
RACE
building airspace simulations faster and better with actors

Peter Mehlitz∗, Nastaran Shafiei∗, Oksana Tkachuk∗, and Misty Davies∗
∗ NASA Ames Research Center

Moffett Field, CA
peter.c.mehlitz@nasa.gov
nastaran.shafiei@nasa.com
oksana.tkachuk@nasa.gov
misty.d.davies@nasa.gov

Abstract—Creating large, distributed, human-in-the-loop
airspace simulations does not have to take armies of developers
and years of work. Related code bases can be kept manageable
even if they include sophisticated interactive visualization. Start-
ing such projects does not have to require huge upfront licensing
fees. We showed this by using contemporary internet software
technology.

Our Runtime for Airspace Concept Evaluation (RACE) frame-
work utilizes the actor programming model and open source
components such as Akka and WorldWind to facilitate rapid de-
velopment and deployment of distributed simulations that run on
top of Java virtual machines, integrate well with external systems,
and communicate across the internet. RACE itself is open sourced
and available from https://github.com/NASARace/race.

I. INTRODUCTION

A. Use Case

Imagine having to build a simulation that imports live data
feeds such as real-time ADS-B aircraft positions, transmits
these live contacts to an existing, interactive flight simulator,
receives back the simulated aircraft positions, and displays all
flights on several distributed geospatial viewers that can be
synchronized in terms of eye position and selected informa-
tion.

Imagine further that once you have built such a simulation,
requirements are extended to include import of live flight,
weather and airport data for the whole National Airspace
System (NAS) through FAA’s System Wide Information Man-
agement (SWIM [1]) servers, which can easily exceed 4000
live flights at any given time. Moreover, all this data has to be
recordable in order to replay it off-line for further analysis, or
overlay it to live simulations at a later time.

This is not a hypothetical use case - it was one of the
motivating examples for the development of RACE, and it
took less than 15,000 lines of platform-independent code to
implement. The remainder of this paper describes how this
was achieved, and how the resulting system can be further
extended.

B. Targeted Application Properties

Dissecting the above use case, several aspects of the targeted
application domain stand out:

(1) The resulting applications are event based, they are
reacting to external stimuli of different sources, formats and
communication channels.

(2) Applications can be Live, Virtual or Constructive (LVC)
simulations. The system has to accommodate humans in
the loop by means of interactive components and external
connectivity. For constructive simulations, applications should
support time scaling.

(3) Applications typically incorporate existing, external
systems such as live data feeds and specialized simulators.
External systems are supposed to be used as-is. Adaptation has
to happen within the application components, not the external
system.

(4) There is no fixed set of application components, hence
the application framework has to support efficient development
of new components without having to change the existing
code base. This especially calls for a component model that
is sufficiently understood and documented.

(5) Applications should be configurable in terms of com-
ponent types and component interactions (communication).
Application components should be generic to support config-
uration.

(6) Applications can be massively concurrent, hence the
framework they are built with has to free component de-
velopers from the burden to do explicit synchronization and
scheduling, which are notoriously difficult tasks.

(7) Applications can be distributed, for reasons of scalability
and access to local resources such as hardware simulators.
Consequently, the component model should provide location
transparency, i.e. should allow the user to configure where a
component runs without having to change its implementation.

(8) Most applications require specific visualization, hence
the application framework has to provide an extensible geospa-
tial viewer infrastructure. Extensions can be related to new
data channels, rendering methods, and user interactions.

(9) RACE applications are (mostly) simulations; its com-
ponents and the system as a whole have to be deterministic.
Similar input should produce similar results.

(10) Last but not least, everybody should be able to build
RACE applications, hence the underlying framework should
be open sourced, and its core should only depend on open
sourced third party libraries.

II. BACKGROUND - ACTORS

Most of the aforementioned properties depend critically
on choosing a suitable programming model for application
components, which is the basis and starting point for our
discussion of RACE.

Actors are a model of concurrent computation that fits
well into the outlined application domain. The basic idea
is that resulting systems are homogeneously composed of a
potentially large number of concurrently executing objects
which only communicate through asynchronous messages and
don’t share state—the actors.

