

EXPLORE EARTH

YOUR HOME, OUR MISSION

The ACSI Survey and NASA Earth Science

CFI Group and FCG – GOV CX Forum Nov. 6, 2019 – The City Club of Washington, DC Francis Lindsay, Ph.D. ESDIS Project, NASA GSFC

What do people think of when they hear NASA?

1

PRE INCLUSION OF

gaan.

NASA establishes "Mission to Planet Earth"

- Physicist Sally Ride, the first US woman to fly in space, led a study on the future of NASA after the space shuttle Challenger accident. Among the strategies to maintain US leadership in space, the Ride report cited a "Mission to Planet Earth" as a top priority.
- "The goal of this initiative is to obtain a **comprehensive scientific understanding of the entire Earth System**, by describing how its various components function, how they interact, and how they may be expected to evolve on all time scales," the Ride report found.
- NASA's Mission to Planet Earth is dedicated to understanding the total Earth system and the effects of natural and human-induced changes on the global environment. The MTPE Enterprise is pioneering the new discipline of Earth system science space-based and in situ capabilities presently being used or developed yield new scientific understanding and practical benefits to the Nation.
- NASA set into motion the development of satellites that would become the backbone for **NASA's Earth Observatory**, the country's main source of satellite imagery and scientific data about the planet's climate and environment. This evolved into what is now the agency's **Earth science program**.

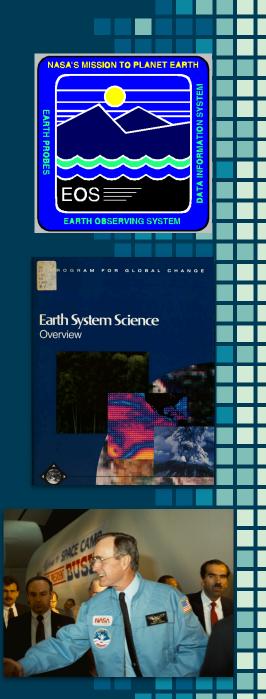
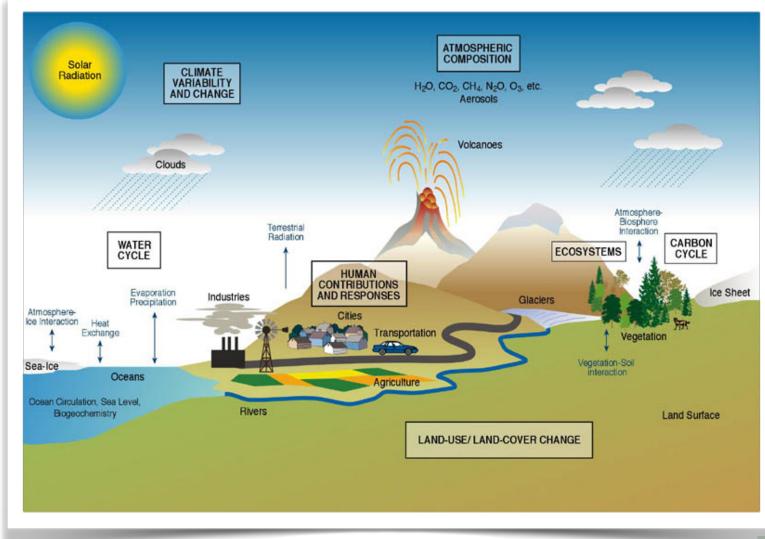
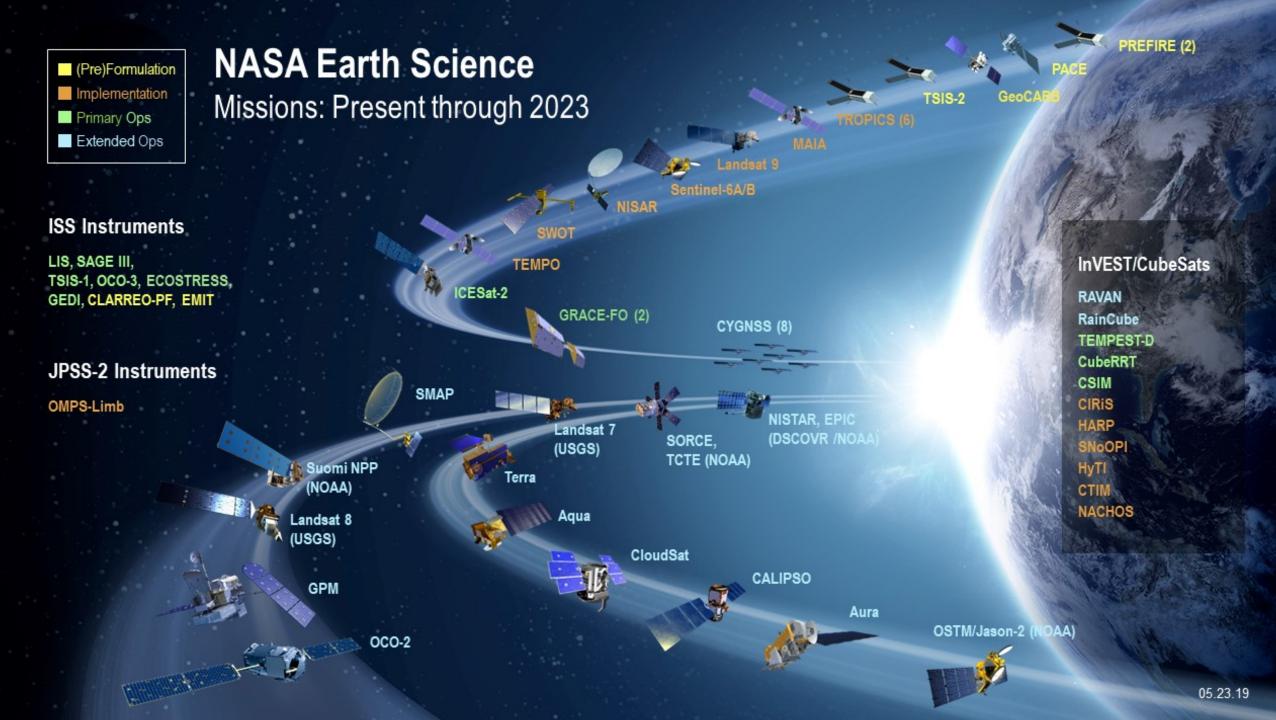


