
ICCAD 2019, West Minster, CO

Zhihui Wang1,2 Eleanor Rieffel1

1. NASA Quantum Artificial Intelligence Lab (QuAIL)
2. Universities Space Research Association

zhihui.wang@nasa.gov

Dance with Noise in NISQ Era
— A NASA Perspective on Quantum Computing

eleanor.rieffel@nasa.gov

Superposition

Entanglement

Quantum	Tunneling

Quantum Computing:
Explore “bizarre” features of quantum mechanics

The Noisy Intermediate-Scale Quantum (NISQ) Era

IBM

Hardware Limitations:
- up to 100 physical qubits
- (some) planar connectivity
- Limited in circuit depth
- Little to no error correction

Are NISQ devices useful?
- Quantum supremacy
- Optimization
- Quantum chemistry
- Quantum machine learning
- …

Rigetti

…

506 | Nature | Vol 574 | 24 OCTOBER 2019

Article
developed fast, high-fidelity gates that can be executed simultaneously
across a two-dimensional qubit array. We calibrated and benchmarked
the processor at both the component and system level using a powerful
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling
the output of a pseudo-random quantum circuit11,13,14. Random circuits
are a suitable choice for benchmarking because they do not possess
structure and therefore allow for limited guarantees of computational
hardness10–12. We design the circuits to entangle a set of quantum bits
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum
interference, the probability distribution of the bitstrings resembles
a speckled intensity pattern produced by light interference in laser
scatter, such that some bitstrings are much more likely to occur than
others. Classically computing this probability distribution becomes
exponentially more difficult as the number of qubits (width) and number
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a
method called cross-entropy benchmarking11,12,14, which compares how
often each bitstring is observed experimentally with its corresponding
ideal probability computed via simulation on a classical computer. For
a given circuit, we collect the measured bitstrings {xi} and compute the
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary
Information), which is the mean of the simulated probabilities of the
bitstrings we measured:

F P x= 2 " ()# − 1 (1)n
i iXEB

where n is the number of qubits, P(xi) is the probability of bitstring xi
computed for the ideal quantum circuit, and the average is over the
observed bitstrings. Intuitively, FXEB is correlated with how often we
sample high-probability bitstrings. When there are no errors in the
quantum circuit, the distribution of probabilities is exponential (see
Supplementary Information), and sampling from this distribution will
produce F = 1XEB . On the other hand, sampling from the uniform
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB
between 0 and 1 correspond to the probability that no error has occurred
while running the circuit. The probabilities P(xi) must be obtained from
classically simulating the quantum circuit, and thus computing FXEB is
intractable in the regime of quantum supremacy. However, with certain
circuit simplifications, we can obtain quantitative fidelity estimates of
a fully operating processor running wide and deep quantum circuits.

Our goal is to achieve a high enough FXEB for a circuit with sufficient
width and depth such that the classical computing cost is prohibitively
large. This is a difficult task because our logic gates are imperfect and
the quantum states we intend to create are sensitive to errors. A single
bit or phase flip over the course of the algorithm will completely shuffle
the speckle pattern and result in close to zero fidelity11 (see also Sup-
plementary Information). Therefore, in order to claim quantum suprem-
acy we need a quantum processor that executes the program with
sufficiently low error rates.

Building a high-fidelity processor
We designed a quantum processor named ‘Sycamore’ which consists
of a two-dimensional array of 54 transmon qubits, where each qubit is
tunably coupled to four nearest neighbours, in a rectangular lattice. The

connectivity was chosen to be forward-compatible with error correc-
tion using the surface code26. A key systems engineering advance of this
device is achieving high-fidelity single- and two-qubit operations, not
just in isolation but also while performing a realistic computation with
simultaneous gate operations on many qubits. We discuss the highlights
below; see also the Supplementary Information.

In a superconducting circuit, conduction electrons condense into a
macroscopic quantum state, such that currents and voltages behave
quantum mechanically2,30. Our processor uses transmon qubits6, which
can be thought of as nonlinear superconducting resonators at 5–7 GHz.
The qubit is encoded as the two lowest quantum eigenstates of the
resonant circuit. Each transmon has two controls: a microwave drive
to excite the qubit, and a magnetic flux control to tune the frequency.
Each qubit is connected to a linear resonator used to read out the qubit
state5. As shown in Fig. 1, each qubit is also connected to its neighbouring
qubits using a new adjustable coupler31,32. Our coupler design allows us
to quickly tune the qubit–qubit coupling from completely off to 40 MHz.
One qubit did not function properly, so the device uses 53 qubits and
86 couplers.

The processor is fabricated using aluminium for metallization and
Josephson junctions, and indium for bump-bonds between two silicon
wafers. The chip is wire-bonded to a superconducting circuit board
and cooled to below 20 mK in a dilution refrigerator to reduce ambient
thermal energy to well below the qubit energy. The processor is con-
nected through filters and attenuators to room-temperature electronics,

Qubit Adjustable coupler

a

b

10 mm

Fig. 1 | The Sycamore processor. a, Layout of processor, showing a rectangular
array of 54 qubits (grey), each connected to its four nearest neighbours with
couplers (blue). The inoperable qubit is outlined. b, Photograph of the
Sycamore chip.

Intel

Google

Honeywell

IonQ

• Advantage Sampling the output of a
pseudo-random quantum circuit

• qFlex: state of art classical simulator
h4ps://github.com/ngnrsaa/qflex	

• Application random-number generator
• Why achievable in NISQ era

“Random circuits are a suitable choice for
benchmarking because they do not
possess structure and therefore allow for
limited guarantees of computational
hardness”

— Randomness is desired
&
Signature is resilient against noise.

Quantum supremacy through random circuit

Nature | Vol 574 | 24 OCTOBER 2019 | 509

quantum processor time is only about 30 seconds. The bitstring samples
from all circuits have been archived online (see ‘Data availability’ section)
to encourage development and testing of more advanced verification
algorithms.

One may wonder to what extent algorithmic innovation can enhance
classical simulations. Our assumption, based on insights from complex-
ity theory11–13, is that the cost of this algorithmic task is exponential in
circuit size. Indeed, simulation methods have improved steadily over the
past few years42–50. We expect that lower simulation costs than reported
here will eventually be achieved, but we also expect that they will be
consistently outpaced by hardware improvements on larger quantum
processors.

Verifying the digital error model
A key assumption underlying the theory of quantum error correction
is that quantum state errors may be considered digitized and local-
ized38,51. Under such a digital model, all errors in the evolving quantum
state may be characterized by a set of localized Pauli errors (bit-flips or
phase-flips) interspersed into the circuit. Since continuous amplitudes
are fundamental to quantum mechanics, it needs to be tested whether
errors in a quantum system could be treated as discrete and probabil-
istic. Indeed, our experimental observations support the validity of
this model for our processor. Our system fidelity is well predicted by a
simple model in which the individually characterized fidelities of each
gate are multiplied together (Fig. 4).

To be successfully described by a digitized error model, a system
should be low in correlated errors. We achieve this in our experiment by

choosing circuits that randomize and decorrelate errors, by optimizing
control to minimize systematic errors and leakage, and by designing
gates that operate much faster than correlated noise sources, such as
1/f flux noise37. Demonstrating a predictive uncorrelated error model
up to a Hilbert space of size 253 shows that we can build a system where
quantum resources, such as entanglement, are not prohibitively fragile.

The future
Quantum processors based on superconducting qubits can now perform
computations in a Hilbert space of dimension 253 ≈ 9 × 1015, beyond the
reach of the fastest classical supercomputers available today. To our
knowledge, this experiment marks the first computation that can be
performed only on a quantum processor. Quantum processors have
thus reached the regime of quantum supremacy. We expect that their
computational power will continue to grow at a double-exponential
rate: the classical cost of simulating a quantum circuit increases expo-
nentially with computational volume, and hardware improvements will
probably follow a quantum-processor equivalent of Moore’s law52,53,
doubling this computational volume every few years. To sustain the
double-exponential growth rate and to eventually offer the computa-
tional volume needed to run well known quantum algorithms, such as
the Shor or Grover algorithms25,54, the engineering of quantum error
correction will need to become a focus of attention.

The extended Church–Turing thesis formulated by Bernstein and
Vazirani55 asserts that any ‘reasonable’ model of computation can be
efficiently simulated by a Turing machine. Our experiment suggests
that a model of computation may now be available that violates this

Number of qubits, n Number of cycles, m

n = 53 qubits

a bClassically verifiable Supremacy regime

C
ro

ss
-e

nt
ro

py
 b

en
ch

m
ar

ki
ng

 fi
de

lit
y,

XE

B

m = 14 cycles

Prediction from gate and measurement errors
Elided circuitFull circuit Patch circuit

Prediction

Patch

A B C D A BC DE F G H E F G H

Elided (±5V error bars)

10,000 yr0

100 yr0 y
600 yr

4 yryy
4 yr

2 weekse2 k
1 week

2 h2 h2 h Classical sampling ats gClassical sampling atCl i l li SycamoreeSycamore

5 h

Classical verification

Sycamore sampling (Ns = 106): 200 s

10 15 20 25 30 35 40 45 50 55 12 14 16 18 20
10–3

10–2

10–1

10 0

Fig. 4 | Demonstrating quantum supremacy. a, Verification of benchmarking
methods. FXEB values for patch, elided and full verification circuits are
calculated from measured bitstrings and the corresponding probabilities
predicted by classical simulation. Here, the two-qubit gates are applied in a
simplifiable tiling and sequence such that the full circuits can be simulated out
to n = 53, m = 14 in a reasonable amount of time. Each data point is an average over
ten distinct quantum circuit instances that differ in their single-qubit gates (for n
= 39, 42 and 43 only two instances were simulated). For each n, each instance is
sampled with Ns of 0.5–2.5 million. The black line shows the predicted FXEB based
on single- and two-qubit gate and measurement errors. The close
correspondence between all four curves, despite their vast differences in

complexity, justifies the use of elided circuits to estimate fidelity in the
supremacy regime. b, Estimating FXEB in the quantum supremacy regime. Here,
the two-qubit gates are applied in a non-simplifiable tiling and sequence for
which it is much harder to simulate. For the largest elided data (n = 53, m = 20,
total Ns = 30 million), we find an average FXEB > 0.1% with 5σ confidence, where σ
includes both systematic and statistical uncertainties. The corresponding full
circuit data, not simulated but archived, is expected to show similarly
statistically significant fidelity. For m = 20, obtaining a million samples on the
quantum processor takes 200 seconds, whereas an equal-fidelity classical
sampling would take 10,000 years on a million cores, and verifying the fidelity
would take millions of years.