The concept of actors dates back to 1973 [2] and has been a
research focus ever since. Actors became subject to numerous
scientific publications, including work on formal semantics [3]
[4], and as a consequence are now among the best understood
computational models for concurrency.

Actors do not exist in a vacuum, they do need an underlying
runtime. Arguably the most prominent implementations so far
have been in Erlang [6], which integrates actors right into the
language, and in Akka [7]–a framework that is implemented
in Scala [8] and runs on Java Virtual Machines (JVMs). Both
have seen extensive use in large scale production systems,
ranging from phone switches to web applications to cluster
computing.

We chose Akka as the actor basis for RACE since we
wanted to utilize the vast third party infrastructure that is
available for JVMs. As shown in Fig. 1, Akka actors have
three essential features:

• a system provided actor reference (handle) that is used
to send messages to this actor,

• a system managed mailbox that hold messages received
by this actor,

• a user provided message handler.

actorRef
...
y
x

def receive {
˙ case msg: X => ...
˙ case msg: Y => ...
˙ ...
}

Actor

mailbox

Akka
actorRef ! x

- message delivery/queueing
- actor scheduling

Fig. 1. actor features

Within each actor, processing of messages takes place
sequentially in the order in which messages were received. The
Akka framework guarantees that no actor executes simultane-
ously in different threads. Actor references can only be used to

send messages, not to access internals of the respective actor.
Together, these properties avoid data races—a common root
cause of concurrency related defects—which essentially allows
an analyst to view the actor implementation as a sequential
program.

This is an idealized model that only holds under the
caveat that no shared mutable object is passed into an actor
constructor or is accessible through messages, which is why
Scala as a (functional) programming language with emphasis
on immutable data is our language of choice for RACE
implementation.

Akka actors require remarkably little overhead, a basic
definition can be as simple as

import akka.actor.Actor

class MyActor extends Actor {
def receive = {
case msg => sender ! "got it"

}
}

Akka actors can communicate in two different ways:
• point-to-point—a message is explicitly sent to the receiv-

ing actor,
• publish-subscribe—the receiving actor registers its inter-

est about a certain topic on an Akka EventBus, and the
sender publishes messages to this bus without having to
know about its subscribers.

Akka supports both communication types. For point-to-point
communication, this includes full location transparency, i.e.
messages can be sent to actors running in different processes.
For publish-subscribe, there needs to be additional infrastruc-
ture to achieve seamless remoting, which is provided by RACE
on top of Akka and is the subject of the next section.

III. RACE DESIGN

Since RACE applications are composed of actors, RACE
leans heavily on Akka as its implementation basis. However,
Akka actors are intentionally application agnostic whereas
RACE has a number of additional requirements and hence–
among other features—adds support for

• fully runtime configurable systems,
• deterministic system initialization and termination,
• network enabled publish-subscribe mechanism with on-

demand data flow control,
• geospatial visualization by means of the NASA World-

Wind [11] viewer.
The remainder of this section will give a high-level overview
of the RACE design and then look at each of these topics
separately.

A. Anatomy of a RACE System

As depicted in Fig. 2, the starting point to understanding
the RACE anatomy is a configuration file that specifies which
actors participate in a RACE application, and how these actors
connect to each other. Configurations are text files that are
created outside of RACE.

Config

Race
Actors

Master

RaceActor
System

External Systems

Race Driver

RACE

Bus

Fig. 2. RACE overview

The top-level runtime component is the RACE Driver,
which is usually the main class of a respective application and
directly invoked by the user. There are several driver variants
depending on user interface and locality, but all share the same
set of basic functions:

1) select/acquire the contents of a configuration file and
translate it into a configuration object,

2) instantiate a RaceActorSystem with this configuration
object,

3) start, query and terminate this RaceActorSystem based
on user commands.

The RaceActorSystem aggregates the following objects:
the Master actor, the Bus, a Clock, and any number of
configured RaceActors.

Upon instantiation by the driver, the RaceActorSystem
creates the Master, the Bus and the Clock, and then passes
the configuration object on to the Master actor.

