Python & Qt,
Powerful tools for technical Computing

90t S&V Symposium — Nov 3 — 7th, 2019
Atlanta, Ga

Vince Grillo
Dynamic Environments, Al Solutions, KSC LSP
Structural Dynamics

Python Overview

Python History and Design:

Python is an interpreted (non-compiled), high-level, Open Source, general
purpose programming language created in the late 1980s and released in
1991 by Guido van Rossum at the National Research Institute for
Mathematics and Computer Science, (Centrum Wiskunde & Informatica —
CWI) Amsterdam, Netherlands.

Python was originally created as a successor to ABC programming
language which is an imperative programming language meaning Python
uses statements that change a program’s state like “Try” some block of
code or “if variable is True” in describing how a program operates.

Python supports Object Oriented programming and is “Dynamically Typed”
meaning objects and extensions defined in the code like variable types are
automatically loaded at runtime and do not need to be compiled.

Garbage collection or memory management is handled automatically by
the interpreter.

Python interpreters are available for many operating platforms including:
Windows, Linux and MacOS. Code written in Python is naturally platform
independent.

NASA LSP currently uses anaconda Python from Anaconda Inc.

Python programming structures

Modules and Imports
— Libraries created in Python to perform a wide range of functions in different disciplines.
Data types:
— Strings, Integers, Floats, Complex......etc.
Data Structures: Tuples, lists, dictionaries, Sets,.....etc.
— Tuples, ordered sequence of data that is immutable (can't be changed).
— Lists, similar to Tuples but are mutable or can be changed.
— Dictionaries, unordered key-value pairs for saving variables and storing data.
Numpy — Numerical Python
— Mathematical functions including multi-dimensional array structures.
Scipy — Scientific Python
— Set of scientific functions including signal processing.
Matplotlib — Data plotting and manipulation
Pandas — DataFrames and spreadsheet data
— Powerful tools for tabular data manipulation.
h5py — Hierarchical Data format for input and output.
— Efficient tools for reading and writing data especially large data files.
pyYeti — Set of customized Structural Dynamics Tools written in Python.
System & OS Interfaces — sys and os, python interface to current os.

Qt Graphical Language Overview

Qt is a graphical user interface (GUI) programming language that
provides for rapid GUI development in a python environment well
beyond Tcl/Tk GUI language.

Qt was originally developed in Finland at Trolltech, which is now The
Qt Company by Haavard Nord & Eirik Chambe-Eng.

Qt was ported to Python by Phil Thompson as a separate python
module pyqgt and is currently at Qt version 5.0.

Qt uses object oriented programming interfaces or Widgets, Layouts
and Canvases with a unique application of communication between
Interfaces using Signals and Slots.

Widgets include: Main Menus, Spin Boxes, Drop down Menus, Icons,
push buttons, radio buttons, check boxes ...etc.

Qt Programming Structures

PyQt5 QtGui

PyQt5 QtWidgets, Qlcons

PyQt5 QTableView, QTextEdit

PyQt5 QtCore

PyQt5.QtWidgets : QVBoxLayout, QHBoxLayout
Matplotlib Backends for Qt5:

— Figure Canvas : matplotlib.backends.backend_qt5agg import
FigureCanvasQTAgg as FigureCanvas

— Navigation Toolbar : matplotlib.backends.backend qgt5agg import
NavigationToolbar2QT as NavigationToolbar

— Core Interfaces: matplotlib.backends.backend qt5agg import QtCore,
QtGui

Many other libraries within Qt5 Core module including program signals: From
PyQt5.QtCore import pyqtSignal

Sample Python Qt code example

e Interactive GUI command line calculator — 40-lines, no-compilation.

from _ future import division

import sys

from math import *

import scipy

L numpy as np

-t PyQt5.Q0cCore

imy -t PyQt5.0tGui

from PyQtS5.0tCore import *

from PyQt5.QtGui import * | Calculate
from PyQtS import QrWidgerts

i

i

5+4=20
5%4 +3/7 = 20.428571428571427
2+%20 = 1048576

Fiass form(@riidgers.Qbiatog) : (2420 * 5) / 100 = 52428.8
~ L. . . N pi = 3.141592653589793
def init (=elf, parent=lone): pie is invalid!

super (Form, =sel1f). init (parent) e =2.718281828459045
self.browser = QtWidgets.QTextBrowser () sin(30*pi/180) = 0.49999999999999994
self.lineedit = QtWidgets.QLineEdit ("Type an expression and press Enter™) cos(30*pi/180) = 0.8660254037844387
1f.lineedit.selecthll () tan(45+*pi/180) = 0.9999999999999999
~ut = QtWidgets.(QVBoxLavout () cos(45*pi/180) = 0.7071067811865476

(2**15 * 20)/15 + 5 = 43695.666666666664

layout.addWidget (: f.browser)

1f.lineedit)

.lineedit.setFocus ()
dineedit.returnPressed. connect (self.updateli)
.getWindowTitle ("Calculate™)

def updatelUi (s=1f):

try:
text = self.lineedit.text()
zelf.browser.append ("{} = {}</k>".format (text,
eval (text))) (2**15 * 20)/15 + 5
except:
self.browser.append ("{} is invalid'!"

format (textc))

app = QtWidgets.QApplication(sys.argv)
form = Foxrm()

form.show ()

app.exec_(]l

Vibration Lab test data example and
Matlab/Excel problems

e Shaker Vibration Data Acquisition(DAS) systems don’t necessarily format data
that will be compatible with Matlab and Windows.

