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NASA, Google and USRA Collaboration focused on Artificial 
Intelligence and Quantum Computing (2012-present)
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Users of the D-Wave Machine at NASA



NASA’s Interest in Quantum Computing

NASA constantly confronting 
massively challenging 
computational problems
• Computational capacity 

limits mission scope and 
aims

NASA QuAIL team mandate: 
Determine the potential for 
quantum computation to 
enable more ambitious NASA 
missions in the future

Graph-based Fault Detection

Complex Planning and Scheduling
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Application focus areas
Planning and scheduling   Robust networks
Fault Diagnosis Machine Learning
Material science simulations 
Wireless Decoding

Programming quantum computers
Quantum algorithm design
Mapping, parameter setting, error mitigation
Hybrid quantum-classical approaches

QC à state-of-the-art classical solvers

Physics insights into quantum algorithm and 
quantum hardware design

Quantum-enhanced 
applications

QC programming
Novel classical solvers

Physics Insights
Analytical methodsSimulation tools

Approach to Leveraging Quantum Computing to Address 
NASA’s Computational Challenges 



Quantum-enhanced 
applications

QC programming
Novel classical solvers

Physics Insights
Analytical methodsSimulation tools

Outline

Physics Insights
• Annealing Pause 
• Reverse Annealing

Quantum-enhanced Applications
- Quantum-assisted associative 

adversarial network
- Robust Network Communication



Pause results for one typical problem
Performance for pause schedules

- heat map of probability of solution P0 as function of 
pause location sp and pause length tp
- heat map of average energy (above ground state) of 
solution as function of pause location sp and pause 
length tp

Results for single 800-qubit problem
- total anneal time ta = 1 𝜇s
- Each point: 10,000 anneals, using 5 gauges
- P0 = 10-4 for anneal without pause

Orders of magnitude improvement for pausing in 
narrow region of location parameter sp

J. Marshall, D. Venturelli, I. Hen, E. Rieffel, The power of pausing: advancing 
understanding of thermalization in experimental quantum annealers, Physical 
Review Applied 11 (4), 044083, 2019, arXiv:1810.05881



Early times: Ground state is well-
separated by rest of spectrum, 
so P0 ~ 1

Gap narrows: tr < tH
Relaxation rate increases, 
potential for thermal excitation 
leading to instantaneous 
thermalization

Gap widens: tH < tr ≲ tp

Instantaneous thermalization no 
longer occurs, but a pause may 
enable significant thermalization

Late times: tp << tr Energy levels 
well-separated so even with a 
pause of length tp, thermalization 
cannot occur

Cartoon of distinct regions with different behavior focusing on 
most dynamic part of the anneal
• t_r = relaxation rate
• t_H = Hamiltonian evolution time scale. 

For t_r < t_H, the system instantaneously thermalizes (we 
plot t_H as a line only for the purpose of easy visualization 
of the regions)

Theory and relevant time scales



Further insights from reverse annealing
Another feature of the D-Wave 

2000Q is reverse annealing 
Can start in a classical eigenstate 

of Hp and evolve backwards 
from s = 1 to a time sp (where 
we also pause) and then evolve 
forward

We see the same optimal pause 
point after the minimum gap as 
in the forward anneal case

These reverse annealing results 
further confirm the key regions 
and the theory supporting the 
location of the gap in the
ta < tr < tp region

Performance on a single 12-qubit for reverse 
annealing to point sp, where a 100 𝜇s pause.  
Dependence of average energy (above ground 
state) at end of the reverse anneal as a function 
of the pause location sp. 
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Quantum-assisted associative adversarial 
network (QAAAN) Novel algorithm for learning a latent variable 

generative model via generative adversarial 
learning
- incorporates Boltzmann sampling from a 
quantum annealer
- replaced canonical uniform noise input with 
samples from a graphical model 
- graphical model learned by a Boltzmann 
machine encapsulates low-dimensional feature 
representation

Compared performance across three 
topologies (fully connected, symmetric 
bipartite, Chimera graph)
- QAAAN successfully learns generative model 
of MNIST dataset for all topologies
- Quantum and classical versions of the 
algorithm have equivalent performance

M Wilson, T Vandal, T Hogg, E Rieffel, Quantum-
assisted associative adversarial network: Applying 
quantum annealing in deep learning. arXiv:1904.10573

Framework to test potential  advantages of 
quantum-assisted learning in Generative 
Adversarial Networks (GANs)



Robust Communication Network Design
Problem class: Minimum Weighted Spanning Tree with degree constraints

𝑥$,& = 1 if	p	parent	of	v	

Constraints Penalties

𝐶*+, = -
$,&

w$,&𝑥$,&

Cost function to minimize

where

Every non-root node has one parent

Every node exists at one level

If p parent of v, p’s level is one less than v’s

Maximum degree is D



Chimera vs Pegasus Embedding
• Embedding for the fully 

connected network 
communication graph with 
default embedding parameters 
for N=4 through 10

• Chimera embedding performed 
with the SAPI2 
find_embedding(…) routine 
with the D-Wave 2000Q 
hardware adjacency 

• Pegasus embedding performed 
with the Ocean minorminer
find_embedding(…) routine

• Pegasus reduces the 
embedding size by roughly a 
factor of 2 for this limited 
comparison

Sample Chimera 
embedding for N=4

Hybrid quantum-classic approaches needed to support real-
world network communication applications

Median 
Physical 

Qubits as a 
function of 
the number 
of logical 

qubits with 
error bars at 
35th and 65th

percentiles 



Effectiveness of pause on embedded problems
• Factor of five 

improvement in the 
mean probability of 
success observed for 
50, N=4 problem 
instances (20-35 
variables; 50 – 125 
qubits when embedded)

• Consistent pause 
location across 
instances 

• Similar results for N=5 
problems (not shown)

Median probability of success as a function of the annealing pause for 50 N=4 
instances, 1 ms anneal, 50K reads. Pause location ranging from 0.2 to 0.5 and J_ferro
from -1.2 to 2.0  (Error bars are at the 35th and 65th percentiles)

Open question: why is the effect less pronounced for embedded problems?



Implications:
• Pausing during annealing can increase performance by orders of magnitude
• Improvement only occurs when the pause is within a particular region of the anneal 

schedule
• Analysis in terms of time-scales suggests the pause should occur in the region 

where ta < tr < tp, well after the min gap

• Deeper analysis on more classes of problems, incl. embedded problems
• A faster quench, if available, would enable examination of intermediate dists
• Develop further theory to understand subtler effects, including:

• trends in optimal pause location with problem size, class, and pause time
• predicting the effective temperature

• Further improvements with yet more schedule control?
• Any quantum advantage?

Future work:
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Next year will be even more exciting!
- Emerging quantum hardware performing computations beyond 

the reach of even the largest supercomputers

Many open questions remain:
- When will scalable quantum computers be built, and how? 

- How quickly can special purpose quantum computing 
devices be built?

- How broad will the impact of quantum computation be? What 
will the ultimate impact of quantum heuristics be? 

- How best to harness quantum effects for computational 
purposes? 

NASA Ames QuAIL team
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