The Master actor is responsible for creating and then
supervising the configured RaceActors, providing the sub-
configuration for each particular actor as the sole constructor
argument. There are four distinct phases of control executed
by the Master:

1) creation of configured RaceActors,
2) dynamic initialization of created RaceActors,
3) start of initialized RaceActors,
4) termination of started RaceActors.

Each phase is only entered after the preceding one has
been completed. Within each phase RaceActors are processed
sequentially based on their configuration order, i.e. each actor
can rely on all preceding actors having successfully completed
the respective phase.

The Bus is merely a wrapper around an Akka EventBus that
implements a network enabled publish-subscribe mechanism
as the primary means of RaceActor communication.

The RaceActors finally are the application specific com-
ponents, performing tasks such as importing from external
data sources, translation and filtering of imported data, vi-
sualization, analysis and more. Most RaceActors do so by
subscribing and publishing to Bus channels they obtain from
their configuration data.

RaceActors are also the means to communicate with other
RACE processes. By specifying the location (URL) of a
RaceActor in the RACE configuration, such remote actors
can be seamlessly integrated into a RACE application, using
normal Bus channels for communication without the need of
any remoting-specific user code. Remote actors can be looked
up (in case they have to be started locally) or instantiated
remotely.

Based on this connectivity, it is possible to build whole
topologies of interacting RACE systems.

B. Configuration

RACE applications are not hard coded, they are configured
by means of text files that specify which RaceActors partake
in a simulation, and what parameter values these actors should
be initialized with. The preferred format for configuration files
is HOCON [10], which is a JSON [9] dialect that is focused
on readability.

The underlying data model is a tree of key-value elements.
Each element value can be either a primitive (String, Boolean,
Int etc.), an object (set of key-value pairs “{..}”) or an array
of element values (“[..]”). Figure 3 shows basic structure,
elements and connections of RACE configuration files.

universe {
 name = “flightSim”
 ..
 actors = [
 { name = "remotePlane"
 class = "SimplePlane"
 ..
 heading = 84.0
 }
]
}

my_simulation.conf

flightsim.conf

mandatory id

actor specific
parameters

universe {
 name = "mySimulation”
 ..
 actors = [
 { name = “remotePlane”
 remote = “flightSim@host”
 ..
 write-to = “/flights”
 },
 { name = “probe”
 class = “race.ProbeActor”
 ..
 read-from = “/flights”
 }
]
}

data
flow

remoting

Fig. 3. RACE configuration

The top level element of a RACE configuration file is a
universe object, which contains two main sub-elements:

• a name that identifies this RACE instance so that it can
be referenced by other RACE processes,

• an actors array that specifies which RaceActors are
part of this RACE instance.

Each actors element specifies a single RaceActor, identi-
fied by a mandatory name element. Actors that are created by
this RACE process also need to have a class element holding
the respective class name. An optional remote element
indicates this is a remote actor running on an external RACE
system. Actors can also be marked as optional, in which case
a failed lookup or creation does not terminate the RACE
initialization.

RaceActors that communicate through Bus channels have
read-from and write-to configuration elements, which
hold either single channel names or an array thereof. Channel
names are strings that should use a path-like convention.
Channels do not need to be defined separately.

In addition to such system elements, each RaceActor can
have any number of actor type-specific parameters. Values
starting with a “??” prefix are used as keys to look up sensitive
configuration data (e.g. user credentials) in an optional vault,
which is a secondary configuration file that is encrypted. Vaults
have to be specified during RACE startup, require symmetric
keys, and are never stored as clear text during execution.

Conceptually, RACE configurations use a declarative lan-
guage to define a directed graph in which RaceActors represent
the nodes, and Bus channels represent the edges. The resulting
graphs do not need to be acyclic.

RACE configurations contain more information than just
type and connection of actors—the order in which actors are
specified does matter. The Master actor creates, initializes
and starts RaceActors strictly according to this order, and
terminates them in reverse order. In each phase, an actor can
depend on previous actors having completed the respective
phase.

C. RaceActors

RaceActors are Akka actors which are initialized from
RACE configuration data, and implement a RACE-specific
state model. This state model closely follows the different
lifetime phases of a RACE system:

1) creation,
2) initialization,
3) run (including suspend/resume),
4) termination.