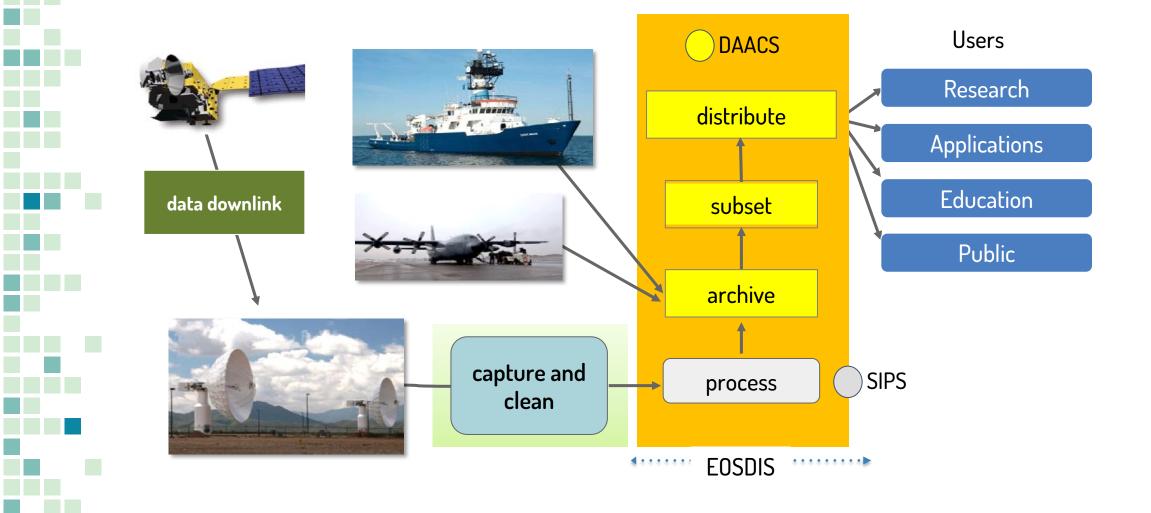
Image from the Deep Space Climate Observatory (DSCOVR) satellite Increasingly the public realizes the important role NASA plays in Earth science research