506 | Nature | Vol 574 | 24 OCTOBER 2019

Article
developed fast, high-fidelity gates that can be executed simultaneously
across a two-dimensional qubit array. We calibrated and benchmarked
the processor at both the component and system level using a powerful
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling
the output of a pseudo-random quantum circuit11,13,14. Random circuits
are a suitable choice for benchmarking because they do not possess
structure and therefore allow for limited guarantees of computational
hardness10–12. We design the circuits to entangle a set of quantum bits
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum
interference, the probability distribution of the bitstrings resembles
a speckled intensity pattern produced by light interference in laser
scatter, such that some bitstrings are much more likely to occur than
others. Classically computing this probability distribution becomes
exponentially more difficult as the number of qubits (width) and number
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a
method called cross-entropy benchmarking11,12,14, which compares how
often each bitstring is observed experimentally with its corresponding
ideal probability computed via simulation on a classical computer. For
a given circuit, we collect the measured bitstrings {xi} and compute the
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary
Information), which is the mean of the simulated probabilities of the
bitstrings we measured:

F P x= 2 " ()# − 1 (1)n
i iXEB

where n is the number of qubits, P(xi) is the probability of bitstring xi
computed for the ideal quantum circuit, and the average is over the
observed bitstrings. Intuitively, FXEB is correlated with how often we
sample high-probability bitstrings. When there are no errors in the
quantum circuit, the distribution of probabilities is exponential (see
Supplementary Information), and sampling from this distribution will
produce F = 1XEB . On the other hand, sampling from the uniform
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB
between 0 and 1 correspond to the probability that no error has occurred
while running the circuit. The probabilities P(xi) must be obtained from
classically simulating the quantum circuit, and thus computing FXEB is
intractable in the regime of quantum supremacy. However, with certain
circuit simplifications, we can obtain quantitative fidelity estimates of
a fully operating processor running wide and deep quantum circuits.

Our goal is to achieve a high enough FXEB for a circuit with sufficient
width and depth such that the classical computing cost is prohibitively
large. This is a difficult task because our logic gates are imperfect and
the quantum states we intend to create are sensitive to errors. A single
bit or phase flip over the course of the algorithm will completely shuffle
the speckle pattern and result in close to zero fidelity11 (see also Sup-
plementary Information). Therefore, in order to claim quantum suprem-
acy we need a quantum processor that executes the program with
sufficiently low error rates.

Building a high-fidelity processor
We designed a quantum processor named ‘Sycamore’ which consists
of a two-dimensional array of 54 transmon qubits, where each qubit is
tunably coupled to four nearest neighbours, in a rectangular lattice. The

connectivity was chosen to be forward-compatible with error correc-
tion using the surface code26. A key systems engineering advance of this
device is achieving high-fidelity single- and two-qubit operations, not
just in isolation but also while performing a realistic computation with
simultaneous gate operations on many qubits. We discuss the highlights
below; see also the Supplementary Information.

In a superconducting circuit, conduction electrons condense into a
macroscopic quantum state, such that currents and voltages behave
quantum mechanically2,30. Our processor uses transmon qubits6, which
can be thought of as nonlinear superconducting resonators at 5–7 GHz.
The qubit is encoded as the two lowest quantum eigenstates of the
resonant circuit. Each transmon has two controls: a microwave drive
to excite the qubit, and a magnetic flux control to tune the frequency.
Each qubit is connected to a linear resonator used to read out the qubit
state5. As shown in Fig. 1, each qubit is also connected to its neighbouring
qubits using a new adjustable coupler31,32. Our coupler design allows us
to quickly tune the qubit–qubit coupling from completely off to 40 MHz.
One qubit did not function properly, so the device uses 53 qubits and
86 couplers.

The processor is fabricated using aluminium for metallization and
Josephson junctions, and indium for bump-bonds between two silicon
wafers. The chip is wire-bonded to a superconducting circuit board
and cooled to below 20 mK in a dilution refrigerator to reduce ambient
thermal energy to well below the qubit energy. The processor is con-
nected through filters and attenuators to room-temperature electronics,

Qubit Adjustable coupler

a

b

10 mm

Fig. 1 | The Sycamore processor. a, Layout of processor, showing a rectangular
array of 54 qubits (grey), each connected to its four nearest neighbours with
couplers (blue). The inoperable qubit is outlined. b, Photograph of the
Sycamore chip.

[Villalonga et. al., accepted on NPJ QIP 2019

https://github.com/ngnrsaa/qflex

Where to look next?

Two other (out of many) NASA QuAIL efforts:

• Advanced qubit-routing (quantum circuit compilation)

• Variational quantum heuristics for optimization and quantum chemistry

— like Quantum Alternating Operator Ansatz (QAOA), Variational

Quantum Eigensolver (VQE)

√ Quantum Supremacy: random circuit

NISQ era: Challenging for fault tolerate quantum computing
Need to find ways to deal / live with noise

qFlex: state of art classical simulator
h4ps://github.com/ngnrsaa/qflex

[Villalonga et. al., accepted on NPJ QIP 2019

https://github.com/ngnrsaa/qflex

Where to look next?

NISQ era: Challenging for fault tolerate quantum computing
Need to find ways to deal / live with noise

Two other (out of many) NASA QuAIL efforts:

• Advanced qubit-routing (quantum circuit compilation)

• Variational quantum heuristics for optimization and quantum chemistry

— like Quantum Alternating Operator Ansatz (QAOA), Variational

Quantum Eigensolver (VQE)

√ Quantum Supremacy: random circuit

— On hardware with restricted qubit connectivity, SWAPs are needed.

— When a set of 2-qubit gates commute but cannot be executed at the same
time, E.g., [ZZ(q1, q2), ZZ(q2, q3)] = 0

Does not matter ideally, ordering can affect circuit length/depth, and
therefore the effect of noise.

Circuit for an algorithm is usually written at a hardware-agnostic level
— Non-commuting gates should obey the ordering dictated by the algorithm (circuit)

Noise-aware qubit routing / circuit compilation

Noise-aware qubit routing / circuit compilation

Pioneered temporal planning & for compilation for NISQ devices
- Collaborating with domain experts at NASA, utilizing state of the art temporal planners

Venturelli, Do, Rieffel, Frank., Quantum
Science and Technology (2018)

For superconducting qubits
 — Taking Rigetti and Google h/w constraints
 — Minimizing makespan (gate-duration aware)
 — Including Crosstalk
 — Logical-to-Physical mapping/allocation

— On hardware with restricted qubit connectivity, SWAPs are needed.

— When a set of 2-qubit gates commute but cannot be executed at the same
time, E.g., [ZZ(q1, q2), ZZ(q2, q3)] = 0

Does not matter ideally, ordering can affect circuit length/depth, and
therefore the effect of noise.

Circuit for an algorithm is usually written at a hardware-agnostic level
— Non-commuting gates should obey the ordering dictated by the algorithm (circuit)

Pioneered temporal planning & for compilation for NISQ devices
- Collaborating with domain experts at NASA, utilizing state of the art temporal planners

Venturelli, Do, Rieffel, Frank., Quantum
Science and Technology (2018)

Noise-aware qubit routing / circuit compilation

For superconducting qubits
 — Taking Rigetti and Google h/w constraints
 — Minimizing makespan (gate-duration aware)
 — Including Crosstalk
 — Logical-to-Physical mapping/allocation

� 						� 					� 	

Figure	7	Compiled	graph	coloring.	 (LeF)	Qubit	alloca.on	for	3-coloring	of	a	square	graph	on	Rigem	Aspen	16Q.	The	grey	qubits	are	
ini.ally	not	assigned	with	logical	qubits.	 	(center)	and	(right)	Illustra.on	of	a	compiled	quantum	circuits	found	by	temporal	planning	tool	TFD.		
Ver.cal	line	between	two	qubits	indicate	two-qubit	gates:	with	arrows	as	end	points	for	SWAPs,	filled	circles	as	end	points	for	UZZ	gates,	while	a	
UXY	gate	is	indicated	with	color	transi.ons.		Legend	in	each	box	along	with	the	color	(edge	color	in	case	of	a	SWAP)	encodes	the	logical	qubit	at	
the	moment	of	opera.on.	For	example	in	(center)	at	.me	0,	Q2	represents	V2B	and	Q3	is	V2G,	aFer	a	swap	from	t=0	to	1	Q2	becomes	V2G	and	
Q3	becomes	V2B.		(b)	Using	conven.onal	synthesis,	UZZ	gate	has	been	approximated	to	take	3	units	of	.me.		The	total	makespan	of	the	circuit	is	
31.		(right)	Using	na.ve	UZZ	and	XY	(unitary	dura.on)	the	makespan	for	the	same	circuit	is	only	16.	

Figure	8	SWAP	gate	construcCon	using	UZZ	or	UXY.	The	SWAP	gate	can	be	 implemented	 (leF)	as	3	CZ	gates	and	6	H	gates,	or	
(right)	as	3	iSWAP	gates	U1001 (π)	and	3	single	qubit	rota.ons	about	the	X-axis.	However,	if	the	SWAP	acts	on	a	set	of	qubits	which	belong	to	the	
same	“color”	then	it	can	be	simplified	with	a	UXY(π/2)	opera.on	since	they	are	equivalent	in	the	symmetric	subspace	–	effec.vely	reducing	the	
SWAP	dura.on	to	that	of	a	single	two-qubit	gate.	

These preliminary results represent the baseline for our investigations, that will be considering
the empirical performance of multiple different schedules, employing realistic gate durations,
with additional weight related to their fidelities (action costs in the temporal planning formalism)
and will consider the initial allocation as part of the compilation [Booth18]. Fine-tuning the
compilers to serve the specific application of interest for SAAM is essential for the
benchmarking aspect of the proposal, described next.

