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NASA, Google and USRA Collaboratlon focused on Atrtificial
Intelligence and Quantum Computing (2012-present)
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Users of the D-Wave Machine at NASA

RFP CYCLE 1 & 2 SELECTIONS
https://tinyurl.com/USRA-RFP2019 PURDUE UC San Diego ETHz(irich

Competitive Selections | =

, Carnegie ﬁ* UNVERSTA o [UBC
Cycle 1 (512 qubit processor): 8 of 14 selected — 57% Mellon S e &) W
Cycle 2 (1152 qubit processor): 10 of 15 selected — 67% University @ deMonterrey | omas,

Cycle 3 (2048 qubit processor): 15 of 19 selected — 79%

USC BITS Pilani _& Y Rarc.

uxivessity Piani | Dubai | Goa | Hyderabad
Diversity of Selected Organizations e Booz | Allen | Hamilton .@ OCWARE
Approx 60% Universities + 40% Industnal Research Organizations T RFP CYCLE 3 (extract
Approx 60% U.S. Organizations + 40% International Organizations (extract) ‘
Computer Science, Physics, Mathematics, Electrical Engineering, Ry UCSanDiego  Standard &
Operations Research, Chemistry, Aerospace Engineering, Finance v UNIVERSTTY g Chartered S
USC (arnegic &5 JOHNS HOPKINS
.\.\\‘.\.”{T‘..:\ Vi . O" . ‘II: UNIVERSITY
Diversity of Research e University

Quantum Physics -> Algorithms -> Applications

Machine Leamning for Image Analysis, Communications,
Matenals Science, Biology, Finance
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NASA'’s Interest in Quantum Computing

NASA constantly confronting
massively challenging
computational problems

 Computational capacity
limits mission scope and
aims

NASA QuAIL team mandate:
Determine the potential for

guantum computation to
enable more ambitious NASA

missions in the future

Complex Planning and Scheduling
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Approach to Leveraging Quantum Computing to Address
NASA’s Computational Challenges

b Application focus areas
.e Y Planning and scheduling Robust networks
8 %
o4 ‘\\ 40 ‘-4/! ‘ Fault Diagnosis Machine Learning
-? - Quantum-enhanced 7 Material science simulations
<> applications 1

Wireless Decoding

Programming quantum computers

QC programming Quantum algorithm design
Novel classical solvers

e b e

Mapping, parameter setting, error mitigation

Hybrid quantum-classical approaches

QC - state-of-the-art classical solvers
) Physms InS|ghts =

3 | 4
Slmulatlon tools [ an Analytlcal methods

/ /\%f\\ Physics insights into quantum algorithm and
' A quantum hardware design
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QC programming
Novel classical solvers

Physms Insights I;é/tw

Simulation tOOIS Analytical methods
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G’hysics Insights A
* Annealing Pause
* Reverse Annealing

\ /

Quantum-enhanced Applications
- Quantume-assisted associative
adversarial network
\ Robust Network Communication )
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Performance for pause schedules

- heat map of probability of solution P, as function of
pause location s, and pause length t,

- heat map of average energy (above ground state) of
solution as function of pause location s, and pause
length t,

Results for single 800-qubit problem
- total annealtime ta=1 «s
- Each point: 10,000 anneals, using 5 gauges
- Po= 10 for anneal without pause

Orders of magnitude improvement for pausing in
narrow region of location parameter s,
J. Marshall, D. Venturelli, I. Hen, E. Rieffel, The power of pausing: advancing

understanding of thermalization in experimental quantum annealers, Physical
Review Applied 11 (4), 044083, 2019, arXiv:1810.05881
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. 1.0}
: Ground state is well-

separated by rest of spectrum,
so Py~ 1

0.8F

1t <ty
Relaxation rate increases,
potential for thermal excitation
leading to instantaneous
thermalization

Instantaneous thermalization no 0038040 042 044 046 048 050 052

longer occurs, but a pause may s
enable significant thermalization Cartoon of distinct regions with different behavior focusing on

most dynamic part of the anneal
: t, <<t; Energy levels * t_r=relaxation rate

well-separated so even with a * t H = Hamiltonian evolution time scale.

pause of length t,, thermalization Fort r<t H, f‘he system instantaneously therm_a/ize_s (vye

cannot occur plot t_H as a line only for the purpose of easy visualization
of the regions)

0.6

0.4}

Time-scales (arb. units)

Py(s) = 1 ty <t, <t




National Aeronautics and

Spa;oe Administra;ion ‘f’:y(/ “)(» A I I I

Discovery Innovations Solutlons

W

Further insights from reverse annealing

Another feature of the D-Wave
2000Q is reverse annealing

Can start in a classical eigenstate
of H, and evolve backwards
from s =1 to a time s, (where
we also pause) and then evolve
forward

We see the same optimal pause
point after the minimum gap as
in the forward anneal case

These reverse annealing results
further confirm the key regions
and the theory supporting the
location of the gap in the
t. <t <t, region

opt

\ \ Sgap S \
10} %‘— - Forward anneal‘
= == ,--—~\\\ /’/ ~~~~~~ N =
Y , -
0 \ \ 3“7"—"\-; - EO
0 0.2 0.4 0.6 0.8 1

