regimes.  

3) Permafrost.  

4) Wetlands, rivers 

and lakes.  

5) Surface 

temperature.  

6) Anthropogenic 

impacts. 

7) Large herbivore 

grazing impacts. 

1) Existing, but more required: GPS tracking data of 

large herbivores to asses grazing impact.   

2) Existing, but more required: Suborbital data of 

vegetation cover, biomass, and leaf area index.  

3) Existing, but more required: Surface albedo data 

from meteorological stations at remote tundra sites. 



Boreal Vegetation 1) New, technology exists with some new development: 

Improve spatiotemporal resolution of imaging 

spectroscopy and lidar (VI).  

2) Existing: Increased coverage and access to very high-

resolution visible-shortwave infrared imagery (VI).  

3) New: repeated (higher temporal frequency) 

observations of canopy structure from passive optical 

high-resolution stereo images with standardized viewing 

geometry (VI).  

4) Existing: Continue visible-shortwave infrared, 

microwave observations (I).  

1) Snow cover.  

2) Fire regimes.  

3) Permafrost.  

4) Wetlands, rivers, 

and lakes.  

5) Surface 

temperature. 

1) Existing, but coarse spatial resolution: Satellite 

data of changing light use efficiency (e.g., SIF).  

2) Existing, but difficult to access, and spatially 

incomplete: Internationally-consistent forest 

inventory (repeatedly measured) of structure and 

growth, and CO2/CH4 flux observations.  

3) Existing, but insufficient: Suborbital observations 

of vegetation properties and trace gas 

concentrations.  

4) Existing, but insufficient: Consistent multi-

temporal and pan-boreal vegetation type layers at 

moderate resolution (30-500 m) with sufficient 

physiognomic and floristic detail.  

5) Existing, and rapidly developing: measurements 

of patterns of vertical/horizontal boreal structure 

with high-resolution (2-5 m) pan-boreal Digital 

Surface/Terrain Models (DSMs/DTMs) and 

spaceborne lidar (ICESat-2)  

6) Non-existent: Suborbital observations of 

vegetation structure in the Russian permafrost larch 

and other forest domains.  

Fire Regimes 1) Existing, but beyond lifetime: Continue observations 

of smoke plume height, detrainment and the vertical 

extent of smoke plumes in the atmosphere (VI).  

2) Existing: Continue active fire detection observations 

to increase temporal and spatial resolution at the time 

fires are most active (VI).  

3) Existing: Develop weather data to define above- and 

below-ground fuel moisture (dryness or availability) 

(e.g. SMAP-like L-band radar) (VI). 

4) Existing: Continue to develop visible observations of 

burned area and burn severity (I). 

1) Tundra and boreal 

vegetation.  

2) Permafrost.  

3) Surface 

temperature.  

4) Wetlands, rivers 

and lakes.  

5) Pollutant and 

GHG concentrations 

and fluxes.  

6) Radiative 

feedbacks (land 

cover, cloud, and 

ice/snow). 

1) Existing, but incomplete: Suborbital data on the 

depth of duff/peat/soil organic matter contained in 

an ecosystem (pre-fire fuel) and consumed post fire.  

2) Existing, but incomplete: Expand suborbital 

observing network, especially in Russia, to evaluate 

and interpret satellite-derived fire and fuel 

properties.  

3) Existing, but more required: Surface data to 

validate and interpret satellite and suborbital fire 

type, burned area, burn severity, fuel structure and 

burn depth, particularly in Russia.   

Wetlands 1) New, technology exists: longer wavelength 

microwave radar (L-band) with higher spatial and 

temporal resolutions (MI).  

2) Existing: Continue passive microwave, active 

microwave and visible imagery observations to infer 

1) Permafrost.  

2) Tundra and boreal 

vegetation.  

3) Fire regimes. 

1) Existing, but more required: Surface stations for 

validation of satellite surface temperature. 

2) Existing, but insufficient: Field programs and 

surface stations for validation of wetland extent, 

distribution, vegetation characteristics, and 



fractional surface-water extent (VI).  heat/carbon/nutrient exchanges between wetland 

soil, water, and atmosphere. 

C. Observing Chemistry and Composition of the Arctic Atmosphere 

Short-Lived 

Pollutant 

Concentrations 

1) Existing, but well past design life: Lidar for 

observations of aerosols in all light conditions (VI).  

2) Existing: Continue passive ultraviolet/visible and 

multi-angle instruments in LEO, but finer spatial 

resolution and better sensitivity, and polarization 

capability are desired (I).  

3) Existing: Passive limb observations of aerosols (I). 

4) New, technology exists: HEO orbits for passive 

instruments to gain more spatiotemporal coverage than 

LEO ones for short-lived pollutants (I). 

1) Fire regimes.  

2) Clouds (cloud-

aerosol interactions). 

1) Existing, but more required: Observations of 

trace gases and aerosols (e.g., lidars for all light 

observations of aerosols co-located with sun 

photometers and shortwave and longwave 

radiometers) for satellite validation as well as the 

complex vertical structure of the ABZ atmosphere, 

which is needed as input to retrieval algorithms.  

2) Existing, but more required: As input to pollutant 

retrieval algorithms, satellite variables needed 

include surface reflectivity, vertical profiles of 

temperature, cloud phase, cloud separation from 

ice/snow, and cloud top height.  

3) Existing: Anthropogenic pollutant satellite 

observations for estimating transport to ABZ.  

4) Required: Targeted research missions that carry a 

more comprehensive payload than past and current 

missions, such as including instruments to measure 

particle hygroscopicity and mass-extinction 

efficiency.  