Benchmarking — Performance success during both phases will be evaluated on the following
three different criteria:

▪ Reliability of the hardware in terms of fidelity, precision and operational timings.	
The last 5 years have seen a proliferation of ideas for metrics of performance for QPUs during
the NISQ eras (see [Cross18] for quantum volume). As thoroughly discussed in the recent paper

GATE UZZ COMPILATION UXY COMPOSITION

SWAP
� 						

HR001119S0052	Volume	1																																																																																																																																								�14

Do et. al., Planning for quantum circuit compilation for
graph coloring, In preparation

Pioneered temporal planning & for compilation for NISQ devices
- Collaborating with domain experts at NASA, utilizing state of the art temporal planners

Venturelli, Do, Rieffel, Frank., Quantum
Science and Technology (2018)

Noise-aware qubit routing / circuit compilation

For superconducting qubits
 — Taking Rigetti and Google h/w constraints
 — Minimizing makespan (gate-duration aware)
 — Including Crosstalk
 — Logical-to-Physical mapping/allocation

� 						� 					� 	

Figure	7	Compiled	graph	coloring.	 (LeF)	Qubit	alloca.on	for	3-coloring	of	a	square	graph	on	Rigem	Aspen	16Q.	The	grey	qubits	are	
ini.ally	not	assigned	with	logical	qubits.	 	(center)	and	(right)	Illustra.on	of	a	compiled	quantum	circuits	found	by	temporal	planning	tool	TFD.		
Ver.cal	line	between	two	qubits	indicate	two-qubit	gates:	with	arrows	as	end	points	for	SWAPs,	filled	circles	as	end	points	for	UZZ	gates,	while	a	
UXY	gate	is	indicated	with	color	transi.ons.		Legend	in	each	box	along	with	the	color	(edge	color	in	case	of	a	SWAP)	encodes	the	logical	qubit	at	
the	moment	of	opera.on.	For	example	in	(center)	at	.me	0,	Q2	represents	V2B	and	Q3	is	V2G,	aFer	a	swap	from	t=0	to	1	Q2	becomes	V2G	and	
Q3	becomes	V2B.		(b)	Using	conven.onal	synthesis,	UZZ	gate	has	been	approximated	to	take	3	units	of	.me.		The	total	makespan	of	the	circuit	is	
31.		(right)	Using	na.ve	UZZ	and	XY	(unitary	dura.on)	the	makespan	for	the	same	circuit	is	only	16.	

Figure	8	SWAP	gate	construcCon	using	UZZ	or	UXY.	The	SWAP	gate	can	be	 implemented	 (leF)	as	3	CZ	gates	and	6	H	gates,	or	
(right)	as	3	iSWAP	gates	U1001 (π)	and	3	single	qubit	rota.ons	about	the	X-axis.	However,	if	the	SWAP	acts	on	a	set	of	qubits	which	belong	to	the	
same	“color”	then	it	can	be	simplified	with	a	UXY(π/2)	opera.on	since	they	are	equivalent	in	the	symmetric	subspace	–	effec.vely	reducing	the	
SWAP	dura.on	to	that	of	a	single	two-qubit	gate.	

These preliminary results represent the baseline for our investigations, that will be considering
the empirical performance of multiple different schedules, employing realistic gate durations,
with additional weight related to their fidelities (action costs in the temporal planning formalism)
and will consider the initial allocation as part of the compilation [Booth18]. Fine-tuning the
compilers to serve the specific application of interest for SAAM is essential for the
benchmarking aspect of the proposal, described next.

Benchmarking — Performance success during both phases will be evaluated on the following
three different criteria:

▪ Reliability of the hardware in terms of fidelity, precision and operational timings.	
The last 5 years have seen a proliferation of ideas for metrics of performance for QPUs during
the NISQ eras (see [Cross18] for quantum volume). As thoroughly discussed in the recent paper

GATE UZZ COMPILATION UXY COMPOSITION

SWAP
� 						

HR001119S0052	Volume	1																																																																																																																																								�14

 — Raising challenges and inspiring new
planning/scheduling algorithms

— Benchmarking against analytical bounds
— Demonstrating effect of native gate sets

Generalized swap networks for near-term
quantum computing, B O’Gorman 2019]

Do et. al., Planning for quantum circuit compilation for
graph coloring, In preparation

Pioneered temporal planning & for compilation for NISQ devices
- Collaborating with domain experts at NASA, utilizing state of the art temporal planners

Noise-aware qubit routing / circuit compilation

For superconducting qubits

� 						� 					� 	

Figure	7	Compiled	graph	coloring.	 (LeF)	Qubit	alloca.on	for	3-coloring	of	a	square	graph	on	Rigem	Aspen	16Q.	The	grey	qubits	are	
ini.ally	not	assigned	with	logical	qubits.	 	(center)	and	(right)	Illustra.on	of	a	compiled	quantum	circuits	found	by	temporal	planning	tool	TFD.		
Ver.cal	line	between	two	qubits	indicate	two-qubit	gates:	with	arrows	as	end	points	for	SWAPs,	filled	circles	as	end	points	for	UZZ	gates,	while	a	
UXY	gate	is	indicated	with	color	transi.ons.		Legend	in	each	box	along	with	the	color	(edge	color	in	case	of	a	SWAP)	encodes	the	logical	qubit	at	
the	moment	of	opera.on.	For	example	in	(center)	at	.me	0,	Q2	represents	V2B	and	Q3	is	V2G,	aFer	a	swap	from	t=0	to	1	Q2	becomes	V2G	and	
Q3	becomes	V2B.		(b)	Using	conven.onal	synthesis,	UZZ	gate	has	been	approximated	to	take	3	units	of	.me.		The	total	makespan	of	the	circuit	is	
31.		(right)	Using	na.ve	UZZ	and	XY	(unitary	dura.on)	the	makespan	for	the	same	circuit	is	only	16.	

Figure	8	SWAP	gate	construcCon	using	UZZ	or	UXY.	The	SWAP	gate	can	be	 implemented	 (leF)	as	3	CZ	gates	and	6	H	gates,	or	
(right)	as	3	iSWAP	gates	U1001 (π)	and	3	single	qubit	rota.ons	about	the	X-axis.	However,	if	the	SWAP	acts	on	a	set	of	qubits	which	belong	to	the	
same	“color”	then	it	can	be	simplified	with	a	UXY(π/2)	opera.on	since	they	are	equivalent	in	the	symmetric	subspace	–	effec.vely	reducing	the	
SWAP	dura.on	to	that	of	a	single	two-qubit	gate.	

These preliminary results represent the baseline for our investigations, that will be considering
the empirical performance of multiple different schedules, employing realistic gate durations,
with additional weight related to their fidelities (action costs in the temporal planning formalism)
and will consider the initial allocation as part of the compilation [Booth18]. Fine-tuning the
compilers to serve the specific application of interest for SAAM is essential for the
benchmarking aspect of the proposal, described next.

Benchmarking — Performance success during both phases will be evaluated on the following
three different criteria:

▪ Reliability of the hardware in terms of fidelity, precision and operational timings.	
The last 5 years have seen a proliferation of ideas for metrics of performance for QPUs during
the NISQ eras (see [Cross18] for quantum volume). As thoroughly discussed in the recent paper

GATE UZZ COMPILATION UXY COMPOSITION

SWAP
� 						

HR001119S0052	Volume	1																																																																																																																																								�14

Pioneered temporal planning & for compilation for NISQ devices
- Collaborating with domain experts at NASA, utilizing state of the art temporal planners

Noise-aware qubit routing / circuit compilation
2 QCC for NISQ Devices

In the circuit model of quantum computation, a quantum
algorithm is expressed conceptually as a logical quantum
circuit, consisting of a series of quantum operations called
quantum logic gates. Quantum processors are physical de-
vices that implement these quantum logic gates so that the
desired quantum operations can be carried out on the quan-
tum states stored in the qubits. In simple cases, the quantum
logic gates directly correspond to physical quantum gates
on the quantum processor, but more typically the processor
has physical constraints that prevent a quantum logic circuit,
describing the desired algorithm, from being directly imple-
mented.

At a high level, these constraints can be classified into
two types: (1) gate set constraints (i.e., those that specify
the set of logic gates the processor is capable of applying),
and (2) geometric constraints (i.e., those that specify upon
which sets of qubits the available logic gates can be applied,
limited by, for example, processor connectivity). Although
these constraints differ among quantum processors, quan-
tum algorithms can be re-expressed respecting the processor
constraints with polynomial overhead in the number of gates
(Brierley 2017). As such, for theoretical algorithmic work,
the design of logical quantum circuits without concern for
the implementation constraints of physical devices is suf-
ficient. However, to implement a quantum algorithm on an
actual device, these constraints must be efficiently addressed
to take full advantage of NISQ processors.

In this work, we focus on a particular approach to address-
ing geometric constraints associated with processor connec-
tivity. The approach maps logical qubits to physical qubits
on the processor and iteratively updates the mapping through
the insertion of additional gates in the course of the com-
putation so as to enable the logical operations to be imple-
mented respecting the physical contraints. This problem is
often referred to as “quantum compilation,” though quan-
tum compilation usually involves addressing gate set con-
straints as well as geometric (e.g., connectivity) constraints.
Another simple constraint is that gates involving the same
qubit cannot be executed in parallel. A generalization of this
constraint is a “cross-talk” constraint that may prevent gates
in physical proximity from being executed at the same time
(Booth et al. 2018).

QCC-NISQ frequently requires adding supplementary
operations supported by the hardware to those specified
in the idealized circuit. Current superconducting quantum
processors have planar architectures with connections only
between nearest-neighbor locations (qubits), resulting in
restrictions as to where gates can be applied. Specifically,
a gate can operate only on qubit states located on adjacent
qubits on the chip. To compensate for the nearest-neighbor
limitation, swap gates can move qubit states between
connected qubits to reach a configuration where the desired
gate, specified in the idealized circuit, can be applied. Cur-
rent quantum computational hardware suffers greatly from
decoherence (akin to noise), which degrades the fidelity of
the computation (Bishop 2017). In NISQ processors, deco-
herence is intimately linked to the duration of the executed
circuit that carries out the quantum computation, so it is

X

X

q1
q2
q3
q4

q8

q1

q2
q3

q4

q5
q6

q7

q8

n1

…

Idealized Quantum
Circuit: sequential gates,

no hardware
constraints

Idealized Quantum
Hardware: commuting

gates, no hardware
constraints

n8

n7

n3

n4

n5

n2

n6

NISQ Chip: nearest
neighbor constraints,

different gate durations
(red/blue arcs),

swap gates (curved arcs),
crosstalk constraints (Xs),

initialization
qi -> ni (dashed arc)

Figure 1: Pictorial view of QCC-NISQ concepts. At the
highest level, an idealized quantum circuit specifies a se-
quence of quantum logical gates over qubit states that
solves a specified problem (top). The idealized quantum cir-
cuit could conceptually be implemented on fully-connected
quantum hardware in which gates can be carried out between
all pairs of physical qubits, which is depicted here by a fully-
connected graph. Qubit states in an idealized quantum cir-
cuit are mapped onto physical qubits in the fully-connected
architecture. At this level, gates are specified between phys-
ical qubits and can be executed in parallel if they do not in-
volve the same qubit (middle). In an actual NISQ chip, phys-
ical gates can only be carried out between a subset of pairs
of qubits, usually nearest neighbors in a 1D or 2D array. To
carry out 2-qubit gates specified in idealized quantum cir-
cuits between qubits that are not connected, swap gates are
added to route logical qubit states to physical qubits that are
connected so that the desired gates can be applied (bottom).

critical to minimize the duration of compiled circuits. Thus,
compilation is challenging due to: the parallel execution of
gates with different durations, the planar or quasi-planar
topology of the qubit locations on the chip, the ordering
constraints from the original idealized circuit, as well as
additional constraints such as cross-talk.