A Quick Introduction to EOSDIS

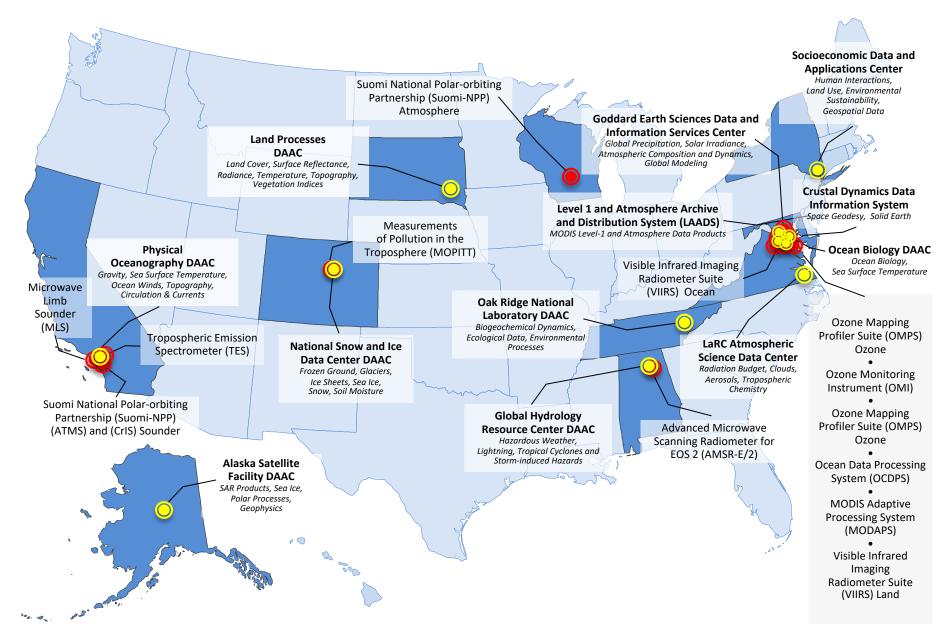
NASA's EARTH OBSERVING SYSTEM DATA AND INFORMATION SYSTEM


NA SA


Apologies ...


EOSDIS Comprises Data of the Whole Earth System

Atmosphere Winds & Precipitation Aerosols & Clouds Temperature & Humidity Solar radiation Ocean Surface temperature Surface wind fields & Heat flux Surface topography Ocean color Cryosphere Sea/Land Ice Snow Cover Land Cover & Usage Soil Moisture Topography & elevation Temperature Human Dimensions Population & Land Use Human & Environmental Health



Components of the EARTH OBSERVING SYSTEM DATA AND INFORMATION SYSTEM

EOSDIS Distributed Active Archive Center (DAACs) and Science Investigator-led Processing Systems (SIPS)