5) Existing, but much too limited: Direct sampling of 

light-absorbing aerosol on snow and ice surfaces. 

6) Existing: Volcanic monitoring. 

Long-Lived 

Greenhouse Gas 

Concentrations and 

Fluxes 

1) New, technology under development: Lidar for 

observations of CH4 and CO2 in low-light/night/cloudy 

conditions (MI).  

2) New, technology exists: HEO orbits for passive 

instruments to gain more spatiotemporal coverage than 

LEO ones (VI).  

3) Existing and planned: Continue passive instruments 

in LEO (I).  

1) Wetlands, rivers, 

and lakes.  

2) Surface 

temperature.  

3) Fire regimes.  

4) Boreal and tundra 

vegetation.  

5) Permafrost. 

1) Existing, but more required: Given the complex 

vertical structure of the ABZ atmosphere, a more 

comprehensive network of suborbital data of vertical 

profiles of CH4 and CO2 is desired for the inference 

of surface fluxes from column data.  

2) Existing, but more required: As input to CH4 and 

CO2 retrieval algorithms, satellite and suborbital 

data of variables needed include surface reflectivity, 

vertical profiles of temperature and water vapor, 

cloud separation from ice/snow, and cloud top 

height.  

3) Existing, but more required: suborbital lidars for 

low-light/night observations. 



Clouds 1) Existing, but old: Continue and expand lidar/radar 

observations to characterize 3-D cloud distribution and 

to distinguish transparent and opaque clouds (VI). 

2) Existing, but improve horizontal coverage: Continue 

passive, polar-orbiting, multi-sensor observations of 

cloud properties (I).  

1) Cloud radiative 

effects and 

feedbacks.  

2) Latent and 

sensible heat.  

3) Surface 

temperature.  

4) Aerosols. 

1) Existing: Satellite data of water vapor profiles. 

2) Existing, but sparse spatiotemporal coverage: In 

situ suborbital measurements, primarily from 

aircraft, of cloud and aerosol microphysical 

properties and their profiles. Need more frequent 

sampling in each season to develop robust statistics.  

3) Existing, but sparse spatiotemporal coverage: 

Simultaneous surface and top of atmosphere 

radiation measurements in cloudy and hazy 

conditions. Need more frequent sampling in each 

season to develop robust statistics. Also require 

observations during and after major volcanic events, 

which can have significant impacts on ABZ 

radiation.  

Surface Ultraviolet 

Radiation and 

Stratospheric O3 

Surface ultraviolet radiation is not directly observable, 

but may be inferred from satellite data of clouds, 

aerosols, and stratospheric O3.  

1) Existing: There are currently sufficient stratospheric 

O3 observations of columns and profiles (I).   

1) Clouds. 

2) Aerosols.  

1) Existing: Continue current suborbital ultraviolet 

observations at existing ABZ observatories for 

validation.  

2) Existing, but old: There are no comprehensive 

follow-on missions (e.g., MLS) of current 

instruments that observe the vertical profiles of 

stratospheric gases that are required to understand 

the chemical and dynamical causes of the trends and 

variations of stratospheric O3. 

ABZ Energy Budget 1) Existing, well-established: CERES broadband 

radiometer instruments since 2000 provide a continuous 

top of atmosphere energy budget. However, there is no 

current plan for maintaining these observations long-

term, beyond ~2032. Continuity of this record is critical. 

(VI) 

2) Existing, but more required: Currently, data on the 

spectral and angular variation of the surface albedo of 

snow-covered and sea ice surface (including the bi-

directional reflectance function) is available from 

suborbital measurements, but limited. A targeted 

satellite mission to provide higher accuracy 

measurements at increased spectral resolution is needed 

(technology/instrument development required) (VI). 

3) Future: The PREFIRE (Polar Radiant Energy in the 

Far-Infrared Experiment) mission will provide increased 

spectral resolution in the far infrared (wavelengths 

1) Cloud properties. 

2) Surface albedo 

(sea ice, snow cover, 

vegetation type). 

3) Temperature and 

humidity profiles. 

4) Surface skin 

temperature. 

5) Aerosol.  

1) Existing: MODIS cloud property retrievals.  

2) Existing: Temperature and humidity profiles from 

infrared sounders and meteorological reanalysis. 

3) Existing, but limited: surface site observations and 

field campaigns (ship-based and airborne). 

4) Existing, but aging: active remote sensing (e.g., 

CALIPSO/CloudSAT) cloud retrievals useful in 

satellite-retrieved radiative flux validation. 

5) Required: Acquisition of statistically robust 

suborbital data sets for validation of satellite-

retrieved energy budget.  

 



longer than 15 m) for the ABZ energy budget 

representing the first systematic far infrared 

measurements to investigate the spectral variation of 

surface emissivity (I). 

 


	Article File
	Figure 1 legend
	Figure 1
	Figure 2 legend
	Figure 2
	Figure 3 legend
	Figure 3
	Figure 4 legend
	Figure 4
	Figure 5 legend
	Figure 5
	Figure 6 legend
	Figure 6
	Figure 7 legend
	Figure 7
	Figure 8 legend
	Figure 8
	Figure 9 legend
	Figure 9
	Figure 10 legend
	Figure 10
	Figure 11 legend
	Figure 11
	Figure 12 legend
	Figure 12
	Figure 13 legend
	Figure 13
	Figure 14 legend
	Figure 14
	Figure 15 legend
	Figure 15
	Figure 16 legend
	Figure 16
	Figure 17 legend
	Figure 17
	Figure 18 legend
	Figure 18
	Figure 19 legend
	Figure 19
	Figure 20 legend
	Figure 20
	Table