Example: Figure 1 shows a concrete QCC example requir-
ing gate operations gA = G(q1, q2) and gB = G(q3, q8). At
the top, the algorithm is specified, as is typically done in the
gate-model quantum computing literature, as an idealized
quantum circuit, with sequential specifications of 2-qubit
gates over qubit states. There are no hardware constraints;
further, some ordered pairs of gates in the idealized circuit
may commute (i.e., could execute in arbitrary order, even
simultaneously, and still produce correct results). A fully-
connected quantum hardware, with no hardware constraints

Beyond superconducting qubit platform,
noise and gate infidelity are posing other
challenges. We are looking to
— Develop hardware specific models and goals
— Further exploiting planners for compilation

Where to look next?

NISQ era: Challenging for fault tolerate quantum computing
Need to find ways to deal / live with noise

Two other (out of many) NASA QuAIL efforts:

• Advanced qubit-routing (quantum circuit compilation)

• Variational quantum heuristics for optimization and quantum chemistry

— like Quantum Alternating Operator Ansatz (QAOA), Variational

Quantum Eigensolver (VQE)

√ Quantum Supremacy: random circuit

Biswas, SMC-IT, 28 Sept 2017

Quantum Computing for NASA Applications

Data Analysis 
and Data Fusion

Air	Traffic	
Management

Mission Planning, Scheduling, and Coordination

V&V and
Optimal
Sensor

Placement

Topologically-
aware Parallel

Computing

Anomaly Detection
and Decision

Making

Common Feature: Intractable problems on classical supercomputers

Objective: Find “better” solution
• Faster
• More precise
• Not found by classical algorithm

Image from P. Kopardekar et. al., Unmanned Aircraft System Traffic
Management (UTM) Concept of Operations, DASC 2016

Robust Network Design for UAV

5

Y

Z

X

+
p
N/n

�
p
N/n

(a)

Y

Z

X

n� 3
4

(b)

FIG. 4. Spin coherent state representation: (a) for | b+ i,
where

p
N/n is the order of the expansion coe�cients in

Eq. (12); (b) for | b0 i, where n�3/4 is the order of the ex-
pansion coe�cients in Eq. (17).

Thus, the unitary W (�)n/2 approximately drives a tran-
sition between | b+ i and | b0 i with the rate �⌘. Applying
the unitary W (�) for order n/�⌘ times, one can drive
the state | b+ i to a state close to | b0 i. The probability
of finding the target state with | b0 i is only polynomially
small in n as opposed to the exponentially small value
with | b+ i, achieving the quadratic speedup in Grover’s
algorithm up to a logarithmic factor.

Although the case � ⌧ 1 is illustrative, it requires
a logarithmically many more calls to the oracle than
Grover’s original algorithm, and the probability of find-
ing the target state is small. Since ⌘ is exponentially
small in n, both | b+ i and | b0 i are close to eigenvec-
tors for eigenvalues exponentially close to 1. This anal-
ysis suggests concentrating on the subspace spanned by
{|w↵ i, |w↵⇤ i}, where ↵ and ↵⇤ are the eigenvalues clos-
est to 1. Indeed, we show in Sec. VII that one can in-
crease the success probability and reduce the number of
calls to the oracle by setting � = ⇡. In Fig. 3(b), arg(↵)
is plotted as a function of �. The reason behind why
� = ⇡ performs the best (or why it even works) seems
unclear without a tedious calculation. We give this cal-
culation in Sec. VII, after introducing a “phase space”
representation that will be useful in that analysis.

VI. PHASE SPACE REPRESENTATIONS

We introduce a novel phase space representation in
this section, which is essential in the following section
to the analytical solution of the success probability and
the query complexity of our algorithm. The phase space
representation is based on the inner products of a quan-
tum state with the spin coherent states we introduced in
Sec. V.

Any state | i 2 HS can be uniquely determined by
the inner products

⌦
0
��ei✓B/2

��
↵
. The � function

�
�
| i, ✓

�
=

⌦
0
��ei✓B/2

��
↵
. (23)

fully determines the state | i, since the spin coherent
states e�i✓B/2

��0
↵
for ✓ 2 [0, 2⇡) are over-complete for

the symmetric subspace; the advantage of this represen-
tation is that both B and C can be expressed concisely.
For even n, the � function satisfies the periodic boundary
condition

�
�
| i, 2⇡

�
=

⌦
0
��ei⇡B

��
↵

= (�1)nh0 | i = �
�
| i, 0

�
.

(24)

For the initial state in Eq. (3), we have

�
�
| in i, ✓

�
=

⌦
0
��ei✓B/2

�� in

↵
=

e�in✓/2

p
N

. (25)

For the target state |0 i, we have

�
�
|0 i, ✓

�
=

⌦
0
��ei✓B/2

��0
↵
= cos(✓/2)n . (26)

The unitaries e�i�B/2 and e�i�C take simple forms,

�
�
e�i�B/2| i, ✓

�
= �

�
| i, ✓ � �

�
, (27)

�
�
e�i�C | i, ✓

�

= �
�
| i, ✓

�
+ (ei� � 1)�

�
| i, 0

�
cos(✓/2)n .

(28)

For the discrete angles ✓k = 2k⇡/n, we introduce the
notation

�k

�
| i

�
=

⌦
0
��eik⇡B/n

��
↵
. (29)

The � function of |0 i will be used frequently, and we
denote it as

⇠k ⌘ �k

�
|0 i

�
= cos(k⇡/n)n . (30)

We will used the following identity repeatedly,

n�1X

k=0

(�1)k⇠k = nh0 | b+ i2 =
2n

N
. (31)

For discrete angles, Eqs. (27) and (28) becomes

�k

�
e�i⇡B/n| i

�
= �k�1

�
| i

�
, (32)

�k

�
e�i�C | i

�
= �k

�
| i

�
+ (ei� � 1)�0

�
| i

�
⇠k . (33)

For the eigenstates of B with eigenvalues ±n, we have

�k

�
| bn i

�
= �k

�
| b�n i

�
= (�1)kN�1/2 , (34)

where | bn i = | in i = |+ i⌦n and | b�n i = | � i⌦n.
Since the discrete � function of the states | bn i and | b�n i
are the same, it does not uniquely determine a state in
the symmetric subspace with dimension n+ 1. The dis-
crete � function, however, is unique in the orthogonal
space of | b� i = 1p

2

�
| bn i � | b�n i

�
. We will restrict our

discussions in that subspace, and | b� i is a dark state
anyway. For | b+ i = 1p

2

�
| bn i + | b�n i

�
, we have

�k

�
| b+ i

�
=

p
2 (�1)kN�1/2 . (35)

Quantum Approximate Optimization Algorithms (QAOA)

Farhi, Goldstone, and Gutmann, arXiv:1411.4028

Cost Hamiltonian
encoding cost function

Mixer Hamiltonian
generating transitions

between different states

(γ1, γ2, ⋯, β1, β2, ⋯)Variational parameters:

Work principle: constructive interference

Case shown speedup: reproduces quantum speedup in Grover’s
algorithm for needle-in-a-haystack search

Zhang, Rieffel, and Wang, PRA 2017

3

W (�)

|+ i

e�i�C

e�i⇡X/n

ei�C

e�i⇡X/n · · ·

|+ i e�i⇡X/n e�i⇡X/n · · ·

...
...

...
...

|+ i e�i⇡X/n e�i⇡X/n · · ·

FIG. 1. To map the input state to a state having large overlap
with the target, the unitary W (�) is repeated for O(N1/2)
times.

is that B acts only on individual spins, so it is easier
and more e�cient to implement. The input state of our
algorithm is the usual one, the tensor product |+ i⌦n,
the joint +1 eigenstate of all the Xj operators, and the
even superposition of all bit strings,

| in i = |+ i⌦n =
1p
N

X

s2{0,1}n

| s i . (3)

We can simplify the analysis, following Farhi et al. [14],
by working in a basis in which the target state is |0 i =
| 0 · · · 00 i. Since the driver B and the initial state | in i
remain the same when any subset of the n qubits are
flipped, the problem can be converted to finding the bit
string 0 using the oracle C0 with the same driver B.
Doing so drastically simplifies our analysis: the state
|0 i, and the initial state |+ i⌦n, are in the (n + 1)-
dimensional symmetric subspace (under permutations of
qubits), and the evolution under both B and C0 preserves
this subspace, so we only need to consider that (n + 1)-
dimensional subspace instead of the whole Hilbert space
of dimension 2n. To simplify notation, we will omit the
subscript in C0 hereafter, i.e., C ⌘ C0.

The building block of our algorithm is a simple product
of unitaries generated by B and C,

W (�) = e�i⇡B/nei�Ce�i⇡B/ne�i�C , (4)

where � 2 (0,⇡] is a free parameter. The intuition that
we choose the angle of the rotation e�i⇡B/n can be found
in Sec. V. The algorithm repeatedly applies the unitary
W (�) for ⇥(

p
N) times (see Fig. 1). The relevant eigen-

values of the unitary W (�) determine the query complex-
ity of our algorithm, while the corresponding eigenvectors
determine the probability of success. We will show that
the relevant eigenvalues are the ones closest to 1, but not
equal to 1.