The distinction between the creation and initialization phases
becomes obvious when looking at RACE instances that com-
municate through remote actors. While a remote actor might
get instantiated by the remote RACE system ahead of time, it
still needs to be initialized with data (e.g. Bus channels) that
integrate this actor into the local RACE system.

Since location transparency is an explicit design goal for
RaceActors, we do not introduce a different state model for

remote actors, but call out dynamic initialization as a separate
step. This has the added benefit that those local actors needing
initialization from other actors can make use of the same state
model; this avoids actor-pair specific protocols.

Figure 4 shows the basic RaceActor states and transitions.

Initializing

Initialized

Terminating

Terminated

Started

Running

Paused

onInitializeRaceActor() onStartRaceActor()

onPauseRaceActor()onTerminateRaceActor()

Initialize

Start

Terminate
Terminate

PauseResume

Terminate

Master

Fig. 4. RaceActor States

Each of the RaceActor state transitions is initiated by the
Master and mapped into a function that can be overridden by
the concrete actor class, which mixes in one or more of the
system-provided RaceActor traits. The reference transition
sequence is as follows:
� → Initializing : the initial transition is triggered when

the Master instantiates a RaceActor, and is implemented by
means of its constructor chain. This usually includes static
(context-free) initialization based on the local actor configura-
tion object which is the sole constructor argument.
Initializing → Initialized : this transition is trig-

gered when the Master sends the InitializeRaceActor
system message that is mapped by the system into
a onInitializeRaceActor() call. The purpose of
this method is to perform context-aware initialization
based on a (possibly remote) configuration object that
is part of the message. This especially includes sub-
scription to configured read-from Bus channels. After
onInitializeRaceActor() returns, the system activates
the actor-specific handleMessage() method as the default
message handler.
Initialized → Running : this marks the beginning

of the simulation in response to a StartRaceActor system
message sent by the Master, which is mapped into an
onStartRaceActor() call. Typical reactions include the
start of data publishing.
Running → Terminated : the final transition is triggered

by receiving a TerminateRaceActor system message from the
Master, which results in an onTerminateRaceActor()
call during which data production is stopped and external
connections are closed.

If RaceActors override an on<Message>() method, they
should call the respective super method from within their
implementation to make sure mixed-in system traits function
properly.

Although system message callbacks are an important part
of a RaceActor implementation, the primary feature is usually
the handleMessage dispatcher which is activated when the
actor reaches the Initialized state. This dispatcher is a Scala
Partial Function that pattern matches on the message types
and values which are processed by this actor. The reason why
this handler is not activated during actor construction is that
message processing might depend on fields which are not set
before the Initialized transition is completed.

The following code snippet shows how system message
callbacks and the message handler work together in the context
of a simple RaceActor example:
import gov.nasa.race.core.PublishingRaceActor
...
class Airplane (val config: Config)

extends PublishingRaceActor with ... {
val id = config.getString("id")
var updateInterval = config.getDuration(...)
var fpos: FlightPosition = ...
...
override def onInitializeRaceActor(...,

conf: Config) = {
super.onInitialzeRaceActor(..,conf)
fpos = getInitialPosition(conf)

}

override def onStartRaceActor = {
startUpdateNotifications(updateInterval)

}

override def handleMessage = {
case Update =>

fpos = computeNewPosition(simTime)
publish(fpos)

}

override def onTerminateRaceActor = {
stopUpdateNotifications()

}
...

}

The standard RACE distribution contains a number of
ready-to-use RaceActors for generic tasks such as Java
Messaging Service (JMS) import, XML-to-object translation,
content-based filtering and more. While this collection of
generic system actors is supposed to grow, development of
new, application-specific RaceActors is considered to be the
primary way to extend RACE and hence explicitly encouraged.

D. Bus Channels
Bus channels are the primary mechanism through which

RaceActors communicate. They implement fully runtime con-
figurable publish-subscribe (1:N) messaging that works seam-
lessly with remote actors. Each channel is identified by a
path-like name (e.g. “/flights/positions”), which organizes the
channels of a RACE system into a hierarchical name space that
allows selection of whole sub-trees by means of name patterns
(e.g. “/flights/*”). If a channel name starts with a “/local/”
prefix, respective data will not be sent out to remote actors.