EOSDIS has over

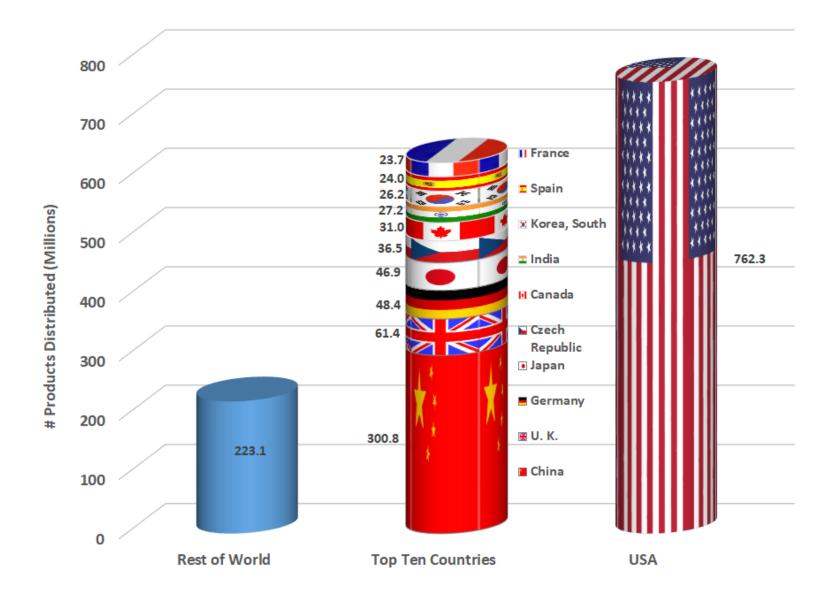
33.5 Petabytes of accessible Earth science data

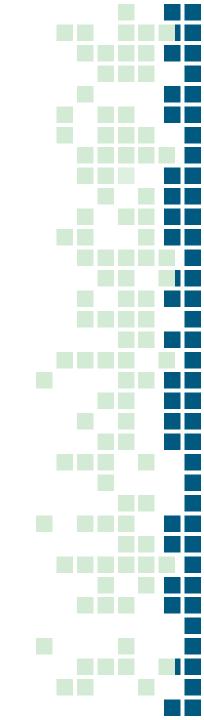
EOSDIS delivered over 1.9 Billion data products to over 3.1+ Million

science users from around the world

... ability to search over 34,500 Data Collections

in the On-line Archive (Common Metadata Repository)...


... of which 98% of searches for data complete in less than 1 Second



... and our LANCE system supports over 530 unique near realtime datasets... distributed over 134 million files and produced 1 Petabyte of data within **3 hours** of satellite acquisition

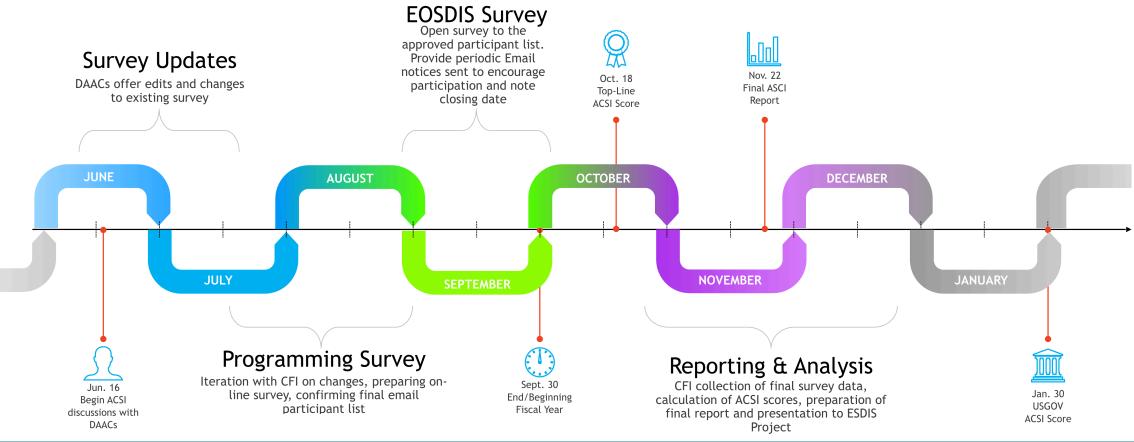
Data from EOSDIS is consumed throughout the World (2018)

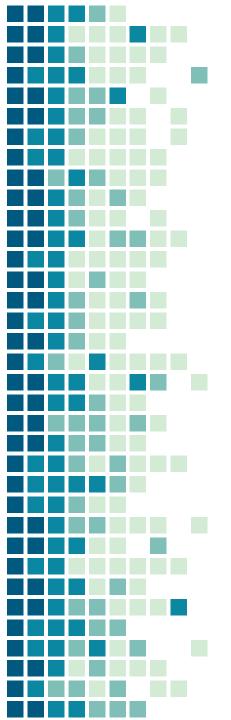
Why Does NASA Use the ACSI Survey?