The unitary W (�) has a time-reversal-like symmetry

⇤W (�)⇤† = W †(�) , (5)

where ⇤ = e�i⇡B/nZ1Z2 · · ·Zn with Zj being the Pauli-
Z operator of the j-th qubit. Equation (5) holds gener-
ally for Hamiltonians based on classical cost functions,
Hamiltonians diagonal in the computational basis. This

symmetry implies that if ↵ is an eigenvalue of W (�),
then its complex conjugate ↵⇤ is also an eigenvalue
of W (�); the corresponding eigenstates are denoted by
|w↵ i and |w↵⇤ i, respectively. When restricted to the
2-dimensional subspace S↵ spanned by {|w↵ i, |w↵⇤ i},
and written in the basis {|w+ i, |w� i}, where

|w± i = 1p
2

⇣
|w↵ i ± |w↵⇤ i

⌘
, (6)

W (�) has the matrix representation

W
��
S↵

(�) = exp


�i

✓
0 arg(↵)

arg(↵) 0

◆�
. (7)

The unitaryW (�) thus drives a closed transition between
|w± i with the transition rate arg(↵). To drive a full tran-
sition, one needs to repeat W (�) for roughly ⇡/(2 arg(↵))
times.
Let | b± i = 1p

2

�
|+ i⌦n±| � i⌦n

�
. We show in Sec. VII

that for the eigenvalues ↵ and ↵⇤ exponentially close to
1 but not equal to 1, |w↵ i and |w↵⇤ i have large over-
laps with 1p

2

�
|0 i± i| b+ i

�
, respectively. In other words,

|w+ i and |w� i have large overlaps with |0 i and i| b+ i,
respectively, so the algorithm drives | b+ i close to the
target state |0 i. The value of arg(↵) has to be exponen-
tially small in n, otherwise, our algorithm would have
beaten the optimal query complexity of Grover’s algo-
rithm. Hereafter, ↵ will refer to this specific eigenvalue.
The initial state (3) can be written as

| in i = |+ i⌦n =
1p
2

⇣
| b+ i + | b� i

⌘
; (8)

note that | b� i is a dark state, i.e., W (�)| b� i = | b� i.
For |h0 |w+ i| ' |h b+ |w� i| ' 1, the output state is
approximately

| out i ' 1p
2

⇣
|0 i + | b� i

⌘
, (9)

and the probability of finding the target state |0 i is ap-
proximately 1/2.
In Sec. VII, we derive approximate results for our al-

gorithm in the large-n limit. For � = ⇡, we find that
|h0 |w+ i| ' (1 � ⇡2/2n)1/4 in Eq. (58) (the fidelity is
smaller for � 6= ⇡). See Fig. 2(a) for a comparison
of analytical and numerical results. We also find that
|h b+ |w� i| ' 1 � N�1 in Eq. (67). See Fig. 2(b) for
a comparison of analytical and numerical results. Fur-
thermore, we calculate that arg(↵) ' 4

p
2N�1/2(1 �

⇡2/2n)1/4 in Eq. (66). Figure 3(a) shows a comparison
of analytic and numerical results. Considering that the
success probabilities of our algorithm is about 1/2 and
each iteration W (�) calls the oracle twice, the average
query complexity of our algorithm is

T (n) ' 2⇡

arg(↵)
' ⇡

2
p
2
2n/2 , (10)

which di↵ers from the optimal value presented in Ref. [12]
by a factor of

p
2.

Exploit local or global symmetries in the problem

Design a mixer that contains the quantum evolution
in the subspace that satisfies the constraints.

Wang, Rubin, Dominy, Rieffel, arXiv:1904.09314

—> Symmetry Preserving Quantum Alternating Operator Ansatz (QAOA)

✓
✓ ✓

One-hot encoding:

Symmetry (constraints): preserve Hamming weight of subset

E.g., QAOA for constrained optimization

100
010
001

110
101
011

000

111

Standard mixer: X

symmetry-preserving
mixer: XX+YY

Hadfield, Wang, O'Gorman, Rieffel,
Venturelli, Biswas, arXiv 1709.03489

Special for the Hamming-1 subspace:

6

only quadratic fermionic couplings:

HXY =
X

c=1

�
�x

c
�x

c+1 + �y

c
�y

c+1

�

#

HXY =2
X

c=1

�
a†
c
ac+1 + h.c.

�
, (20)

where â and â† are fermionic operators, and we assumed
 is even for simpler demonstration.

The quadratic Hamiltonian in Eq. (20) can be diago-
nalized by a basis rotation on the operators. For nearest-
neighbor, one-body coupling, the fermionic Fourier trans-
form

â†
c

= FFFT†f̂†
k
FFFT ⌘ 1p



X

c

ei2⇡ckf̂†
k

(21)

âc = FFFT†f̂kFFFT ⌘ 1p


X

c

e�i2⇡ckf̂k ,

is su�cient to diagonalize the hamiltonian. We use the
notation FFFT (fermionic fast Fourier transform) to de-
note the circuit for the operator Fourier transform and
not the quantum Fourier transform [25]. The XY Hamil-
tonian on a ring is then exactly diagonalized as[26]

HXY =
X

k=1

Ekf
†
k
fk (22)

where the eigen-energies Ek = 2 cos(2k⇡/). Replac-
ing the number operator f†

k
fk with qubit operators

(1 � �z

k
)/2, the Hamiltonian can be expressed as

H(k)
XY

=
X

k=1

Ek (1 � �z

k
) /2 (23)

where the upper index (k) is added as a reminder that
we are in the momentum representation. In this rep-

resentation evolving e�i�H
(k)
XY involves only single-qubit

Z-rotations.
The FFFT has emerged as a route to e�cient simula-

tion for fermions in tensor networks [27] and quantum cir-
cuits representing fermionic systems [25, 28]. The circuit
is constructed in a similar structure to the decimation-in
time radix-2 classical Fourier transform and inherits the
divide-and-conquer complexity. The FFFT circuit can be
implemented with O(log()) [27] depth for a system with
parallel arbitrary two-qubit interactions. For more realis-
tic systems where only nearest-neighbor interactions are
allowed fermionic swaps are required to swap the two
modes together to perform the butterfly operation. This
adds an additional overhead resulting in a O(log())
circuit depth and O(2log()) total gate count [25]. The
gate depth required to implement the FFFT was further
improved to O() in [29] by using a Givens rotation
network and requires only linear connectivity.

We also point out that the Givens rotation network is a
powerful tool for state preparation for general quadratic
Hamiltonians. For pairing models, the linear depth net-
work was used to prepare ground states [30]. This initial
state can be used in the context where the hard con-
straint is of the form that qubits must appear paired up.
We point this out as an example of how di↵erent flavor
constraints can correspond to evolving a wide variety of
constraint-preserving Hamiltonians.

B. Linear depth simultaneous complete-graph
mixer

We consider the simultaneous mixer for a node,
e�i�Hcomplete,v, with Hcomplete,v =

P
�1
c<c0=0 HXY,v,c,c0 ,

which corresponds to a complete graph of variables cor-
responding to all colors for each vertex v, {xv,c}. Beyond
a one-dimensional layout, the analytical solution to the
XY model is not known, therefore, exactly realizing the
evolution of XY model on a complete graph poses a chal-
lenge. In this section we show that within the subspace
of total Ztot,v = ±( � 2) as in our case, when  = 2m,
this unitary can be exactly implemented in circuit depth
of  � 1, up to a constant factor accounting for break-
ing a generic two-qubit operator to standard single- and
two-qubit operator set.

We illustrate the process using  = 4 and then
show the general formula. For  = 4, we consider
three partitions of the full set of colors: {{0, 1}, {2, 3}},
{{0, 2}, {1, 3}} and {{0, 3}, {1, 2}}, in the feasible sub-
space, we have

exp[�i�
X

c,c02[0,3]

(XY)
c,c0] =

exp[�i�
�
(XY)0,1 + (XY)2,3

�
]

exp[�i�
�
(XY)0,2 + (XY)1,3

�
]

exp[�i�
�
(XY)0,3 + (XY)1,2

�
] . (24)

Note that this equivalence is approximate in general but
exact if we consider only the action on the feasible sub-
space. The fact that these partitioned operators com-
mute in the feasible subspace can be easily verified math-
ematically.

The following perspective on the partitioning scheme
allows us to derive a generalization for any . Consider
an integer variable x whose values are from 0 to 3, in the
one-hot encoding, in the feasible space, the XY opera-
tion on a pair of qubits swaps the integer values the states
represent. For example (XY)1,3 swaps between the vari-
able taking value 1 and taking value 3. Now consider the
2-bit binary encoding of x: x = 21x1+20x0 where x0 and
x1 are bits. The swaps between {0, 1} and {2, 3} corre-
sponds to flipping the zero-th bit x0. The swaps between
{0, 2} and {1, 3} corresponds to flipping the first bit x1.
The swaps between {0, 3} and {1, 2} corresponds to flip-
ping both bits x0 and x1. Such operations can happen

XY complete-graph mixer in linear depth κ-1

Efficient Implementation

1D XY model in logarithmic depth

6

only quadratic fermionic couplings:

HXY =
X

c=1

�
�x

c
�x

c+1 + �y

c
�y

c+1

�

#

HXY =2
X

c=1

�
a†
c
ac+1 + h.c.

�
, (20)

where â and â† are fermionic operators, and we assumed
 is even for simpler demonstration.

The quadratic Hamiltonian in Eq. (20) can be diago-
nalized by a basis rotation on the operators. For nearest-
neighbor, one-body coupling, the fermionic Fourier trans-
form

â†
c

= FFFT†f̂†
k
FFFT ⌘ 1p



X

c

ei2⇡ckf̂†
k

(21)

âc = FFFT†f̂kFFFT ⌘ 1p


X

c

e�i2⇡ckf̂k ,

is su�cient to diagonalize the hamiltonian. We use the
notation FFFT (fermionic fast Fourier transform) to de-
note the circuit for the operator Fourier transform and
not the quantum Fourier transform [25]. The XY Hamil-
tonian on a ring is then exactly diagonalized as[26]

HXY =
X

k=1

Ekf
†
k
fk (22)

where the eigen-energies Ek = 2 cos(2k⇡/). Replac-
ing the number operator f†

k
fk with qubit operators

(1 � �z

k
)/2, the Hamiltonian can be expressed as

H(k)
XY

=
X

k=1

Ek (1 � �z

k
) /2 (23)

where the upper index (k) is added as a reminder that
we are in the momentum representation. In this rep-

resentation evolving e�i�H
(k)
XY involves only single-qubit

Z-rotations.
The FFFT has emerged as a route to e�cient simula-

tion for fermions in tensor networks [27] and quantum cir-
cuits representing fermionic systems [25, 28]. The circuit
is constructed in a similar structure to the decimation-in
time radix-2 classical Fourier transform and inherits the
divide-and-conquer complexity. The FFFT circuit can be
implemented with O(log()) [27] depth for a system with
parallel arbitrary two-qubit interactions. For more realis-
tic systems where only nearest-neighbor interactions are
allowed fermionic swaps are required to swap the two
modes together to perform the butterfly operation. This
adds an additional overhead resulting in a O(log())
circuit depth and O(2log()) total gate count [25]. The
gate depth required to implement the FFFT was further
improved to O() in [29] by using a Givens rotation
network and requires only linear connectivity.