Within a RACE process, Bus channels carry very little run-
time costs compared to external messaging systems. Channels
do not need to be separately defined, accept arbitrary object
references as messages, involve minimal copying, and do not
require marshaling/un-marshaling. Within a process, channel
messaging approaches the efficiency of function calls with
associated context switches.

Bus channels that are used between RACE instances do
incur marshaling/un-marshaling costs. While this is transparent
to actor code, it shows the same 2-3 orders of magnitude
throughput reduction that is typical for external message sys-
tems and hence has to be taken into account when partitioning
RACE systems.

The RACE Bus is a very thin wrapper around the normal
Akka EventBus, which already supports sending messages to
remote actors, but does not provide the capability for remote
actors to publish. This function is added by RACE, using Bus-
Connector actors that are automatically created by the Master
and passed on to remote RaceActors during the initialization
phase. When the remote actor publishes a message, under the
hood it sends this message point-to-point to the associated
BusConnector, which then publishes it to the local Bus.

Channel subscription and publishing is mostly implemented
in two system traits that can be mixed into concrete RaceActor
classes: SubscribingRaceActor and PublishingRaceActor.

During initialization of a SubscribingRaceActor, the system
automatically subscribes the actor to all channels that were
specified in its read-from configuration element. Con-
versely, the system automatically unsubscribes the actor during
its termination.

The PublishingRaceActor provides a publish(msg)
method that wraps the message payload into a BusEvent
that records channel, sender and payload, and then sends
this BusEvent to the channels specified in the write-to
configuration of this actor.

Concrete SubscribingRaceActor classes then pattern match
on the BusEvents they process within their handleMessage
methods:

...
override def handleMessage = {
case BusEvent(channel,x:X,sender) =>

processXMsg(x)
...

}

E. Channel Topics

If Bus channels are the statically configured pipes through
which RaceActors send and receive data, ChannelTopics can
be thought of as the valves that control the data flow along
those pipes on-demand.

The rationale for implementing the ChannelTopic mecha-
nism is that many external data sources are potentially high
volume, and do not allow fine grained control over which data
they send. Such messages should only proliferate through a
RACE system if there are clients that actively process this
data, and otherwise should be filtered as close to the RACE
system boundaries as possible.

Since a RaceActor should only have to know about the
channels it subscribes to, and not about which actors publish
to those channels, the mechanism has to be fully transitive.

The two traits that implement the mechanism are Chan-
nelTopicSubscriber (the requesting consumer) and Channel-
TopicProvider (the producer). Both define a protocol that
works fully transitively and asynchronously, i.e. providers can
in turn request their own ChannelTopics when they receive a
request, and respond once they got their requests answered. A
single ChannelTopic request can therefore trigger a whole set
of (different but related) requests upstream.

Request topics can either be application specific objects, or
a system value indicating that a request pertains to the whole
channel. It is up to the ChannelTopicProvider to pattern match
request topics it will serve.

Figure 5 depicts how a ChannelTopic request propagates
through the system

ChannelTopicClient
"myConsumer"

TransitiveChannelTopicProvider
...

ChannelTopicProvider
"myProducer"

write-to: "X"

read-from: "X"

write-to: "Y"

read-from: "Y"

system channel
"/CT_REQUEST'

data
channel

"X'

data
channel

"Y'
RACE boundary

request("X":topic)

request("Y":topic)

response

accept

accept

response

1

2

3

4

5

6

7

data...

...

Fig. 5. Channel Topics

At each level, requests are handled in four steps:
1) the request itself by the ChannelTopicSubscriber actor,
2) a response by one or more ChannelTopicProvider actors,
3) an accept by the requesting actor to the selected provider,
4) data publishing of the accepted provider.
Providers that are also requesters can mix in the Transi-

tiveChannelTopicProvider trait, which mainly is responsible
for mapping incoming to outgoing requests (a 1:N relation-
ship).