Performance on a single 12-qubit for reverse
annealing to point s,, where a 100 us pause.
Dependence of average energy (above ground
state) at end of the reverse anneal as a function

of the pause location s,
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Quantum-enhanced Applications
- Quantume-assisted associative
adversarial network
\ Robust Network Communication )
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Quantum-assisted associative adversarial

network (QAAAN) Novel algorithm for learning a latent variable
generative model via generative adversarial
Framework to test potential advantages of learning

gquantum-assisted learning in Generative

Adversarial Networks (GANSs) - incorporates Boltzmann sampling from a

quantum annealer

D-Wave 2000Q Latent Space Convolutional Generated . ] ] . .
. ¢ Layers Data - replaced canonical uniform noise input with
§ S 7"*\ samples from a graphical model
5|
2 : \ : .
§ B <0 ' '= - graphical model learned by a Boltzmann
. ! . machine encapsulates low-dimensional feature
' [
Learning representathn
4
5 Compared performance across three
o - L]
E topologies (fully connected, symmetric
g . ; i
E bipartite, Chimera graph)
a Convolutional  Generated / - QAAAN successfully learns generative model
Fake /Real Labels  Feature space Layers Real Data

of MNIST dataset for all topologies

M Wilson, T Vandal, T Hogg, E Rieffel, Quantum- - Quantum and classical versions of the
assisted associative adversarial network: Applying

quantum annealing in deep learning. arXiv:1904.10573 algorithm have equivalent performance
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Robust Communication Network Design

Problem class: Minimum Weighted Spanning Tree with degree constraints

Cost function to minimize “’W

|
Copnj = Z WpvXpy wWhere X, = 1 if p parent of v / N
DV il

Constraints ——) Penalties

Every non-root node has one parent

LEVEL /R°°t
Every node exists at one level 1
If p parent of v, p’s level is one less than V’s 2
Maximum degree is A 3
4
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Chimera vs Pegasus Embedding

Median
* Embedding for the fully D-Wave Ocean Chimera vs Pegasus Embedding Physical
connected network ® Pogasuss S ?Uni':? ﬁs ?
communication graph with gy e ames o O | 1 e mutbar
default embedding parameters 3 © ~ 1 l Z of logical
for N=4 through 10 = " 1) A qubits with
« Chimera embedding performed | £ ] I error bars at
with the SAPIZ " z IR 357 and 657
_ _ _ a < L percentiles
find_embedding(...) routine 5 2]
with the D-Wave 2000Q g 10 ‘
hardware adjacency =
« Pegasus embedding performed| 2
with the Ocean minorminer G 10
find_embedding(...) routine I
* Pegasus reduces the =
embedding size by roughly a . e
factor of 2 for this limited Number of Logical Qubits

comparison

Hybrid quantum-classic approaches needed to support real-
world network communication applications

Sample Chimera
embedding for N=4
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Effectiveness of pause on embedded problems

 Factor of five n=4, A=2, t,=1us, t,=100us, 50 instances
improvement in the 0.0301 5. ;. _50
mean probability of :;: j::::zzig
success observed for 00257 2. Jimo=-1.2
50, N=4 problem
instances (20-35 00201 1A
variables; 50 — 125 . , A \
qubits when embedded) | & / ,ﬁvi:(?:\

. Consistent pause Corod AT TR T e
location across A AT TS
instances 0005 | Fades: ._:% . :,%’:/ | \‘-I_"i“: \T §

« Similar results for N=5 s 2 b o -+
problems (not shown) 0.000 - | | | | | .

0.20 0.25 0.30 0.35 0.40 0.45 0.50
S

Median probability of success as a function of the annealing pause for 50 N=4
instances, 1 ms anneal, 50K reads. Pause location ranging from 0.2 to 0.5 and J_ferro
from -1.2to 2.0 (Error bars are at the 35" and 65" percentiles)

Open question: why is the effect less pronounced for embedded problems?
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Implications:
« Pausing during annealing can increase performance by orders of magnitude

« Improvement only occurs when the pause is within a particular region of the anneal
schedule

« Analysis in terms of time-scales suggests the pause should occur in the region
where t, <t <t,, well after the min gap

Future work:

» Deeper analysis on more classes of problems, incl. embedded problems
« A faster quench, if available, would enable examination of intermediate dists
» Develop further theory to understand subtler effects, including:
« trends in optimal pause location with problem size, class, and pause time
« predicting the effective temperature
* Further improvements with yet more schedule control?

* Any quantum advantage?
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Next year will be even more exciting! * Quantum- '
- Emerging quantum hardware performing computations beyond ‘\ enhanced 3
the reach of even the largest supercomputers ‘/ applications t
N @
’ B =
Many open questions remain: " e
- When will scalable quantum computers be built, and how? QC programming
- How quickly can special purpose quantum computing Novel classical
devices be built? solvers
{ :
- How broad will the impact of quantum computation be? What M M
?
will the ultimate impact of quantum heuristics be* PhyS|CS Insights \
- How best to harness quantum effects for computational j\ lhg(\
purposeS? Simulation Ana|yt|ca|
tools | methods

./A/

NASA Ames QUAIL team
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arXiv:1905.02860
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arXiv:1704.04836