- To better understand our users/user communities
- Understand changes in preferences and expectations of users
- Are our data and services meeting user needs?
- Are we investing in the right systems and services?
- To track our Data Centers' performance over time
- To calculate a yearly ACSI score for our Data Centers
- To have an unbiased, and widely-used metric to assess
 EOSDIS to management and government oversight

Implementing the ACSI Survey @ NASA

NASA


The NASA ACSI Survey Design


- The ACSI Survey is updated every year, the type of questions have evolved over the past 15 years.
- The survey has two sections, one general question section (applicable to all), and a DAAC (data center)-specific section.
- The survey questions focus on the user experience of finding, accessing and using NASA data. The results from these are key to making design choices in resource constrained environments.
- Care is taken when developing constrained response versus open-ended survey questions. "Don't ask for something you do not analyze!"
- Question changes can take a year or more to gain OMB approval so ongoing planning for future surveys is in place.

Size and Scope of the Annual Survey

- We use our central user registration (Earthdata) email list along with special data center-specific lists
- Generally, over 200,000 invitation are mailed out by CFI
- We allow people to 'opt-out' of any survey or other contact from NASA
- We also allow people to also 'opt-in' if they had not received an invitation to take the survey
- We work with CFI to monitor the response rates and end the survey when sufficient data is collected (approx. 3 weeks)

