
1 
 

COGNITIVE COMMUNICATIONS FOR NASA SPACE 

SYSTEMS 

David Chelmins
*
, Janette Briones, Joseph Downey, Gilbert Clark, Adam Gannon 

NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, OH 44135, USA 

*dchelmins@nasa.gov  

 

Keywords: COGNITIVE, AUTONOMY, DELAY-TOLERANT NETWORKING 

Abstract 

The growing complexity of spacecraft constellations, 

communication relay offerings, and mission architectures 

drives the need for the development of autonomous 

communication systems. NASA has traditionally launched 

single spacecraft missions that are served by the Space 

Communication and Navigation (SCaN) program. Operations 

on SCaN networks are typically scheduled weeks in advance, 

and often each asset serves a single user spacecraft at a time. 

Recent movement towards swarm missions could make the 

current approach unsustainable. Additionally, the integration 

of commercial communication service providers will 

substantially increase the data transfer options available to 

new missions. 

NASA science missions have found benefit in launching 

swarms of spacecraft, allowing coordinated simultaneous 

observations from different perspectives. Inter-spacecraft 

communication (mesh networking) is an enabler for this 

architecture, as are CubeSats that allow cost-effective 

provisioning of distributed mission assets. As more complex 

swarm missions launch, one challenge is coordinating 

communication within the swarm and choosing the 

appropriate mechanism for telemetry, tracking, control, and 

data services to and from Earth. 

Cognitive communications research conducted by SCaN aims 

to mitigate the increasing communication complexity for 

mission users by increasing the autonomy of links, networks, 

and service scheduling. By considering automation 

techniques including recent advances in artificial intelligence 

and machine learning, cognitive algorithms and related 

approaches enable increased mission science return, 

improved resource utilization for service provider networks, 

and resiliency in unpredictable or unplanned environments. 

The Cognitive Communications Project at the NASA Glenn 

Research Center develops applications of data-driven, non-

deterministic methods to improve the autonomy of space 

communication. The project emphasizes development of 

decentralized space networks with artificial intelligence 

agents optimizing communication link throughput, data 

routing, and system-wide asset management. This paper 

discusses the objectives, approaches, and opportunities of the 

research to address growing needs of the space 

communications community.  

1 Introduction 

Mission needs typically spur innovation in the field of space 

communication. NASA’s communication architecture is no 

exception: from the early days of the Apollo lunar missions, 

to the remarkable construction and operation of the 

International Space Station, to the more recent InSight 

mission to Mars leveraging a small spacecraft 

communications relay (MarCO) [1]. In each case, 

communications system engineers match the mission needs 

to an appropriate communications architecture and capability, 

delivering the correct data throughput, with the correct 

latency, with the required reliability, at an acceptable cost. 

Traditionally, NASA’s space communication infrastructure 

has been government-owned or contracted. Early dedicated 

networks including the Spacecraft Tracking and Data 

Acquisition Network and Manned Space Flight Network 

consisted of ground stations that provided limited but 

acceptable data communications capability for uncrewed and 

crewed spacecraft, respectively, in the 1960s. NASA added 

geostationary relay satellites to the infrastructure beginning in 

the 1980s, providing continuous coverage of low Earth orbit 

through the Tracking and Data Relay Satellite System 

(TDRSS) [2]. Today, NASA operates three communication 

networks: the Space Network (SN), the Deep Space Network 

(DSN), and the Near Earth Network (NEN). 

The modern space communications marketplace continues to 

evolve. While commercial satellite relays and ground stations 

have existed since the earliest days of spaceflight, only 

recently has NASA considered the regular use of these 

systems to meet its mission needs [3]. Multiple companies 

have proposed new mega-constellations of satellites in low 

Earth orbit, providing high-rate and low-latency 

communication capability [4]. NASA is developing cognitive 

communications technology to reduce the burden of bridging 

its legacy government-owned/operated communications 

systems with the use of commercial systems.  

The growing number of operational spacecraft requires more 

sophisticated techniques to cooperatively share spectrum as 

well as mitigate intra- and inter-network interference when 

necessary. Regular use of increasingly high frequencies 

including Ka-band (26.5 – 40.0 GHz) and beyond necessitate 

more intelligent techniques to adapt to time-varying 

atmospheric conditions [5], [6]. More complex multi-hop 
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network topologies envisioned around other bodies such as 

the Moon and Mars provide a challenge for optimal in-space 

data routing [7]. Software-defined radio provides a platform 

to address many of these challenges.  