We also point out that the Givens rotation network is a
powerful tool for state preparation for general quadratic
Hamiltonians. For pairing models, the linear depth net-
work was used to prepare ground states [30]. This initial
state can be used in the context where the hard con-
straint is of the form that qubits must appear paired up.
We point this out as an example of how di↵erent flavor
constraints can correspond to evolving a wide variety of
constraint-preserving Hamiltonians.

B. Linear depth simultaneous complete-graph
mixer

We consider the simultaneous mixer for a node,
e�i�Hcomplete,v, with Hcomplete,v =

P
�1
c<c0=0 HXY,v,c,c0 ,

which corresponds to a complete graph of variables cor-
responding to all colors for each vertex v, {xv,c}. Beyond
a one-dimensional layout, the analytical solution to the
XY model is not known, therefore, exactly realizing the
evolution of XY model on a complete graph poses a chal-
lenge. In this section we show that within the subspace
of total Ztot,v = ±( � 2) as in our case, when  = 2m,
this unitary can be exactly implemented in circuit depth
of  � 1, up to a constant factor accounting for break-
ing a generic two-qubit operator to standard single- and
two-qubit operator set.

We illustrate the process using  = 4 and then
show the general formula. For  = 4, we consider
three partitions of the full set of colors: {{0, 1}, {2, 3}},
{{0, 2}, {1, 3}} and {{0, 3}, {1, 2}}, in the feasible sub-
space, we have

exp[�i�
X

c,c02[0,3]

(XY)
c,c0] =

exp[�i�
�
(XY)0,1 + (XY)2,3

�
]

exp[�i�
�
(XY)0,2 + (XY)1,3

�
]

exp[�i�
�
(XY)0,3 + (XY)1,2

�
] . (24)

Note that this equivalence is approximate in general but
exact if we consider only the action on the feasible sub-
space. The fact that these partitioned operators com-
mute in the feasible subspace can be easily verified math-
ematically.

The following perspective on the partitioning scheme
allows us to derive a generalization for any . Consider
an integer variable x whose values are from 0 to 3, in the
one-hot encoding, in the feasible space, the XY opera-
tion on a pair of qubits swaps the integer values the states
represent. For example (XY)1,3 swaps between the vari-
able taking value 1 and taking value 3. Now consider the
2-bit binary encoding of x: x = 21x1+20x0 where x0 and
x1 are bits. The swaps between {0, 1} and {2, 3} corre-
sponds to flipping the zero-th bit x0. The swaps between
{0, 2} and {1, 3} corresponds to flipping the first bit x1.
The swaps between {0, 3} and {1, 2} corresponds to flip-
ping both bits x0 and x1. Such operations can happen

Through Jordan-Wigner transformation

6

only quadratic fermionic couplings:

HXY =
X

c=1

�
�x

c
�x

c+1 + �y

c
�y

c+1

�

#

HXY =2
X

c=1

�
a†
c
ac+1 + h.c.

�
, (20)

where â and â† are fermionic operators, and we assumed
 is even for simpler demonstration.

The quadratic Hamiltonian in Eq. (20) can be diago-
nalized by a basis rotation on the operators. For nearest-
neighbor, one-body coupling, the fermionic Fourier trans-
form

â†
c

= FFFT†f̂†
k
FFFT ⌘ 1p



X

c

ei2⇡ckf̂†
k

(21)

âc = FFFT†f̂kFFFT ⌘ 1p


X

c

e�i2⇡ckf̂k ,

is su�cient to diagonalize the hamiltonian. We use the
notation FFFT (fermionic fast Fourier transform) to de-
note the circuit for the operator Fourier transform and
not the quantum Fourier transform [25]. The XY Hamil-
tonian on a ring is then exactly diagonalized as[26]

HXY =
X

k=1

Ekf
†
k
fk (22)

where the eigen-energies Ek = 2 cos(2k⇡/). Replac-
ing the number operator f†

k
fk with qubit operators

(1 � �z

k
)/2, the Hamiltonian can be expressed as

H(k)
XY

=
X

k=1

Ek (1 � �z

k
) /2 (23)

where the upper index (k) is added as a reminder that
we are in the momentum representation. In this rep-

resentation evolving e�i�H
(k)
XY involves only single-qubit

Z-rotations.
The FFFT has emerged as a route to e�cient simula-

tion for fermions in tensor networks [27] and quantum cir-
cuits representing fermionic systems [25, 28]. The circuit
is constructed in a similar structure to the decimation-in
time radix-2 classical Fourier transform and inherits the
divide-and-conquer complexity. The FFFT circuit can be
implemented with O(log()) [27] depth for a system with
parallel arbitrary two-qubit interactions. For more realis-
tic systems where only nearest-neighbor interactions are
allowed fermionic swaps are required to swap the two
modes together to perform the butterfly operation. This
adds an additional overhead resulting in a O(log())
circuit depth and O(2log()) total gate count [25]. The
gate depth required to implement the FFFT was further
improved to O() in [29] by using a Givens rotation
network and requires only linear connectivity.

We also point out that the Givens rotation network is a
powerful tool for state preparation for general quadratic
Hamiltonians. For pairing models, the linear depth net-
work was used to prepare ground states [30]. This initial
state can be used in the context where the hard con-
straint is of the form that qubits must appear paired up.
We point this out as an example of how di↵erent flavor
constraints can correspond to evolving a wide variety of
constraint-preserving Hamiltonians.

B. Linear depth simultaneous complete-graph
mixer

We consider the simultaneous mixer for a node,
e�i�Hcomplete,v, with Hcomplete,v =

P
�1
c<c0=0 HXY,v,c,c0 ,

which corresponds to a complete graph of variables cor-
responding to all colors for each vertex v, {xv,c}. Beyond
a one-dimensional layout, the analytical solution to the
XY model is not known, therefore, exactly realizing the
evolution of XY model on a complete graph poses a chal-
lenge. In this section we show that within the subspace
of total Ztot,v = ±( � 2) as in our case, when  = 2m,
this unitary can be exactly implemented in circuit depth
of  � 1, up to a constant factor accounting for break-
ing a generic two-qubit operator to standard single- and
two-qubit operator set.

We illustrate the process using  = 4 and then
show the general formula. For  = 4, we consider
three partitions of the full set of colors: {{0, 1}, {2, 3}},
{{0, 2}, {1, 3}} and {{0, 3}, {1, 2}}, in the feasible sub-
space, we have

exp[�i�
X

c,c02[0,3]

(XY)
c,c0] =

exp[�i�
�
(XY)0,1 + (XY)2,3

�
]

exp[�i�
�
(XY)0,2 + (XY)1,3

�
]

exp[�i�
�
(XY)0,3 + (XY)1,2

�
] . (24)

Note that this equivalence is approximate in general but
exact if we consider only the action on the feasible sub-
space. The fact that these partitioned operators com-
mute in the feasible subspace can be easily verified math-
ematically.

The following perspective on the partitioning scheme
allows us to derive a generalization for any . Consider
an integer variable x whose values are from 0 to 3, in the
one-hot encoding, in the feasible space, the XY opera-
tion on a pair of qubits swaps the integer values the states
represent. For example (XY)1,3 swaps between the vari-
able taking value 1 and taking value 3. Now consider the
2-bit binary encoding of x: x = 21x1+20x0 where x0 and
x1 are bits. The swaps between {0, 1} and {2, 3} corre-
sponds to flipping the zero-th bit x0. The swaps between
{0, 2} and {1, 3} corresponds to flipping the first bit x1.
The swaps between {0, 3} and {1, 2} corresponds to flip-
ping both bits x0 and x1. Such operations can happen

and Fermionic Fourier transform,

FFFT : O(log(κ)) depth

6

only quadratic fermionic couplings:

HXY =
X

c=1

�
�x

c
�x

c+1 + �y

c
�y

c+1

�

#

HXY =2
X

c=1

�
a†
c
ac+1 + h.c.

�
, (20)

where â and â† are fermionic operators, and we assumed
 is even for simpler demonstration.

The quadratic Hamiltonian in Eq. (20) can be diago-
nalized by a basis rotation on the operators. For nearest-
neighbor, one-body coupling, the fermionic Fourier trans-
form

â†
c

= FFFT†f̂†
k
FFFT ⌘ 1p



X

c

ei2⇡ckf̂†
k

(21)

âc = FFFT†f̂kFFFT ⌘ 1p


X

c

e�i2⇡ckf̂k ,

is su�cient to diagonalize the hamiltonian. We use the
notation FFFT (fermionic fast Fourier transform) to de-
note the circuit for the operator Fourier transform and
not the quantum Fourier transform [25]. The XY Hamil-
tonian on a ring is then exactly diagonalized as[26]

HXY =
X

k=1

Ekf
†
k
fk (22)

where the eigen-energies Ek = 2 cos(2k⇡/). Replac-
ing the number operator f†

k
fk with qubit operators

(1 � �z

k
)/2, the Hamiltonian can be expressed as

H(k)
XY

=
X

k=1

Ek (1 � �z

k
) /2 (23)

where the upper index (k) is added as a reminder that
we are in the momentum representation. In this rep-

resentation evolving e�i�H
(k)
XY involves only single-qubit

Z-rotations.
The FFFT has emerged as a route to e�cient simula-

tion for fermions in tensor networks [27] and quantum cir-
cuits representing fermionic systems [25, 28]. The circuit
is constructed in a similar structure to the decimation-in
time radix-2 classical Fourier transform and inherits the
divide-and-conquer complexity. The FFFT circuit can be
implemented with O(log()) [27] depth for a system with
parallel arbitrary two-qubit interactions. For more realis-
tic systems where only nearest-neighbor interactions are
allowed fermionic swaps are required to swap the two
modes together to perform the butterfly operation. This
adds an additional overhead resulting in a O(log())
circuit depth and O(2log()) total gate count [25]. The
gate depth required to implement the FFFT was further
improved to O() in [29] by using a Givens rotation
network and requires only linear connectivity.

We also point out that the Givens rotation network is a
powerful tool for state preparation for general quadratic
Hamiltonians. For pairing models, the linear depth net-
work was used to prepare ground states [30]. This initial
state can be used in the context where the hard con-
straint is of the form that qubits must appear paired up.
We point this out as an example of how di↵erent flavor
constraints can correspond to evolving a wide variety of
constraint-preserving Hamiltonians.