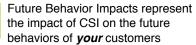
The NASA ACSI Survey Cadence

2018 NASA EOSDIS – Customer Satisfaction Model

SATISFACTION DRIVERS

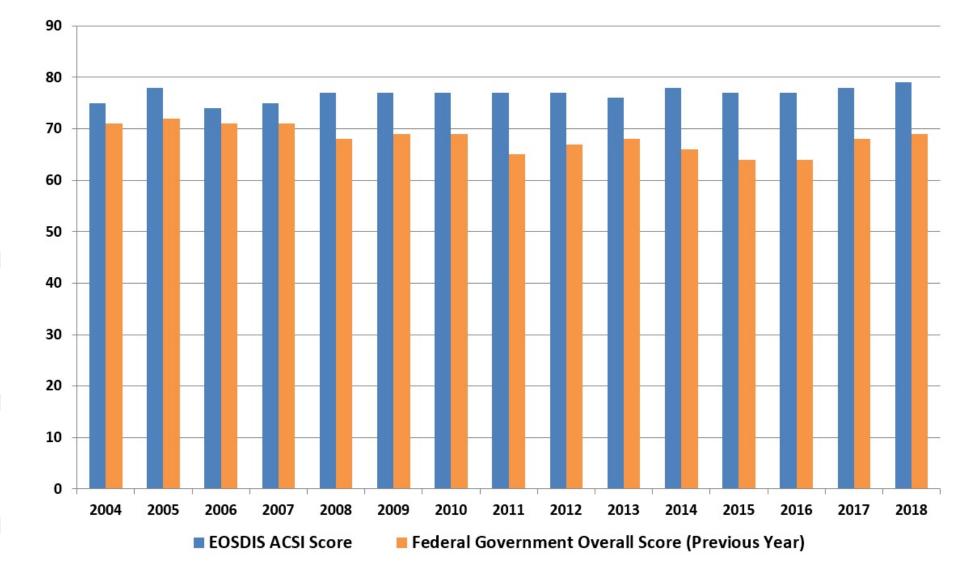
Product Quality

1.1


85

FUTURE BEHAVIORS

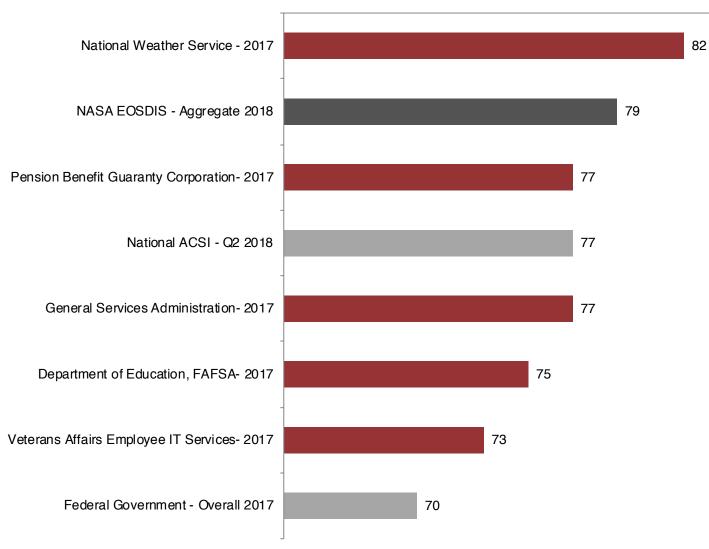
Scores represent your performance as rated by *your* customers


Driver Impacts show you which driver has the most/least leverage – where improvements matter most/least to **your** customers

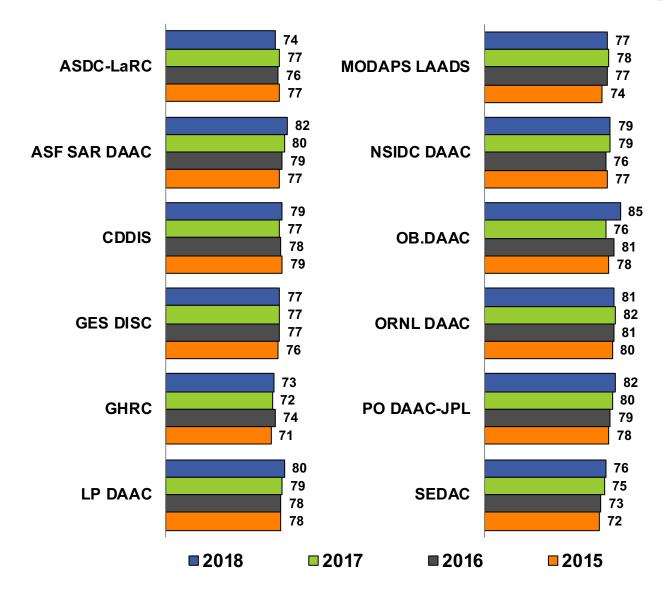
Some Sample ACSI Survey Results

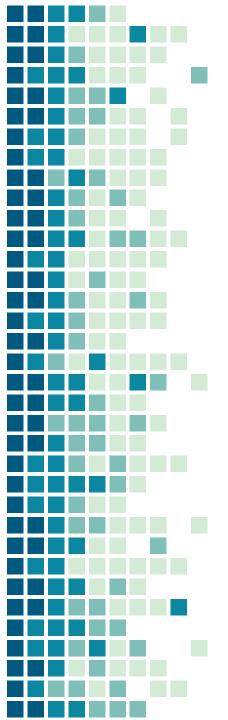
NASA

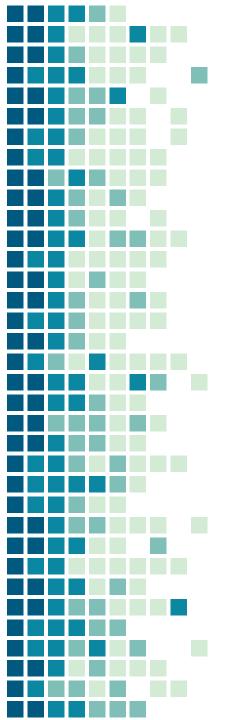
The EOSDIS ACSI Score 2004-2018


Survey Responses by DAAC

	2017	2017	2017	2018	2018	2018
	%	N	CSI	%	N	CSI
Data center evaluated						
ASDC-LaRC	7%	548	77	8%	217	74
ASF SAR DAAC	9%	688	80	17%	475	82
CDDIS	3%	191	77	1%	37	79
GES DISC	11%	830	77	13%	357	77
GHRC	5%	405	72	5%	148	73
LP DAAC	38%	2,829	79	30%	840	80
MODAPS LAADS	11%	847	78	10%	291	77
NSIDC DAAC	5%	396	79	5%	143	79
OB.DAAC	2%	124	76	1%	35	85
ORNL DAAC	2%	164	82	2%	45	81
PO DAAC-JPL	2%	187	80	3%	76	82
SEDAC	4%	296	75	4%	114	76
Number of Respondents	7,505	7,505	7,505	2,778	2,778	2,778