F. WorldWind Viewer

The most visible part of RACE is its NASA WorldWind [11]
interface. One of the primary use cases of RACE is to visualize
large, dynamic geospatial data sets, such as live flight positions
within the whole national airspace (see Fig. 7 screen shot).

Respective applications can vary significantly in terms of
• input sources,
• viewport and perspective,
• supported interactions,
• context-aware rendering of objects.

Such complex graphical user interfaces tend to require a
large amount of platform-specific code that is expensive to
develop and maintain. In addition, most available user interface
frameworks are not thread safe, and thus require explicit, error-
prone and hard-to-test synchronization between asynchronous
data acquisition and user interface (event dispatcher) threads.

RACE includes substantial infrastructure to mitigate these
challenges. The centerpiece of this infrastructure is NASA
WorldWind [11]–an open sourced OpenGL-based [12] geo
viewer that runs on all major platforms and can be embedded
into Java applications.

Fig. 6 gives a conceptual overview of how WorldWind is
integrated into RACE.

The primary WorldWind concept in the context of RACE
is the RenderableLayer, which represents a display relevant
data set that can be separately controlled in terms of visibility,
rendering and updates. RACE uses RaceLayers to map its Bus
channels into WorldWind layers. While a RaceLayer executes
within the graphical user interface thread, it has an associated
RaceLayerActor which is responsible for data acquisition by
means of RACE channel subscription. Since RaceLayerActors
execute within Akka threads, they use a dedicated queue
within the associated RaceLayer to perform the thread-safe
handover of display data.

The second, RACE-specific concept is the UI Panel, which
represents a part of the user interface outside of, but potentially
interacting with, WorldWind. RACE comes with panels for
various tasks such as controlling view positions, selecting
layers and displaying information about selected objects. UI
panels are collapsible and stacked in a column to the left of
the top-level window, whereas WorldWind occupies the large
canvas to the right of the panel column.

WorldWind is incorporated into RACE applications by
means of a RaceViewerActor, which is just a normal RaceAc-
tor within a RACE configuration. However, RaceViewerActors
themselves can be extensively configured with both RaceLay-
ers and (less often) UI Panels:
universe {
...
actors = [
...
{ name = "geoViewer"
class = "gov.nasa.race.ww.RaceViewerActor"
...
layers = [

{ name = "livePos"
class = "FlightPosLayer"
read-from = "/live/fpos"
description = "live flight positions"
...
},

...

Just as the RaceLayerActor/RaceLayer pairs, the RaceViewer-
Actor has a dual in form of the RaceView user interface object,

Clock

View

Sync

LayerList

selected
layer

selected
object

(collapsible)
panels

WorldWind

OpenGL

Swing
RaceViewerActor

Akka threads UI threads

RaceView

LayerActorLayerActorLayerActor
RaceLayerRaceLayerRaceLayer

SyncActor

flight: XYZ 123
alt: 20000ft
speed: 300 kts

- eye position
- map projection

eye position
layer/object selection

display data

object
selection

viewer
 data

viewer
 sync

ChannelTopic requests

Bus

layer
selection

Fig. 6. WorldWind Integration

which is both the aggregation and the mediator between the
configured panels and the WorldWind window.

An important aspect of RACE’s WorldWind infrastructure is
the synchronization of different viewers. RACE Bus channels
can be used for more than just acquisition of display relevant
data—they are also a convenient mechanism to exchange
viewer state between local and remote RaceViewers.

To that end, the viewer infrastructure includes a SyncAc-
tor/SyncPanel pair, which can publish viewer changes such
as eye position and layer selection to a global Bus channel,
and conversely subscribe to this channel to update the local
display with remote viewer changes. This type of viewer
synchronization is superior to generic, application-unaware
screen sharing because it:

• supports fine grained, extensible control of synchroniza-
tion aspects at the local site,

• is robust in terms of re-synchronization (supports mute
and tolerates lost connections),

• lets users dynamically select the remote viewer(s) to
synchronize with,

• requires minimal data transfer between viewers (no high
volume input events or large images have to be transmit-
ted).

This infrastructure provides a powerful basis to use RACE
for applications such as situation rooms: supporting the in-
tegration of large screen displays with a variety of controller
consoles and without having to resort to expensive and limiting
hardware-based solutions.

