Update on the Aerosols, Clouds, Convection, and Precipitation (ACCP) Study

SCOTT BRAUN NASA GODDARD SPACE FLIGHT CENTER

Thriving on Our Changing Planet

A Decadal Strategy for Earth Observation from Space

Available from http://sites.nationalacademies.org/DEPS/ESAS2017

#EarthDecadal

The National Academies of SCIENCES ENGINEERING MEDICINE

ACCP Overview

The 2017 Decadal Survey (DS) recommended <u>cost-capped missions</u> with specified caps, creating challenge for team to envision new science but ensure an implementable observing system

	Aerosols	Clouds, Convection, and Precipitation
Observable Priorities	Aerosol properties, aerosol vertical profiles, and cloud properties to understand their effects on climate and air quality	Coupled cloud-precipitation state and dynamics for monitoring global hydrological cycle and understanding contributing processes including cloud feedback
Desired Observables	Backscatter lidar and multichannel, multi- angle/polarization imaging radiometer	Radar(s), with multi-frequency passive microwave and sub-mm radiometer

ACCP Study Organization

Science Teams:

Science Impact Team (SIT) co-chaired by G. Mace, J. Redemann Applications Impact Team (AIT) co-chaired by D. Kirschbaum, A. Omar

Study Progress

Science Definition Roadmap

Science Goals, Traceability to DS17

Call for Study Plans	Draft Study Plan	Overarching ACCP Goal	2017 DS Most Important Very Important	Goals
	Submitted Study Plan Revisions Sept 2018 Oct. 2018 Shutdown Jan	Understand the processing of water and aerosol through the atmosphere and develop the societal applications enabled from this understanding.	W-1a, W- 2a, C-2a, C-2g	G1 <u>Cloud Feedbacks</u>
June 2018 201 201				Reduce the uncertainty in low- and high-cloud climate feedbacks by advancing our ability to predict the properties of low and high clouds.
			W-1a, W- 2a, W-4a, C-2a, H-1b, C-2g, C-5c	G2 <u>Storm Dynamics</u>
Science and Applications Traceability Matrix (Rel. C) publicly				Improve our physical understanding and model representations of cloud, precipitation and dynamical processes within deep convective storms.
released	March 2019 2019 ril		W-1a, H- 1b, S-4a, W-3a	G3 <u>Cold Cloud and Precipitation</u> Improve understanding of cold (supercooled liquid, ice, and mixed phase) cloud processes and associated precipitation and their coupling to the surface at mid to high latitudes and to the cryosphere.
201	19			G4 <u>Aerosol Processes</u>
Community Workshop RFI for Instrument Library			W-1a, W- 5a, C-5a	Reduce uncertainty in key processes that link aerosols to weather, climate and air quality related impacts.
			C-2a, C-2h, C-5c	G5 Aerosol Impacts on Radiation
				Reduce the uncertainty in Direct (D) and Indirect (I) aerosol-related radiative forcing of the climate system.

ACCP Science Objectives

Mission Study on Aerosol and Clouds, Convection & Precipitation

8 Science Objectives Traceable to the 2017 Decadal Survey

ow Clouc

Direct & Indirect (7,8) **Effects on Radiation**

ACCP Science

High Cloud Feedback

OUC

Convective Storm Systems (3)

Aerosol 67 Redistribution

Attributio

ACCP Framing Assumptions for Minimum Desired capabilities

- ACCP is a combined Aerosols and CCP process-oriented Earth Observing System, although mapping capabilities highly desired.
- Payload may consist of:
 - a) Active sensors (lidars and radars)
 - b) Several passive radiometers (passive MW radiometer, polarimeter, spectrometer)

ACCP is an Earth Observing System potentially consisting of

- a) A space-based mission (payload, spacecraft, launch vehicle)
- b) A fully integrated, sustained sub-orbital component
- c) The Program of Record (existing/planned satellites/suborbital assets) at the time of ACCP operations

ACCP Constraints

- Define minimum and enhanced desired capabilities, not threshold and baseline requirements
- Instruments will be selected from existing capabilities rather than designed to desired science capabilities
 - Must be of sufficiently high technical readiness (TRL6) by mission preliminary design review
- Finding an observing system that meets objectives is ultimately dependent on knowledge of available capabilities (Instrument Library)

Recent Study Progress – Architecture Construction

ACCP Architecture Study

Architecture Components:

- Instruments
- Spacecraft buses
- Ground systems
- Launch vehicles
- Mission operations
- Suborbital observations/GV
- Science team

- Study instrument library includes a broad range of capabilities
- Radars include W, Ka, Ku bands, Doppler and non-Doppler, scanning and nadir only
- Radiometers include cross-track and conically scanning, frequencies ranging from 10 to 883 GHz
- Lidars include 2 and 3 frequencies, backscatter and HSRL
- Polarimeters include varying channels (5 to hyperspectral) and angles (5 to 255)
- Spectrometers include VIS, NIR, SWIT, LWIR, TIR

Architecture Construction Workshops (ACWs)

The ACWs explored

• Single- and dual- medium-tolarge satellites

- Smallsat (<180 kg) systems
- Hybrid small/large satellite systems
- Constellations of cubesats
- Impacts of international contributions

Polar orbit solutions

Inclined orbit additions

ACW General Findings

Results for first 18 architectures

Value Framework

Key parameters for assigning a science benefit score include the *utility* of geophysical variables for achieving the science objectives and the *quality* of the geophysical variables that are derived from each architecture.

The value framework will allow for a fairly objective cost-benefit assessment of the architectures considered within the observing system study.

An illustrative example of value framework scoring

$$B=\sum UQ$$

B = Family/Customer Satisfaction

TRADITIONAL HAMBURGER RECIPE

Ingredients	Utility	Quality
Patty	0.60	$1.0 = \frac{1}{2}$ lbs, 100% Angus Beef, Charbroiled
		0.4 = vegan "Impossible" burger
Bun	0.20	0.8 = sesame seed topped whole wheat bun
		0.4 = small, white bread bun
Cheese	0.10	0.9 = Cheddar
		0.6 = American 0.3 = Mozzarella
Tomato	0.04	etc
Lettuce	0.04	etc
Onions	0.01	etc
Ketchup	0.01	etc

Utility is the importance of the Ingredient to the Recipe **Quality** is the quality of the given ingredient relative to a best possible (NOTE: Utility is probably more subjective than Quality)

CDC#1 Architecture

Dual-satellite, dual-orbit architecture with:

Polar satellite:

- W, Ka-band non-scanning radar, Ka
 Doppler
- Radiometer with 118, 183 GHz, and several sub-mm channels
- Dual-wavelength lidar, HSRL @ 532 nm
- Thin ice cloud spectrometer (contributed)
- 60-angle polarimeter

GPM-orbit satellite:

- W, Ka-band non-scanning radar, Ka Doppler
- Radiometers with 183/325/670 GHz
- Smallsat dual-wavelength backscatter lidar
- 60-angle polarimeter

Study Summary

- Science and Applications Traceability Matrix (SATM) is maturing, but still under development.
- Exploring international partnerships
- Conducted 4 Architecture Construction Workshops (ACWs)
 - Defined ~32 different architectures ranging from large single satellites to constellations of small satellites with a range of different instrument capabilities.
- First Collaborative Design Center study in October—deeper dive into architecture, costs, risks, etc.
- Earliest possible launch likely in late 2020s