Survey Responses by User Type


	2017	2017	2017	2018	2018	2018
	%	N	CSI	%	N	CSI
Type of User~						
General Public	14%	1,037	76	13%	349	77
Elementary, Middle, High School Teacher	1%	86	77	1%	38	77
University Professor	16%	1,193	81	16%	446	81
University Undergraduate Student	9%	656	76	10%	273	76
University Graduate Student	29%	2,204	77	29%	802	77
Other Education and Outreach	5%	355	79	6%	180	79
Earth Science Researcher	32%	2,409	79	34%	932	80
Earth Science Modeler	9%	650	79	11%	304	77
NASA-affiliated Scientist	1%	102	80	2%	45	75
Non-NASA-affiliated Scientist	4%	320	78	5%	131	77
NASA Science Team Member	1%	68	80	1%	39	75
Data Tool Developer/Provider	5%	409	77	7%	191	76
Decision Support Systems Analyst	6%	429	76	6%	165	77
Interdisciplinary user	0%	0		12%	335	79
Applications Scientist	0%	0		13%	361	79
Other User Type	9%	656	77	7%	202	78
Number of Respondents	7,505	7,505	7,505	2,778	2,778	2,778

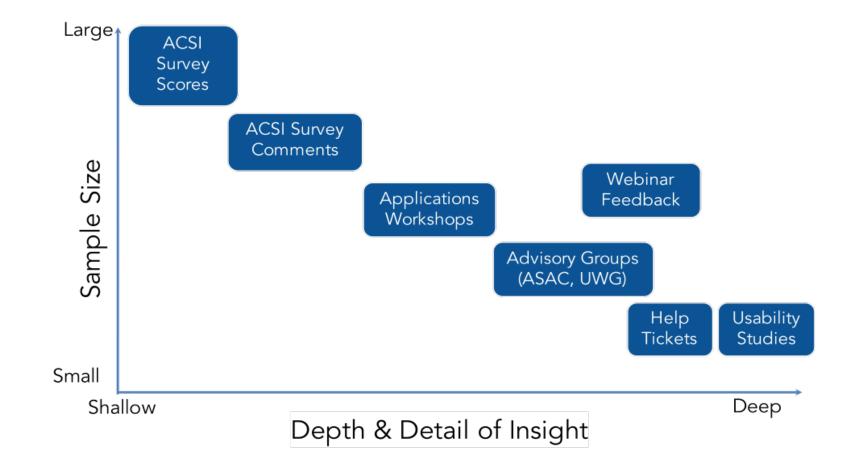

A Few Government Benchmarks

ACSI Scores by DAACs

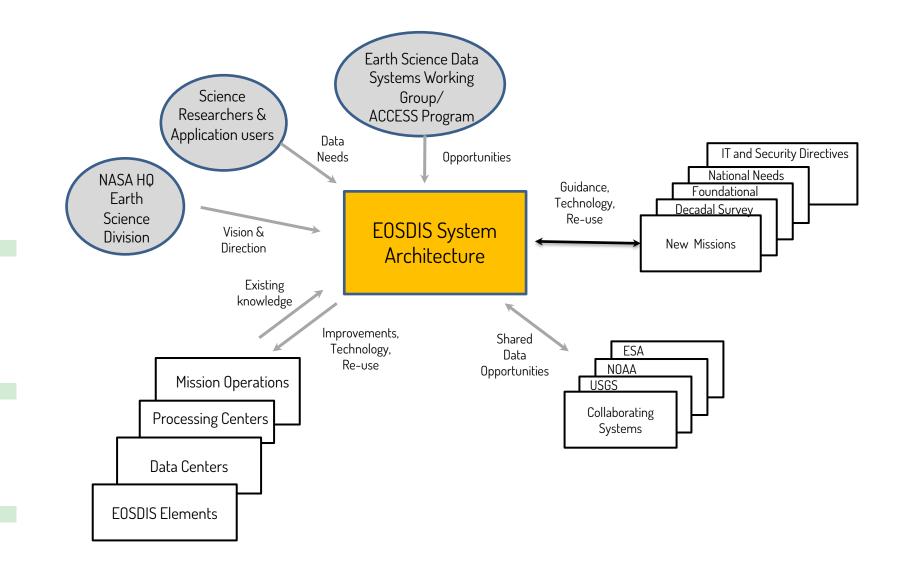
Areas & Use of Earth Science Data & Services

	2017	2017 2017	2017	2018	2018	2018
	%	N	CSI	%	N	CSI
General areas need or use Earth science data and services~						
Atmosphere	29%	2,206	78	30%	843	77
Biosphere	16%	1,198	79	16%	449	79
Calibrated radiance	8%	629	79	7%	207	78
Cryosphere	7%	556	79	8%	225	80
Human dimensions	13%	984	77	12%	345	79
Land	67%	5,062	78	61%	1,695	78
Near-real-time applications	13%	1,008	79	13%	355	78
Ocean	14%	1,072	78	14%	380	78
Space geodesy	9%	692	77	9%	245	78
Emergency/Planning Management	0%	0		15%	403	78
Hydrology	0%	0		38%	1,066	77
Natural hazards	0%	0		32%	883	79
Other general area	8%	630	76	8%	223	78
Not applicable	0%	36	82	0%	9	80
Number of Respondents	7,505	7,505	7,505	2,778	2,778	2,778

What Tools are Users Using with ESODIS Data?