The Space Communication and Navigation (SCaN) program 

office sponsors the Cognitive Communications project at the 

NASA Glenn Research Center. The purpose of the project’s 

research is to leverage the flexibility and adaptability of 

software-defined radio within the context of autonomy, 

providing an overall benefit to the mission without increasing 

the operations cost. 

2 Defining Cognition 

Merriam-Webster defines “cognitive” as relating to, being, or 

involving conscious intellectual activity such as thinking, 

reasoning, or remembering [8]. While many of the best 

examples of cognitive systems are biological, a significant 

effort in artificial intelligence (AI) has been exerted to 

develop artificial systems that exhibit abilities resembling 

thinking, goal-oriented reasoning, and remembering. A 

cognitive radio, as defined by seminal works in the field, is a 

“brain empowered” wireless device capable of reacting to 

and learning from its environment to enhance 

communications [9], [10]. Thus, cognitive radios should be 

aware of the operational environment, capable of adapting 

their operational parameters, and able to improve from past 

actions to enhance future performance [11]. The principles of 

cognitive radio are broadly applicable across the protocol 

stack to cognitive networking and even entire cognitive 

communication systems [12], [13].  

NASA’s Cognitive Communications project adapts the 

formal definition of “cognitive” as follows: any system, or 

part of a system, that is able to mitigate obstacles, respond to 

and learn from its environment, and achieve beneficial goals 

to the completion of its primary mission. Such a cognitive 

system can perform these activities with minimal to no 

human interaction. Finally, the cognitive system must have 

the ability to adapt to changing conditions by producing 

reasonable outcomes in scenarios that extend beyond the pre-

programmed knowledge of its original inception. The 

Cognitive Communications project defines a cognitive engine 

(CE) as a decision-making algorithm that enables part of a 

cognitive system. Multiple CEs can apply to various levels of 

the communications protocol stack, from a single radio 

frequency (RF) or optical link to complex distributed 

applications.  

A system designer could implement each CE in many 

different ways utilizing different decision-making methods, 

including those based on machine learning (ML), so long as 

these methods align to the goals of the overall cognitive 

system. In general, CEs must rely on multiple inputs and 

process data in different ways to come up with a usable 

solution. One CE design approach aggregates various ML 

and deterministic algorithms into a single framework, 

evaluates performance in parallel, eliminates poor-

performing algorithms, and aggregates the remaining 

algorithms to deliver an optimal solution for the particular 

problem at hand. This approach requires environmental 

feedback to optimize toward particular objectives. The 

decision process (Fig. 1) provides a general approach on how 

CEs interact with the outside world and behave intelligently 

in that environment, to maximize their objectives. 

 

 

Fig. 1 Interaction of cognitive engines with their environment 

 

3 Focus Areas 

The Cognitive Communications project performs research in 

four distinct but intertwined areas:  

 Links – concerning point-to-point connections 

between two devices 

 Networks – concerning multiple devices routing 

information among multiple links  

 Systems – concerning the interaction among devices 

and supporting ground- and space-based 

infrastructure 

 Enabling Technology – concerning the on-board 

processing, sensing, and adaptation capability of a 

device that allows it to participate in cognitive links, 

networks, or systems 

These areas broadly resemble the Open Systems 

Interconnection (OSI) model [14] with some notable 

differences. The highly directional links common to space 

communications necessitate an approach to medium access 

control, typically a function of the data link layer, different 

from that of terrestrial wireless where transmissions from 

user equipment are generally omnidirectional. System 

infrastructure (ground stations or relay satellites) featuring 

directional antennas are generally incapable of supporting 

many simultaneous users. 

CEs applied broadly across all levels of the protocol stack 

will determine link optimization, network routing, and 

system management. While each of these focus areas can 

mature independently, the end goal is to transition towards an 

overall cognitive system-of systems, optimized across all OSI 

layers. The spacecraft itself and the communication provider 

networks must perform joint cross-layer, distributed decision-
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making that conforms to the mission objectives and network 

capabilities. In the next several sections, this paper will 

discuss each focus area, its potential optimizations, and 

benefits in the context of a cognitive space communications 

system. 

