Developing Exploration Technologies on the ISS:
Exploration Toilet Challenges
October 17, 2019

James Broyan | AES Logistics Reduction Project Manager | Crew and Thermal Systems Division | JSC
Introduction

• The Waste Collector System (WCS) is unglamorous but essential
 • WCS defined as collection of urine, menstrual, and fecal waste

• Unsuccessful WCS operation impacts crew performance
 • Crew cabin surfaces, clothing, crew and air become fouled resulting in unhygienic and noxious conditions

• Ineffective processing/storage of waste impacts the vehicle
 • Precipitates/growth can foul urine vents or processing equipment
 • Fecal/urine gas generation (e.g. ammonia) can impact CO2 removal and trace contaminant control systems
Why WCS Hardware is Difficult?

• Human to hardware interface is critical
 • Variability in crew body contours and crew positioning during use
 • Difficult to separate waste from body
 • Surface tension dominates
 • Water unavailable for waste transport from use area once separated

• WCS development relative to vehicle development
 • Generally given inadequate consideration early in vehicle design
 • Vehicle mass and volume constraints compromise WCS functionality

• Difficult to verify and validate hardware performance
 • Lack of adequate urine and fecal simulates and delivery systems
 • Ground tests inadequate and parabolic aircraft flights too short
 • Require multiple space flights to discover and resolve performance
Space Toilet Historical Experience

- 6 US and 3 Russian toilets have flow but inclusive hygienic collection is still elusive (2007-01-3227)
- Have worked well for some but not for all crew
 - Challenges for dual urination and defecation – more compatible for males
 - Escapes of urine and feces
 - Odor control of stored waste
 - Frequent component changeout

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>General System</th>
<th>Urine Collection</th>
<th>Fecal Collection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Air Capture</td>
<td>Female Crew</td>
<td>Crew Feedback</td>
</tr>
<tr>
<td>US</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>n/a</td>
<td>n/a</td>
<td>neutral</td>
</tr>
<tr>
<td>Gemini</td>
<td>n/a</td>
<td>n/a</td>
<td>leaked</td>
</tr>
<tr>
<td>Apollo</td>
<td>n/a</td>
<td>n/a</td>
<td>adequate</td>
</tr>
<tr>
<td>Skylab</td>
<td>Yes</td>
<td>possible</td>
<td>positive</td>
</tr>
<tr>
<td>Shuttle</td>
<td>Yes</td>
<td>Yes</td>
<td>positive</td>
</tr>
<tr>
<td>US ISS WCS</td>
<td>Yes</td>
<td>Yes</td>
<td>positive</td>
</tr>
<tr>
<td>Russian</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soyuz</td>
<td>Yes</td>
<td>Yes</td>
<td>positive</td>
</tr>
<tr>
<td>MIR</td>
<td>Yes</td>
<td>Yes</td>
<td>unknown</td>
</tr>
<tr>
<td>Service Module</td>
<td>Yes</td>
<td>Yes</td>
<td>positive</td>
</tr>
</tbody>
</table>
Space Toilets have continued to evolve

Apollo 10 Lunar Lander transcript pilot Cernan: “Here’s another goddam turd. What’s the matter with you guys? Here, give me a —”
Popular crew photo ops and YouTube
Popular topic in books, movies, TV, web

• *The Big Bang Theory* TV sit-com
 • Wolowitz Zero-gravity waste disposal system

• The *Star Trek Enterprise* TV sit-com
 • Trip explains how a toilet works

• The *Apollo 13* movie
 • Various waste components in use, floating by, and urine venting

• *The Martian* movie
 • Uses waste to grow potatoes

• The book ‘*Packing for Mars*’
 • Has an entire chapter on space toilets, ‘*Separation Anxiety*’
Detailed internal technical discussion – less so

- Crew debrief capture crew experience of an individual
 - Originally difficult to both male and female to attend and ask technical questions
- Toilet usage is very personal but technical dialog and data required to improve functionality
- Goal is to develop toilet with functionality and user interfaces that supports a wide range of techniques and body shapes
- Initiated frequent in-house NASA crew-engineering discussions
 - 3 design thinking secessions focused on specific toilet features 11 crew (6 female)
 - 2 seat evaluations 34 crew (15 female)
 - 4 funnel evaluations 51 crew (25 female)
 - Multiple overall toilet evaluations +25 crew
Toilet Integration – It’s more complicated than you think

- Small vehicle volumes
- Too much or too little airflow
- Wide range of crew alignments
- Odor control during use
- Preventing vents or processing equipment failures
Development of New Exploration Toilet

- The new Exploration Toilet currently in development is based on the Shuttle Extended Duration Orbiter (EDO) Waste Collection System
 - Compact design to accommodate smaller exploration vehicle volumes
 - Urine is collected with improved funnel/hose for more efficient capture
 - Feces is collected in individual bags stored in replaceable canisters with odor control
- Two units are currently in development
 - The first unit is for the first crewed Orion
 - The second unit will fly to ISS, NG-TBD
 - ISS Dual privacy stall flew to ISS on NG-xx
 - Early funnels delivered for early evolution on NG-10

Toilet Stall deployed on ISS Node 3 – modular panels allow partial removal for maintenance in adjacent racks
Development of New Exploration Toilet

Efficient central structural core allows access to all components
Future Exploration Toilet Development

• ISS Technology demonstration will validate in inform design modifications
 • Minimum of 100 calendar daily use - combination of male and female crew
 • Evaluate at least 2 different seats
 • Evaluate 5 different funnels (3 already evaluated early)
 • Periodic photo documentation of crew interfaces
 • Acoustic survey at the user’s head position
 • Continuous fan operation for one period of a minimum of 60 min
 • Return of three full fecal canisters to assess compaction efficiency

• Extended ISS operations for a minimum of 3 years
 • Characterize system reliability, spares, and consumables usage rates

• Reduce mass and volume of toilet consumables
Backup Slides
Acknowledgements & References

Acknowledgements
The exploration toilet has been jointly funded by the Advanced Exploration Systems Logistics Reduction Project, the ISS Program, and the Orion Program. Substantial technical, operational, and integrations support has been provided by many NASA engineers, operations, crew members, and Collins Aerospace engineers.

References