B. Linear depth simultaneous complete-graph
mixer

We consider the simultaneous mixer for a node,
e�i�Hcomplete,v, with Hcomplete,v =

P
�1
c<c0=0 HXY,v,c,c0 ,

which corresponds to a complete graph of variables cor-
responding to all colors for each vertex v, {xv,c}. Beyond
a one-dimensional layout, the analytical solution to the
XY model is not known, therefore, exactly realizing the
evolution of XY model on a complete graph poses a chal-
lenge. In this section we show that within the subspace
of total Ztot,v = ±( � 2) as in our case, when  = 2m,
this unitary can be exactly implemented in circuit depth
of  � 1, up to a constant factor accounting for break-
ing a generic two-qubit operator to standard single- and
two-qubit operator set.

We illustrate the process using  = 4 and then
show the general formula. For  = 4, we consider
three partitions of the full set of colors: {{0, 1}, {2, 3}},
{{0, 2}, {1, 3}} and {{0, 3}, {1, 2}}, in the feasible sub-
space, we have

exp[�i�
X

c,c02[0,3]

(XY)
c,c0] =

exp[�i�
�
(XY)0,1 + (XY)2,3

�
]

exp[�i�
�
(XY)0,2 + (XY)1,3

�
]

exp[�i�
�
(XY)0,3 + (XY)1,2

�
] . (24)

Note that this equivalence is approximate in general but
exact if we consider only the action on the feasible sub-
space. The fact that these partitioned operators com-
mute in the feasible subspace can be easily verified math-
ematically.

The following perspective on the partitioning scheme
allows us to derive a generalization for any . Consider
an integer variable x whose values are from 0 to 3, in the
one-hot encoding, in the feasible space, the XY opera-
tion on a pair of qubits swaps the integer values the states
represent. For example (XY)1,3 swaps between the vari-
able taking value 1 and taking value 3. Now consider the
2-bit binary encoding of x: x = 21x1+20x0 where x0 and
x1 are bits. The swaps between {0, 1} and {2, 3} corre-
sponds to flipping the zero-th bit x0. The swaps between
{0, 2} and {1, 3} corresponds to flipping the first bit x1.
The swaps between {0, 3} and {1, 2} corresponds to flip-
ping both bits x0 and x1. Such operations can happen

6

only quadratic fermionic couplings:

HXY =
X

c=1

�
�x

c
�x

c+1 + �y

c
�y

c+1

�

#

HXY =2
X

c=1

�
a†
c
ac+1 + h.c.

�
, (20)

where â and â† are fermionic operators, and we assumed
 is even for simpler demonstration.

The quadratic Hamiltonian in Eq. (20) can be diago-
nalized by a basis rotation on the operators. For nearest-
neighbor, one-body coupling, the fermionic Fourier trans-
form

â†
c

= FFFT†f̂†
k
FFFT ⌘ 1p



X

c

ei2⇡ckf̂†
k

(21)

âc = FFFT†f̂kFFFT ⌘ 1p


X

c

e�i2⇡ckf̂k ,

is su�cient to diagonalize the hamiltonian. We use the
notation FFFT (fermionic fast Fourier transform) to de-
note the circuit for the operator Fourier transform and
not the quantum Fourier transform [25]. The XY Hamil-
tonian on a ring is then exactly diagonalized as[26]

HXY =
X

k=1

Ekf
†
k
fk (22)

where the eigen-energies Ek = 2 cos(2k⇡/). Replac-
ing the number operator f†

k
fk with qubit operators

(1 � �z

k
)/2, the Hamiltonian can be expressed as

H(k)
XY

=
X

k=1

Ek (1 � �z

k
) /2 (23)

where the upper index (k) is added as a reminder that
we are in the momentum representation. In this rep-

resentation evolving e�i�H
(k)
XY involves only single-qubit

Z-rotations.
The FFFT has emerged as a route to e�cient simula-

tion for fermions in tensor networks [27] and quantum cir-
cuits representing fermionic systems [25, 28]. The circuit
is constructed in a similar structure to the decimation-in
time radix-2 classical Fourier transform and inherits the
divide-and-conquer complexity. The FFFT circuit can be
implemented with O(log()) [27] depth for a system with
parallel arbitrary two-qubit interactions. For more realis-
tic systems where only nearest-neighbor interactions are
allowed fermionic swaps are required to swap the two
modes together to perform the butterfly operation. This
adds an additional overhead resulting in a O(log())
circuit depth and O(2log()) total gate count [25]. The
gate depth required to implement the FFFT was further
improved to O() in [29] by using a Givens rotation
network and requires only linear connectivity.

We also point out that the Givens rotation network is a
powerful tool for state preparation for general quadratic
Hamiltonians. For pairing models, the linear depth net-
work was used to prepare ground states [30]. This initial
state can be used in the context where the hard con-
straint is of the form that qubits must appear paired up.
We point this out as an example of how di↵erent flavor
constraints can correspond to evolving a wide variety of
constraint-preserving Hamiltonians.

B. Linear depth simultaneous complete-graph
mixer

We consider the simultaneous mixer for a node,
e�i�Hcomplete,v, with Hcomplete,v =

P
�1
c<c0=0 HXY,v,c,c0 ,

which corresponds to a complete graph of variables cor-
responding to all colors for each vertex v, {xv,c}. Beyond
a one-dimensional layout, the analytical solution to the
XY model is not known, therefore, exactly realizing the
evolution of XY model on a complete graph poses a chal-
lenge. In this section we show that within the subspace
of total Ztot,v = ±( � 2) as in our case, when  = 2m,
this unitary can be exactly implemented in circuit depth
of  � 1, up to a constant factor accounting for break-
ing a generic two-qubit operator to standard single- and
two-qubit operator set.

We illustrate the process using  = 4 and then
show the general formula. For  = 4, we consider
three partitions of the full set of colors: {{0, 1}, {2, 3}},
{{0, 2}, {1, 3}} and {{0, 3}, {1, 2}}, in the feasible sub-
space, we have

exp[�i�
X

c,c02[0,3]

(XY)
c,c0] =

exp[�i�
�
(XY)0,1 + (XY)2,3

�
]

exp[�i�
�
(XY)0,2 + (XY)1,3

�
]

exp[�i�
�
(XY)0,3 + (XY)1,2

�
] . (24)

Note that this equivalence is approximate in general but
exact if we consider only the action on the feasible sub-
space. The fact that these partitioned operators com-
mute in the feasible subspace can be easily verified math-
ematically.

The following perspective on the partitioning scheme
allows us to derive a generalization for any . Consider
an integer variable x whose values are from 0 to 3, in the
one-hot encoding, in the feasible space, the XY opera-
tion on a pair of qubits swaps the integer values the states
represent. For example (XY)1,3 swaps between the vari-
able taking value 1 and taking value 3. Now consider the
2-bit binary encoding of x: x = 21x1+20x0 where x0 and
x1 are bits. The swaps between {0, 1} and {2, 3} corre-
sponds to flipping the zero-th bit x0. The swaps between
{0, 2} and {1, 3} corresponds to flipping the first bit x1.
The swaps between {0, 3} and {1, 2} corresponds to flip-
ping both bits x0 and x1. Such operations can happen

Wang, Rubin, Dominy, Rieffel, arXiv:1904.09314

Performance Comparison: Penalty vs XY 9

(a) (b)

Figure 3. Numerical results for level 1 QAOA on the problem
of 3-coloring of a triangle graph. (a) using X mixer along
with phase-separating Hamiltonian, Eq. (8) where the penalty
weight is taken to be the numerically determined optimal
value ↵

⇤ = 1.7. (b) using the XY mixer with W-state be-
ing the initial state.

the Envelope graph is the smallest hard-to-color graph
for the largest-first(LF) sequential method. Note that
these classical algorithms are aiming to compute the
chromatic number, while in this paper we focus on find-
ing the maximal colorable subgraph. Although finding
the max-colorable subgraph could serve as a subroutine
for determining chromatic numbers, the chromatic num-
ber can also be directly attacked by QAOA using a much
more complex mixer.[2] Nevertheless we are not aiming
at doing side-by-side comparison of quantum and classi-
cal algorithms, and will use these small graphs only as a
proof-of-principle demonstration of the QAOA with XY
mixers.

What graphs to color on NISQ era hardware?

• For a classical algorithm, there is a concept of
smallest slightly-hard-to-color graph: applying the algorithm will sometimes
yield the optimal solution
&
smallest hard-to-color graph: applying the algorithm never yields the optimal
solution

• Examples

Envelope Prism

Small & Hard graphs

Figure 4. The two small and hard-to-color graphs: Envelope
and Prism. A valid 3-coloring is shown on each graph.

1. Performance of QAOA with the simultaneous ring mixer

With the simultaneous ring mixer, Figure. 5 shows
the results for QAOA levels 1 to 6. For each level, the
W-state is used as initial state, and stochastic search
(basin-hopping with BFGS) is performed to optimize the
expected value of the cost Hamiltonian over the angle
sets. The approximation ratio corresponding to the op-
timal expectation value is plotted as filled circles. Even
at level one, the approximation ratio takes a high value
0.8, and this value quickly approaches 1 as the level in-

creases. Furthermore, for each level, we computed the
probability of getting the actual optimal solution (a valid
3-coloring) upon measurement. At level one, this proba-
bility is slightly lower than 0.2, and quickly goes above 0.6
at level-3, which implies that repeating the experiment
3 times, one will find a valid coloring with probability
> 0.9.

Figure 5. The Prism graph. Dots are approximation ratios
and crosses are the expected probability of getting the opti-
mal coloring. For each QAOA level, results are shown at the
(sub)optimal angles resulted from a basin-hopping search.

2. E↵ect of initial states

The W-state – as both an even superposition of all fea-
sible classical states, and the ground state of the simul-
taneous ring mixer – is a natural candidate for the initial
state for QAOA. It involves multiple two-qubit gates to
prepare. An easier-to-prepare state for each vertex can
be defined via a randomly-assigned coloring (feasible but
not necessarily optimal), | Ci, i.e., a randomly drawn bit
string of Hamming weight one. Preparing such a state
involves only n single-qubit gates.