— Sample data set - 5-channels, over 1M rows:

A E i D E

1 CHANMEL- 1 CHANMEL-2 CHAMMEL-3 CHAMMEL-4 CHAMNMEL- 5

2 -0.01512714 0.01045257 0.00405265 0.002392 0.00309138
3 -0.01926137 0.02492263 -0.01508735 -0.01391018 -0.01511773
4 0.0057167& -0.00056146 -0.00506537 -0.00352506 -0.00533934
5 0.01126084 -0.01542728 -0.00943133 -0.00821949 -0.00857492
& 0.00646822 -0.00831755 -0.00375002 -0.00416543 -0.00426565
T 0.00990828 -0.01185008 0.00674245 0.00694359 0.00570635
8 | 0.007134%2 -0.02451023 -0.01278927 -0.01062118 -0.01154356

Column names with dashes and spaces not compatible with Matlab — [
CHANNEL-1]

— CSV files well over 1,000,000 rows are readable by excel, but difficult and
slow to manipulate.

— The X-Axis_Control.csv data set in this example is 1,048,544 rows.

— No time vector created by DAS, time vector cannot be easily created in
excel.

Solution to previous Matlab/Excel
Issues

» Python Code below illustrates how variables read in from ‘.csv’ file can
easily be re-assigned to variable names compatible with Matlab and saved
in Matlab format.

* Note: Additional Import statements calling tools mentioned in prior slides.

hmport numpy as np
import pandas as pd
import scipy.io as io

filename = input ("Enter the *.csv filename:")
c2 = filename.rfind(".csv")

namel = filename[0:c2]

file_out = namel + ".mat"

sr = 8192

df = pd.read_csv{filename, header=[0])

deltaT = len(df) / sr

Time = np.arange (0, deltaT, 1 / sr)

time_dct = {"Time": Time} # create time dict

for key in df.keys():
cl = key.rfind("-") + 2
altchan = key([cl]

nchan = "CHANNEL" + altchan

df [nchan] = df.pop(key) f Add modified keys to
Dict/DataFrame
savevars = list(df.keys()) % create a list of keys
myvars = {key: df[key].values for key in savevars} § create
dictionary

myvars.update (time_dct) $# Update dict to add Time vector

datal = io.savemat(file_out, myvars)

Python Shell — Git Hub Desktop

e Windows based shell for running Python & Ipython

e Linux, Xwindows shell like behavior in a windows environment.
e Git for Windows -

e Example : Fibonacci number generator in 4-lines.

IPython: D:Users/vgrillo = O >

https://gitforwindows.org/

Structural Dynamics Graphical User

Interface (GUI)

Custom GUI written in PyQt based on Structural Dynamics tools written in python — pyYeti.

Start Demo — multiplotgui

A € > 4 Q

PyQt5 with menu and MatplotLib+Toolbar

E lﬁ zoom rect

MatLab Data, Channel/Axis = signal

300 A
200
100
m
Qe
5§ 0j
=
e
[T
g
o —100 4
<
—200 4
—300
T T T T T T T
0 5 10 15 20 25 30
Time (sec)
Plot-Accel-Time History Plot-Pressure-Time History, SPL calc Plot-Pressure-Time History, PSIA
Plot PSD Plot FDE-PSD Plot SRS
Plot SPL Plot VRS
Plot FFT-MAP Plot SRS - (2D-Contour - 3D-Waterfall) | | Plot PSD - (2D-Contour - 3D-Waterfall)
Filename : J/home/loads/vgrillo/pythen2/Datal/Accel comp _win64_30secAccel.mat -
Events : Ignition HoldDown - Stage Default Start Time : 0.00 Stage Default End Time : 600.00
Stage Start Time : 0.000 sec = Stage End Time : 600.000 sec =
Channels : None - Channel Descript: Units:
Excel/Matlab X-data = |time - | Excel/Matlab Y-data = sig -
Sample Rate = 4000.00 =
Liftoff Time Reference : 0.00 %! (Days): 0.00 |%| (Hrs): 0.00 % (Min): 0.00 |%| (5ec): Total Liftoff Time (sec): : 0

10

Conclusion

Python & PyQt5 provide a powerful set of tools for technical
computing and visualization.

Complex problems in Structural Dynamics as well as other
disciplines can be easily interacted with and visualized.

Python addresses a broad array of technical disciplines, as of Nov.

2018, there are over 63,000 modules for import into python.

Python is command line interpreted and can be easily written and
executed on a variety of operating systems.

PyQt is a powerful language for building GUIs quickly to interact
with data and provide real-time results.

Any Questions?

11

	Python & Qt, �Powerful tools for technical Computing
	Python Overview
	Python programming structures
	 Qt Graphical Language Overview
	 Qt Programming Structures
	Sample Python Qt code example
	 Vibration Lab test data example and Matlab/Excel problems
	 Solution to previous Matlab/Excel� issues
	 Python Shell – Git Hub Desktop
	Structural Dynamics Graphical User �Interface (GUI)
	Conclusion

