Dance with Noise in NISQ Era

- A NASA Perspective on Quantum Computing

Zhihui Wang ${ }^{1,2}$
zhihui.wang@nasa.gov

Eleanor Rieffel ${ }^{1}$

eleanor.rieffel@nasa.gov

1. NASA Quantum Artificial Intelligence Lab (QuAIL)
2. Universities Space Research Association

ICCAD 2019, West Minster, CO

Quantum Computing:

Explore "bizarre" features of quantum mechanics

Superposition

Entanglement

Quantum Tunneling

The Noisy Intermediate-Scale Quantum (NISQ) Era

Hardware Limitations:

- up to 100 physical qubits
- (some) planar connectivity
- Limited in circuit depth
- Little to no error correction

Are NISQ devices useful?

- Quantum supremacy
- Optimization
- Quantum chemistry
- Quantum machine learning

Quantum supremacy through random circuit

- Advantage Sampling the output of a pseudo-random quantum circuit
- qFlex: state of art classical simulator

> https://github.com/ngnrsaa/aflex
[Villalonga et. al., accepted on NPJ QIP 2019

- Application random-number generator
- Why achievable in NISQ era
"Random circuits are a suitable choice for benchmarking because they do not possess structure and therefore allow for limited guarantees of computational hardness"
- Randomness is desired

\&

Signature is resilient against noise.

nature

Article | Published: 23 October 2019
Quantum supremacy using a programmable superconducting processor

Where to look next?

NISQ era: Challenging for fault tolerate quantum computing

Need to find ways to deal / live with noise
$\sqrt{ }$ Quantum Supremacy: random circuit
qFlex: state of art classical simulator https://github.com/ngnrsaa/qflex
[Villalonga et. al., accepted on NPJ QIP 2019

Two other (out of many) NASA QuAIL efforts:

- Advanced qubit-routing (quantum circuit compilation)
- Variational quantum heuristics for optimization and quantum chemistry - like Quantum Alternating Operator Ansatz (QAOA), Variational Quantum Eigensolver (VQE)

Where to look next?

NISQ era: Challenging for fault tolerate quantum computing

Need to find ways to deal / live with noise
$\sqrt{ }$ Quantum Supremacy: random circuit
Two other (out of many) NASA QuAIL efforts:

- Advanced qubit-routing (quantum circuit compilation)
- Variational quantum heuristics for optimization and quantum chemistry
- like Quantum Alternating Operator Ansatz (QAOA), Variational

Quantum Eigensolver (VQE)

Noise-aware qubit routing / circuit compilation

Circuit for an algorithm is usually written at a hardware-agnostic level

- Non-commuting gates should obey the ordering dictated by the algorithm (circuit)
- When a set of 2-qubit gates commute but cannot be executed at the same time, E.g., $[Z Z(q 1, q 2), Z Z(q 2, q 3)]=0$

Does not matter ideally, ordering can affect circuit length/depth, and therefore the effect of noise.

- On hardware with restricted qubit connectivity, SWAPs are needed.

Noise-aware qubit routing / circuit compilation

Circuit for an algorithm is usually written at a hardware-agnostic level

- Non-commuting gates should obey the ordering dictated by the algorithm (circuit)
- When a set of 2-qubit gates commute but cannot be executed at the same time, E.g., $[Z Z(q 1, q 2), Z Z(q 2, q 3)]=0$

Does not matter ideally, ordering can affect circuit length/depth, and therefore the effect of noise.

- On hardware with restricted qubit connectivity, SWAPs are needed.

Pioneered temporal planning \& for compilation for NISQ devices

- Collaborating with domain experts at NASA, utilizing state of the art temporal planners

For superconducting qubits

- Taking Rigetti and Google h/w constraints
- Minimizing makespan (gate-duration aware)
- Including Crosstalk
- Logical-to-Physical mapping/allocation

```
Venturelli, Do, Rieffel, Frank., Quantum
    Science and Technology (2018)
```


Noise-aware qubit routing / circuit compilation

Do et. al., Planning for quantum circuit compilation for graph coloring, In preparation

Pioneered temporal planning \& for compilation for NISQ devices

- Collaborating with domain experts at NASA, utilizing state of the art temporal planners

For superconducting qubits

- Taking Rigetti and Google h/w constraints
- Minimizing makespan (gate-duration aware)
- Including Crosstalk
- Logical-to-Physical mapping/allocation

```
Venturelli, Do, Rieffel, Frank., Quantum
    Science and Technology (2018)
``` Space Administration

\section*{Noise-aware qubit routing / circuit compilation}

Do et. al., Planning for quantum circuit compilation for graph coloring, In preparation

Pioneered temporal planning \& for compilation for NISQ devices
- Collaborating with domain experts at NASA, utilizing state of the art temporal planners

For superconducting qubits
- Taking Rigetti and Google h/w constraints
- Minimizing makespan (gate-duration aware)
- Including Crosstalk
- Logical-to-Physical mapping/allocation
\begin{tabular}{c}
Venturelli, Do, Rieffel, Frank., Quantum \\
Science and Technology (2018) \\
\hline
\end{tabular}
- Benchmarking against analytical bounds
- Demonstrating effect of native gate sets
- Raising challenges and inspiring new planning/scheduling algorithms

\section*{Noise-aware qubit routing / circuit compilation}

Pioneered temporal planning \& for compilation for NISQ devices
- Collaborating with domain experts at NASA, utilizing state of the art temporal planners