We study both initial states for the prism graph with
simultaneous ring mixer. For level-1 QAOA, the best
achievable optimization ratio (optimized over all angle
sets (�, �)) for W-state is higher than the classical Ham-
ming weight 1 state | iC . Notice that for | iC , the
phase-separating unitary commutes with the density ma-
trix of the state, hence has no e↵ect to the state evolu-
tion. As a result, the whole circuit for level-1 QAOA
is equivalent to applying the mixing unitary followed by
measurement. We further simulated higher levels, and in
Figure. 6 show the performance of QAOA with the W-
state versus a classical state as initial state. We found
that with the classical initial state, the performance of
QAOA is significantly lower than using the W-state as

• Size of search space
Penalty + X-mixer Full Hilbert space
XY mixer Feasible subspace
Ratio: The feasible space shrinks exponentially with n.

[Wang, Rubin, Dominy, Rieffel, arXiv:1904.09314]

Small problems solved at low-depth with XY

100
010
001

110
101
011

000

111

10

QAOA level
0 2 4 6 8 10 12

A
p
p
ro
x
im

.
ra
ti
o

0.5

0.6

0.7

0.8

0.9

1
Optimal results for the Prism graph

classical initial states

W-state

Figure 6. The Prism graph, the expected value of QAOA op-
timized over the angle sets. Triangles show the results with
W-state as initial states. Circles show the results with a fea-
sible classical initial state, averaged over the set of all feasible
classical states, the error bar is the standard deviation. For
each initial state, optimization over angles are derived from a
basin-hopping search.

initial state. Even at level 10, rclassical is still lower than
rW for level-1. Moreover, the approximation ratio with
classical initial state shows a tendency toward satura-
tion around level 10 – this could either be the nature
of the algorithm, or due to increasing di�culty in find-
ing the global optimum in the parameter subspace as the
level increases, which poses another practical considera-
tion for application. (Note that due to the optimization
over parameter space for each initial state, the average
over classical initial state is not equivalent to prepare the
initial state in a mixed state for the ensemble).

Because our simulation is noise-free, due to ergodicity,
in the limit of p ! 1 the optimal performance should
be independent of the initial state. But for practical
implementation on a near-term hardware where noises
accumulates fast with circuit depth, such medium-level
QAOA behavior is of high relevance. In Appendix C we
survey methods to generate quantum circuits for prepar-
ing W-states. It is shown that with certain methods it
can be generated with O() CNOT gates. The over-
all performance of QAOA will be a tradeo↵ between the
extra e↵ort in preparing W-state and the damage that
comes with circuit depth.

C. Benchmarking graph sets

To better understand the behavior of these QAOA
graph-coloring algorithms, we make use of the sets of all

-chromatic graphs of size n as the benchmarking sets
for the XY mixers under consideration. See Table II for
the number of instances in each benchmarking set.

� n num. graphs

3 5 12
3 6 64
3 7 475
4 6 26
4 7 282
5 7 46
6 7 5

n  num. graphs

4 4 6
4 6 6
4 8 6

Table II. Left: Benchmarking graph sets: each row indicates
all �-chromatic graphs of size n, and we solve the problem
of -coloring of such graphs choosing  = �. Right: Bench-
marking graph sets II for examining the simultaneous vs par-
titioned ring mixers on di↵erent ring sizes: Each row indicates
all connected graphs of size n, and we solve the problem of
-coloring of such graphs. Because the total number of qubits
is n, which is the limiting factor to the simulation, we limit
to small n to see  varying up to 8.

ring
0.85 0.9 0.95 1

co
m
p
le
te

0.85

0.9

0.95

1

(a) QAOA level-2

ring
0.95 0.96 0.97 0.98 0.99 1

co
m
p
le
te

0.95

0.96

0.97

0.98

0.99

1

(b) QAOA level-8

Figure 7. QAOA with simultaneous mixers. Performance
comparison between ring and complete-graph mixers applied
to the same graph coloring problems. The axes show approx-
imation ratio achieved using the labeled mixer type. Scat-
ter plot shows the results for 4-coloring of all connected
chromatic-4 graphs of size n = 7. In (b), for better visi-
bility, an outlier data point at (ring = 0.95, complete = 0.9)
is not shown in the plot.

1. Approximation ratio and probability-to-optimal-solution

Using W -state as the initial state, for simultaneous
ring and complete-graph mixers, the mean and median
of the approximation ratio as well as the probability-to-
optimal-solution is evaluated across problem sets.

The following observations have been made on the typ-
ical performance for each problem set.
a. Consistent performance over instances. For all

problem sets, the approximation ratio and the
probability-of-optimal-solution curves as a function of

XY wins over X

(a) pnoise = 0.01 (b) pnoise = 0.05

Figure 1: Probability of finding a feasible state when using XY-QAOA for various system sizes and number
QAOA blocks. We here added a local noise channel after each QAOA layer for each qubit.

2.3 Back to the feasible subspace

By using a circuit with two ancillary qubits (for the 3-colorable problem) for each logical qubit, see Fig. 2, we
can make sure that all non-feasible states are mapped back to the feasible subspace. This circuit however does
not localize the qubit on which a error occurred but replaces an non-feasible state with ANY feasible state.
So we might end up in a di↵erent state than we had before the error occurred. The probability of staying
in the feasible subspace is pretty much independent of the number of QAOA blocks and just determined
by the noise probability on the ancillary qubits. ZW:This is in flavor of error correction up to the symmetry of
permutation. We’ll further look into that

2.3.1 Circuit design principle

We can start with identifying the minimum number of correcting operators that are su�cient to bring all states to
the feasible subspace. In k = 3 case, only 4 operations are needed, for example, I, X1, X3, X1X3, see syndromes
and operations shown in Table 4. The 4 syndroms can be encoded into 2 ancilla qubits, a1 and a2. Note that certain
states fit in multiple syndrom sets, for example, |000i can be fixed by either X3 or X1, as shown in Figure. 4. Such
syndrom grouping leads to di↵erent circuits. Figure 2 shows the former, and Figure 5 shows the latter. Note that in
any grouping, the action of X1 and X3 corresponds to ancilla states a2 = 1 and a1 = 1, respectively, hence can be
applied sequentially, and one can apply only one ancilla and recycle it after correcting for one syndrome.

2.3.2 Beyond k = 3

Similar to k = 3 case, for any k and targeted subspace of any Hamming weight d, by counting minimal number of
correcting operation needed and choose a syndrom grouping, we can determine the number of ancilla qubits needed,
and design a circuit to bring the system to the feasible subspace. For k = 4, if Ham = 1 is targeted, there are 7
syndromes and therefore 3 ancilla qubits are su�cient; if Ham = 2 is the feasible subspace, then only 4 syndromes
and hence 2 ancila qubits are needed.

2.4 Syndrome measurements

The above error correcting circuit bring the non-feasible states back to the feasible subspace, but not necessarily to
the state before the error. Instead of using this approach, we also can also use a adaption of a stabilizer codes, which
can localize a single bit flip error in the circuit and correct for it. The strategy is the following: We use an additional

4

Symmetry-preserving QAOA circuits for noise characterization

100
010
001

110
101
011

000

X

111

Subspace for one vertex
Noise exponentially shrinks the
probability of staying in the desired
subspace with problem size and QAOA
level

Thanks to the feature Eq. (6), and for any Hamming weight h and any QAOA level l, [Ul,PH=h] = 0,
(this is reflecting the fact that the noiseless QAOA circuit preserves Hamming weight). We thus have
U

†

l
E(Pi

fea
)Ul = P

i

fea
, that is, E(Pi

fea
) stays invariant under QAOA unitaries.

hP
i

fea
i = Tr[⇢0E(P

i

fea
)] (8)

For higher level QAOA, E
�
E(· · · E(Pi

fea
) · · ·)

�
=

P
3

h=0
c
(l)

h
PH=h again commute with the unitaries, we thus

have

hP
i

fea
i = Tr[⇢0U

†

1
E(U †

2
E(U †

3
· · · E(U †

l
E(Pi

fea
)Ul) · · ·U3)U2)U1] (9)

= Tr[⇢0E(E(· · · E(P
i

fea
)) · · ·)] (10)

which is independent of the QAOA unitaries, and the exact coe�cients c(l)
h

are determined soly by the initial
state and the noise level, and can be exactly computed as Eq. (4).

2.1.3 More general noise models

In the previous section, we used the depolarizing channel for analyzing the probability of staying in the
feasible subspace. The reason that we were able to do this analysis analytically was related to the fact that
the depolarizing channel perseveres the symmetry in the weights of the projection operator and that it is
self-dual. However, this is not a feature of the depolarizing channel only, but holds for most local Kraus
maps. For an arbitrary local noise channel

✏(⇢) : ⇢ !

X

i

Ki⇢K
†

i
with

X

i

KiK
†

i
 1 and K

†

i
= Ki,

we can do the same calculation. For the example of 3 colors, one term of the projector onto the feasible
states reads

X

ijk

KiKjKl |001i h001|K
†

i
K

†

j
K

†

l

=
X

ijk

Ki |0i h0|K
†

i
⌦Kj |0i h0|K

†

j
⌦Kl |1i h1|K

†

l

=
X

ijk

cijk |ijki hijk| with cijk = cjik

For P = (|100i h100|+ |010i h010|+ |001i h001|), this reads
X

ijk

KiKjKlPK
†

i
K

†

j
K

†

l

=
X

ijk

ckij |kiji hkij|+ cikj |ikji hikj|+ cijk |ijki hijk| .

(Note: This is not worked out yet, but it seems that the calculation in the previous section holds for most
Kraus maps, even for time-dependent ones. The combinatorics however change.)

2.2 Pen-QAOA

For pen-QAOA, the above arguments do not hold anymore, since the mixing Hamiltonian and the projection
operator on the feasible subspace do not commute. We therefore simulate the quantum circuit. We therefore
first find optimal angles (�,�) (1-level-QAOA) in a noise-free situation. Instead of optimizing the energy
expectation value of the cost Hamiltonian, we here directly optimize the success probability of finding a
feasible state, i.e.

min
�,�

0

@
X

|ii2Hfeas

| hi| QAOA(�,�)i |
2

1

A .

Afterwards we use the found parameters (�⇤
,�

⇤) for the simulation with noise (pnoise > 0) to calculate pfeas.

3

Probability of staying in the desired subspace
is exactly computable under noise— can be
used for experimental noise characterization

Symmetry-preserving QAOA circuits for noise characterization, Streif, Rieffel, Wang, in preparation

Things we study to live with noise in NISQ era

• Using planning tools for qubit routing / quantum circuit compilation

• Symmetry-preserving QAOA circuits for more efficient optimization

• Symmetry-preserving QAOA circuits for noise characterization

Summary

QuAIL NASA