G. Other Features
There is more to RACE–several of its current features

cannot be discussed in detail within the scope of this paper,
and are only briefly mentioned here.

The RemoteLauncher infrastructure allows the user to se-
curely start, monitor and control RACE processes through
SSH, providing the capability to manage global resources
such as configuration files, user ids and gateway access to
external servers from one central place. The RemoteLauncher
especially targets multiple concurrent, automated simulations
that make use of dynamic resources such as cloud computing.
For security reasons, the RemoteLauncher can be configured
to run remote RACE instances on login-less accounts. All
communication with remote processes is tunneled through
SSH, which not only guarantees strong encryption but also
simplifies related network configuration.

Many external data sources provide a superset of the re-
quired information in the form of pre-validated XML mes-
sages. For trusted sources, full schema-based XML translation
therefore often results in computational overhead that can be
avoided. To this end RACE comes with its own lightweight
XmlPullParser support that can be more than an order of
magnitude faster than comparable solutions, allows convenient
extraction of relevant information, and provides full path
context for XML elements.

The XPlaneActor that is distributed with RACE supports
bi-directional communication with the commercial X-Plane
[13] flight simulator. The XPlaneActor uses a normal network
socket to send flight positions to X-Plane for cockpit view
rendering, and in return receives the position of the simulator
plane which can then be displayed with RACE’s WorldWind
viewer.

IV. QUANTITATIVE PROFILE

The RACE distribution currently consists of about 200
source files with 12,500 lines of code (predominantly Scala),
not including some test tools to run third party servers.

Roughly a third of this code is related to the viewer infras-
tructure of RACE. The core itself is the smallest layer with
about 1,350 lines of code.

The following runtime data was measured on a 15” Mac-
Book Pro (2.8GHz Intel i7, 16 GB 1600MHz memory, AMD
Radeon R9 M370X with 2GB VRAM), running OS X 10.10.5
and Java 1.8.0 91.

The analyzed RACE application included import of:
• live SWIM Flight Data Publication Service (SFDPS) mes-

sages: ∼4000 simultaneous flights, ∼70 messages/sec,
• live SWIM Airport Surface Detection Equipment, Model

X (ASDE-X) messages: ∼30 airports, ∼30 messages/sec,
50-150 tracks per airport,

• live SWIM Integrated Terminal Weather System (ITWS)
precipitation image data: ∼80 images, 2-3 messages/sec,

• live Automatic Dependent Surveillance-Broadcast (ADS-
B) data, San Francisco Bay Area: ∼25 simultaneous
flights, 20-40 messages/sec.

All data was received as text messages over a wireless network
and was translated into respective objects using load balancing
actors. Resulting flight objects and precipitation images were
displayed by WorldWind LayerActors.

The viewer was configured to issue ChannelTopic requests
when zooming in on an airport providing ASDE-X data,
triggering on-demand translation, publication and display of
related ASDE-X track positions (aircraft and vehicles) at a
1Hz interval.

The application used 25 actors with up to 13 simultaneously
active channels.

The Java process loaded about 8900 classes and executed
in up to 81 live threads, using between 200-500 MB of heap
memory.

The resulting CPU load averaged below 5% in stable viewer
state, and peaked around 20% during garbage collection and
viewer interaction. The highest average CPU load of 10% over
10-15 sec occurred during sustained view changes such as
zoom and pan operations, identifying graphics as the most
computationally intensive task of the system.

The screen shot in Fig. 7 gives an flavor of the involved
volume of dynamic data (red dots represent live flights).

This demonstrates that RACE can process a realistic amount
and rate of data on commodity hardware, without even having
to tap into its potential for massive multi-core architectures
and cluster networks.

V. LIMITATIONS

While actors are a scalable and robust approach for design-
ing massively concurrent and distributed systems, they are not
without their own challenges. During our work on RACE we
identified a number of topics that should be subject to further
analysis.

