

Dance with Noise in NISQ Era — A NASA Perspective on Quantum Computing

Zhihui Wang^{1,2}

Eleanor Rieffel¹

zhihui.wang@nasa.gov

eleanor.rieffel@nasa.gov

^{1.} NASA Quantum Artificial Intelligence Lab (QuAIL)
 ^{2.} Universities Space Research Association

ICCAD 2019, West Minster, CO

Explore "bizarre" features of quantum mechanics

Entanglement

Quantum Tunneling

The Noisy Intermediate-Scale Quantum (NISQ) Era

Hardware Limitations:

- up to 100 physical qubits
- (some) planar connectivity
- Limited in circuit depth
- Little to no error correction

Are NISQ devices useful?

- Quantum supremacy
 - Optimization
- Quantum chemistry
- Quantum machine learning

...

Quantum supremacy through random circuit

- Advantage Sampling the output of a pseudo-random quantum circuit
- **qFlex**: state of art classical simulator <u>https://github.com/ngnrsaa/qflex</u>

[Villalonga et. al., accepted on NPJ QIP 2019

- Application random-number generator
- Why achievable in NISQ era

"Random circuits are a suitable choice for benchmarking because they do not possess structure and therefore allow for limited guarantees of computational hardness"

Randomness is desired

&

Signature is resilient against noise.

 \mathcal{F}_{XFB}

Where to look next?

NISQ era: Challenging for fault tolerate quantum computing

Need to find ways to deal / live with noise

 $\sqrt{}$ Quantum Supremacy: random circuit

Two other (out of many) NASA QuAIL efforts:

- Advanced qubit-routing (quantum circuit compilation)
- Variational quantum heuristics for optimization and quantum chemistry
 - like Quantum Alternating Operator Ansatz (QAOA), Variational

Quantum Eigensolver (VQE)

qFlex: state of art classical simulator https://github.com/ngnrsaa/qflex

[Villalonga et. al., accepted on NPJ QIP 2019

NISQ era: Challenging for fault tolerate quantum computing Need to find ways to deal / live with noise

 $\sqrt{}$ Quantum Supremacy: random circuit

Two other (out of many) NASA QuAIL efforts:

- Advanced qubit-routing (quantum circuit compilation)
- Variational quantum heuristics for optimization and quantum chemistry
 - like Quantum Alternating Operator Ansatz (QAOA), Variational
 Quantum Eigensolver (VQE)

Circuit for an algorithm is usually written at a hardware-agnostic level

- Non-commuting gates should obey the ordering dictated by the algorithm (circuit)
- When a set of 2-qubit gates commute but cannot be executed at the same time, E.g., [ZZ(q1, q2), ZZ(q2, q3)] = 0

Does not matter ideally, ordering can affect circuit length/depth, and therefore the effect of noise.

On hardware with restricted qubit connectivity, SWAPs are needed.

Circuit for an algorithm is usually written at a hardware-agnostic level

- Non-commuting gates should obey the ordering dictated by the algorithm (circuit)
- When a set of 2-qubit gates commute but cannot be executed at the same time, E.g., [ZZ(q1, q2), ZZ(q2, q3)] = 0

Does not matter ideally, ordering can affect circuit length/depth, and therefore the effect of noise.

- On hardware with restricted qubit connectivity, SWAPs are needed.

Pioneered temporal planning & for compilation for NISQ devices

- Collaborating with domain experts at NASA, utilizing state of the art temporal planners
- For superconducting qubits

pace Administration

- Taking Rigetti and Google h/w constraints
- Minimizing makespan (gate-duration aware)
- Including Crosstalk
- Logical-to-Physical mapping/allocation

Venturelli, Do, Rieffel, Frank., Quantum Science and Technology (2018)

Do et. al., Planning for quantum circuit compilation for graph coloring, In preparation

Pioneered temporal planning & for compilation for NISQ devices

- Collaborating with domain experts at NASA, utilizing state of the art temporal planners

For superconducting qubits

- Taking Rigetti and Google h/w constraints
- Minimizing makespan (gate-duration aware)
- Including Crosstalk
- Logical-to-Physical mapping/allocation

Venturelli, Do, Rieffel, Frank., Quantum Science and Technology (2018)

Do et. al., Planning for quantum circuit compilation for graph coloring, In preparation

Pioneered temporal planning & for compilation for NISQ devices

- Collaborating with domain experts at NASA, utilizing state of the art temporal planners

For superconducting qubits

- Taking Rigetti and Google h/w constraints
- Minimizing makespan (gate-duration aware)
- Including Crosstalk
- Logical-to-Physical mapping/allocation

Venturelli, Do, Rieffel, Frank., Quantum Science and Technology (2018)

- Benchmarking against analytical bounds
- Demonstrating effect of native gate sets
- Raising challenges and inspiring new planning/scheduling algorithms

Generalized swap networks for near-term quantum computing, B O'Gorman 2019]

Pioneered temporal planning & for compilation for NISQ devices

- Collaborating with domain experts at NASA, utilizing state of the art temporal planners

For superconducting qubits

pace Administration

Beyond superconducting qubit platform,

noise and gate infidelity are posing other challenges. We are looking to

- Develop hardware specific models and goals
- Further exploiting planners for compilation