For superconducting qubits

\section*{Noise-aware qubit routing / circuit compilation}

Beyond superconducting qubit platform, noise and gate infidelity are posing other challenges. We are looking to
- Develop hardware specific models and goals
- Further exploiting planners for compilation

Pioneered temporal planning \& for compilation for NISQ devices
- Collaborating with domain experts at NASA, utilizing state of the art temporal planners

\section*{Where to look next?}

\section*{NISQ era: Challenging for fault tolerate quantum computing}

Need to find ways to deal / live with noise
\(\sqrt{ }\) Quantum Supremacy: random circuit
Two other (out of many) NASA QuAIL efforts:
- Advanced qubit-routing (quantum circuit compilation)
- Variational quantum heuristics for optimization and quantum chemistry
- like Quantum Alternating Operator Ansatz (QAOA), Variational

Quantum Eigensolver (VQE)

\section*{Quantum Computing for NASA Applications}

Objective: Find "better" solution
- Faster
- Not found by classical algorithm

\section*{Quantum Approximate Optimization Algorithms (QAOA)}

Variational parameters: \(\left(\gamma_{1}, \gamma_{2}, \cdots, \beta_{1}, \beta_{2}, \cdots\right)\)
Work principle: constructive interference
Case shown speedup: reproduces quantum speedup in Grover's
 algorithm for needle-in-a-haystack search
-> Symmetry Preserving Quantum Alternating Operator Ansatz (QAOA) Exploit local or global symmetries in the problem
E.g., QAOA for constrained optimization

Design a mixer that contains the quantum evolution in the subspace that satisfies the constraints.

One-hot encoding: \(\quad \sum_{c=1}^{k} x_{v, c}=1 \Longleftrightarrow \sum_{c=1}^{k} \sigma_{v, c}^{z}=k-2\)
Symmetry (constraints): preserve Hamming weight of subset

Standard mixer: \(X\)
symmetry-preserving mixer: \(X X+Y Y\)

\section*{Efficient Implementation}

XY complete-graph mixer in linear depth \(k-1\)

Special for the Hamming-1 subspace:
\[
\begin{aligned}
& \exp \left[-i \beta \sum_{c, c^{\prime} \in[0,3]}(X Y)_{c, c^{\prime}}\right]= \\
& \exp \left[-i \beta\left((X Y)_{0,1}+(X Y)_{2,3}\right)\right] \\
& \exp \left[-i \beta\left((X Y)_{0,2}+(X Y)_{1,3}\right)\right] \\
& \exp \left[-i \beta\left((X Y)_{0,3}+(X Y)_{1,2}\right)\right]
\end{aligned}
\]

1D XY model in logarithmic depth

Through Jordan-Wigner transformation
\[
\begin{aligned}
H_{X Y}= & \sum_{c=1}^{\kappa}\left(\sigma_{c}^{x} \sigma_{c+1}^{x}+\sigma_{c}^{y} \sigma_{c+1}^{y}\right) \\
& \downarrow \\
H_{X Y} & =2 \sum_{c=1}^{\kappa}\left(a_{c}^{\dagger} a_{c+1}+\text { h.c. }\right)
\end{aligned}
\]
and Fermionic Fourier transform,
\[
\begin{aligned}
& \hat{a}_{c}^{\dagger}=\mathrm{FFFT}^{\dagger} \hat{f}_{k}^{\dagger} \mathrm{FFFT} \equiv \frac{1}{\sqrt{\kappa}} \sum_{c} e^{i 2 \pi c k} \hat{f}_{k}^{\dagger} \\
& H_{X Y}=\sum_{k=1}^{\kappa} E_{k} f_{k}^{\dagger} f_{k} \quad H_{X Y}^{(k)}=\sum_{k=1}^{\kappa} E_{k}\left(1-\sigma_{k}^{z}\right) / 2
\end{aligned}
\]

FFFT : \(O(\log (k))\) depth

\section*{Performance Comparison: Penalty vs XY}
\(X Y\) wins over \(X\)

(a)

(b)

Small problems solved at low-depth with XY

\section*{Symmetry-preserving QAOA circuits for noise characterization}

Subspace for one vertex
Noise exponentially shrinks the probability of staying in the desired subspace with problem size and QAOA level

(a) \(p_{\text {noise }}=0.01\)
\[
\begin{array}{r}
\left\langle\mathcal{P}_{\text {feal }}^{i}\right\rangle=\operatorname{Tr}\left[\rho_{0} U_{1}^{\dagger} \mathcal{E}\left(U_{2}^{\dagger} \mathcal{E}\left(U_{3}^{\dagger} \cdots \mathcal{E}\left(U_{1}^{\dagger} \mathcal{E}\left(\mathcal{P}_{\text {fea }}^{i}\right) U_{l}\right) \cdots U_{3}\right) U_{2}\right) U_{1}\right] \\
\\
=\operatorname{Tr}\left[\rho_{0} \mathcal{E}\left(\mathcal{E}\left(\cdots \mathcal{P}\left(\mathcal{P}_{\text {fea }}^{i}\right)\right) \cdots\right)\right]
\end{array}
\]

Probability of staying in the desired subspace is exactly computable under noise - can be used for experimental noise characterization

\section*{Summary}

Things we study to live with noise in NISQ era
- Using planning tools for qubit routing / quantum circuit compilation
- Symmetry-preserving QAOA circuits for more efficient optimization
- Symmetry-preserving QAOA circuits for noise characterization
\[
+
\]
```