	2018	2018	2018
	%	N	CSI
Tool(s) used to work with data~			
ArcGIS	64%	898	81
Convert to Vector	6%	80	80
ENVI	32%	450	82
ERDAS/IMAGINE	20%	278	82
Excel	29%	409	81
Ferret	1%	10	77
Geomatica	4%	53	78
Global Mapper	15%	206	81
GrADS	3%	46	83
GRASS	12%	174	82
HDFLook	2%	27	84
HDFView	10%	138	79
HEG	1%	20	81
IDL	7%	100	83
IDV	1%	12	86
IDRISI	7%	96	81
MapReady	2%	22	85
MATLAB	18%	255	81
MODIS Reprojection Tool (MRT)	9%	126	81
NCL	3%	47	84
Panoply	9%	121	80
Quantum GIS (QGIS)	42%	587	81
R	22%	315	80
SeaDAS	3%	46	81
Other/open source	23%	320	81
Don´t know/Not applicable	1%	8	88
Number of Respondents	3,656	3,656	3,656

Thoughts:


Mechanisms for Gathering User Feedback – Challenges and Opportunities for Furthering Insight into User Satisfaction

NASA

Gaining Knowledge from EOSDIS Users and Stake-holders

Integrating User Feedback into System Design

The NASA ACSI Survey: Issues NASA Confronts

- Survey Burnout for our users. How to maintain user interest in an annual survey, with few changes?
- Survey structure, its length, depth of questions, time for completion, etc. Are we maximizing the survey as a tool?
- User bias. People love what you do or they hate it! Can we discern macro trends based on our user responses.
- We have a diverse user base and are looking into way to make the survey more multilingual-accessible.
- Is once a year sufficient? How do we get more timely feedback from the ACSI?
- There remain differences between DAACs due to the different user communities, we need to separate questions applicable to all versus those that are appropriate for a single center.

User Expectations and System Capabilities will be Growing!

Archive Growth Rate (PB) Cumulative Archive Size (PB)

THANKS!

You can contact me anytime at: francis.lindsay-1@nasa.gov