Pioneered temporal planning & for compilation for NISQ devices

- Collaborating with domain experts at NASA, utilizing state of the art temporal planners

NISQ era: Challenging for fault tolerate quantum computing Need to find ways to deal / live with noise

 $\sqrt{}$ Quantum Supremacy: random circuit

Two other (out of many) NASA QuAIL efforts:

- Advanced qubit-routing (quantum circuit compilation)
- Variational quantum heuristics for optimization and quantum chemistry

 — like Quantum Alternating Operator Ansatz (QAOA), Variational Quantum Eigensolver (VQE)

National Aeronautics and Space Administration

Quantum Computing for NASA Applications

Management (UTM) Concept of Operations, DASC 2016

Biswas, SMC-IT, 28 Sept 2017

Quantum Approximate Optimization Algorithms (QAOA)

Variational parameters: $(\gamma_1, \gamma_2, \dots, \beta_1, \beta_2, \dots)$

Work principle: constructive interference

National Aeronautics and Space Administration

Case shown speedup: reproduces quantum speedup in Grover's algorithm for needle-in-a-haystack search

Zhang, Rieffel, and Wang, PRA 2017

National Aeronautics and Space Administration

—> Symmetry Preserving Quantum Alternating Operator Ansatz (QAOA) Exploit local or global symmetries in the problem

E.g., QAOA for constrained optimization

Hadfield, Wang, O'Gorman, Rieffel, Venturelli, Biswas, arXiv 1709.03489

Design a mixer that contains the quantum evolution in the subspace that satisfies the constraints.

One-hot encoding:

$$\sum_{c=1}^{k} x_{v,c} = 1 \Longleftrightarrow \sum_{c=1}^{k} \sigma_{v,c}^{z} = k - 2$$

Symmetry (constraints): preserve Hamming weight of subset

symmetry-preserving mixer: *XX+YY*

Wang, Rubin, Dominy, Rieffel, arXiv:1904.09314

Efficient Implementation

XY **complete**-graph mixer in **linear depth** *κ*-1

Special for the Hamming-1 subspace:

 $\exp[-i\beta \sum_{c,c'\in[0,3]} (XY)_{c,c'}] =$ $\exp[-i\beta ((XY)_{0,1} + (XY)_{2,3})]$ $\exp[-i\beta ((XY)_{0,2} + (XY)_{1,3})]$ $\exp[-i\beta ((XY)_{0,3} + (XY)_{1,2})].$ 1D XY model in logarithmic depth

Through Jordan-Wigner transformation

$$\begin{split} H_{XY} = &\sum_{c=1}^{\kappa} \left(\sigma_c^x \sigma_{c+1}^x + \sigma_c^y \sigma_{c+1}^y \right) \\ \downarrow \\ H_{XY} = &2 \sum_{c=1}^{\kappa} \left(a_c^{\dagger} a_{c+1} + \text{h.c.} \right) \,, \end{split}$$

and Fermionic Fourier transform,

$$\hat{a}_{c}^{\dagger} = \text{FFFT}^{\dagger} \hat{f}_{k}^{\dagger} \text{FFFT} \equiv \frac{1}{\sqrt{\kappa}} \sum_{c} e^{i2\pi ck} \hat{f}_{k}^{\dagger}$$
$$H_{XY} = \sum_{k=1}^{\kappa} E_{k} f_{k}^{\dagger} f_{k} \qquad H_{XY}^{(k)} = \sum_{k=1}^{\kappa} E_{k} \left(1 - \sigma_{k}^{z}\right)/2$$

FFFT : $O(\log(\kappa))$ depth

Wang, Rubin, Dominy, Rieffel, arXiv:1904.09314

Performance Comparison: Penalty vs XY

XY wins over X

Small problems solved at low-depth with XY

[Wang, Rubin, Dominy, Rieffel, arXiv:1904.09314]

Symmetry-preserving QAOA circuits for noise characterization

Subspace for one vertex

Noise exponentially shrinks the probability of staying in the desired subspace with problem size and QAOA level

 $\langle \mathcal{P}_{\text{fea}}^i \rangle = \text{Tr}[\rho_0 U_1^{\dagger} \mathcal{E}(U_2^{\dagger} \mathcal{E}(U_3^{\dagger} \cdots \mathcal{E}(U_l^{\dagger} \mathcal{E}(\mathcal{P}_{\text{fea}}^i)U_l) \cdots U_3)U_2)U_1]$ = $\text{Tr}[\rho_0 \mathcal{E}(\mathcal{E}(\cdots \mathcal{E}(\mathcal{P}_{\text{fea}}^i)) \cdots)]$

Probability of staying in the desired subspace is exactly computable under noise— can be used for experimental noise characterization

Symmetry-preserving QAOA circuits for noise characterization, Streif, Rieffel, Wang, in preparation

Summary

Things we study to live with noise in NISQ era

pace Administration

- Using planning tools for qubit routing / quantum circuit compilation
- Symmetry-preserving QAOA circuits for more efficient optimization
- Symmetry-preserving QAOA circuits for noise characterization