The preferred /emphmodus operandi for actors is to restrict
themselves to communication through asynchronous messages
without sharing state, but sometimes shared memory within a
RACE process is the best way to improve performance, reduce
redundancy and avoid complex synchronization protocols in

absence of explicit locks. Except for the fact that it might
prevent location transparency, shared memory can be a viable
design choice, provided that shared objects are immutable
during operation. Scala has a strong bias towards functional
programming and hence features good support for immutable
data (e.g. with its collection library), but it is possible to
create data races in Akka actor systems, especially through
actor constructor arguments and message fields. This could
be mitigated by using targeted static analysis, but so far tool
support in this area is limited.

Seamless channel communication by means of remote ac-
tors is a powerful tool, but in absence of different APIs it
is easy to forget that (a) such communication comes at the
potentially significant cost of marshaling/un-marshaling, and
(b) some objects might not support marshaling at all, resulting
in runtime errors (e.g. for platform specific native objects).

A specific problem of actor systems is detection and
mitigation of mailbox saturation, commonly referred to as
back pressure management. Each actor mailbox is a queue
of messages that are waiting to be processed, and if the
actor processing does not keep up with the rate at which
messages arrive, it can create downstream problems. Since
actor mailboxes are Akka system objects (e.g. the required
queue synchronization is hidden from user code), detection of
back pressure situations might have to resort to test messages
that further increase message traffic and hence can aggravate
the situation they are supposed to remedy.

Back pressure management (e.g. with dispatcher/worker
actor combinations as employed by RACE) is just one example
of a broader topic—while it is clear that there are actor
patterns, those are not yet as well understood and documented
as common software design patterns. Existing literature such
as the seminal work of Hohpe and Woolf[5] is mostly focused
on the integration aspect of messaging systems in the context
of enterprise software.

Last but not least, actors, Scala and Akka are not as
mainstream as Java and explicit threading, and thus available
workforce is limited. However, the same can be said about
most emerging technologies with a high innovation factor.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper we have presented the goals and design of
RACE—an open sourced framework to build distributed, live,
virtual and constructive airspace simulations by means of
the actor programming model. Reflecting on our work, three
conclusions stand out:

1) actors do provide the basis for extensibility and scala-
bility that we had envisioned,

2) functional programming (Scala) combines well with
actors,

3) although RACE is still under development, its minimal
core together with the maturity of its third party system
basis (Akka, WorldWind) already allow applications that
go beyond the scope of simple simulations.

From a technical perspective, our immediate plans are to
extend the actor collection distributed with RACE, to add more

actor telemetry, and to use RACE in the context of runtime
monitoring of future air traffic management models. In terms
of adoption and third party contribution, we intend to build an
open source community around RACE.

This work is all the more satisfying as we see a lot
of potential for future research, ranging from actor pattern
analysis to model checking to compositional verification of
actor systems. RACE could be exciting for years to come.

REFERENCES

[1] System Wide Information Management, http://www.faa.gov/nextgen/
programs/swim/.

[2] Carl Hewitt; Peter Bishop; Richard Steiger, A Universal Modular Actor
Formalism for Artificial Intelligence, IJCAI,1973.

[3] William Clinger, Foundations of Actor Semantics, Mathematics Doctoral
Dissertation. MIT, 1981.

[4] Gul Agha; Prasanna Thati An Algebraic Theory of Actors and Its
Application to a Simple Object-Based Language - from OO to FM (Dahl
Festschrift) LNCS 2635. 2004.

[5] Gregor Hohpe; Bobby Woolf, Enterprise Integration Patterns - designing,
building and deploying messaging solutions, Addison-Wesley, 2004.

[6] Erlang Programming Language, https://www.erlang.org.
[7] Akka - scalable realtime transaction processing, http://doc.akka.io/docs/

akka/current/scala.html.
[8] Scala Programming Language, http://www.scala-lang.org/.
[9] JSON - JavaScript Object Notation, http://www.json.org/.
[10] HOCON - Human Optimized Config Object Notation, https://github.com/

typesafehub/config/blob/master/HOCON.md.
[11] NASA WorldWind - extensible geo viewer, http://worldwind.arc.nasa.gov/

java/.

Fig. 7. RACE viewer screen shot

[12] OpenGL, https://www.opengl.org/.
[13] X-Plane - Ultra Realistic Flight Simulation, http://www.x-plane.com.