4 Cognitive Links 

A space communication link is a wireless connection 

between two radios over distance with at least one of the 

radios in space. Currently, NASA missions determine the 

exact communication system configuration of the radio prior 

to launch. In the case of an RF system, the mission designer 

typically allocates a single frequency and bandwidth to the 

radio, applies for the corresponding spectrum license, and 

negotiates service with a communications service provider 

(through space-based relays or ground stations). The 

traditional approach is robust and proven, yet inflexible to 

real-time changes. The communication system can fail to 

communicate under several plausible scenarios including: 

 The receiver encounters interference resulting in 

loss of lock 

 Mission hardware degrades, reducing the transmit 

power or increasing receiver noise figure 

 The communications service provider cannot 

schedule a sufficient number of contacts 

In each of these cases, the only remedy in a traditional, 

inflexible communications approach is to keep transmitting 

and hope the result improves over time. Using a software-

defined radio, a mission operations team can program the 

system to adapt to predictable or gradual failures. However, 

most real-time issues (especially those that are unlikely or 

unpredictable) can result in loss of mission data. Cognitive 

link capabilities include technologies, algorithms, and 

protocols applicable to the physical and data link layers. The 

prime benefit of a cognitive link approach is on-board, 

autonomous mitigation of real-time issues. A second, 

significant benefit is the ability to improve performance and 

efficiency of the communication link. 

4.1 Radio Frequency Interference Mitigation 

One example of a cognitive link capability is RF interference 

mitigation, which automatically senses and avoids spectrum 

interference by changing frequency, bandwidth, data rate, and 

antenna pointing. An automated approach was developed 

[15] that significantly reduces data loss from RF interference 

while increasing throughput. Fig. 2 shows the RF interference 

mitigation concept, where the space-based transceiver is 

located on the International Space Station. Previous space-

based testing using NASA’s SCaN Testbed has shown that 

RF interference is most likely encountered on the ground. 

That is, transmitters local to the ground station are more 

likely to introduce interference in a link than (1) a space- or 

ground-based transmitter pointing at the spacecraft or (2) a 

space-based transmitter pointing at the ground station. The 

authors in [8] describe a cognitive engine that optimizes: 

 Throughput (maximized) – the number of data bits 

transferred per second 

 Occupied bandwidth (minimized) – occupied spectrum 

 Transmit power (minimized) – amount of 

communications power on the spacecraft 

 

Fig. 2 RF interference mitigation concept 

4.2 Radio Link Optimization 

Prior work has shown adaptive coding and modulation 

(ACM) successfully optimizing throughput over a 

communication link with varying margin [16]. Typically, 

ACM uses fixed signal-to-noise ratio thresholds based on 

theoretical characterization. A new approach is to implement 

a cognitive engine that decides when to change modulation, 

coding, and transmission power based on observed channel 

conditions and mission platform constraints. Results have 

demonstrated that a neural network-based reinforcement 

learning algorithm performing multi-objective optimization is 

feasible for satellite communication [17]. The authors of the 

referenced work developed a cognitive engine that tested 

multiple radio settings so that the system could learn how to 

adapt to achieve multiple goals for satellite communication in 

a dynamically changing environment. 

4.3 Automatic Receiver Configuration 

In an effort to reduce operator burden when switching 

between communication relay providers, self-configuration 

of a software-defined radio may be possible by sensing the 

inbound signal to perform signal recognition. This technique 

relies on signal processing mechanisms to recognize signal 

waveform parameters such as modulation scheme [18], 

coding, and data rate. Using these parameters facilitates 

system self-configuration and link acquisition even in the 

presence of noise or weak signals. For deep space systems 

that have a significant round-trip time (RTT) and multiple 

possible waveform configurations, such a method could save 

one RTT or more. 

4.4 Deep Learning Communication Links 

One intriguing development in the cognitive links area is the 

creation of learned communication systems, which use deep 

learning (AI) techniques to minimize end-to-end message 
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reconstruction. This method offers potential improvements to 

traditional systems in three key areas: jointly optimizing 

modulation and encoding, utilizing the non-linear function 

approximation capabilities of a neural network to account for 

power amplifier distortions, and a relaxation on the 

assumption that system noise follows a Gaussian distribution. 

In [19], [20], the authors introduce an autoencoder model (see 

Fig. 3) that performs physical layer optimization. This work 

was extended in [21] where a generative adversarial network 

(GAN) was used to learn an arbitrary channel model that 

includes non-linearities and memory effects. 

Although this approach shows promise, a real-time 

adaptation will impose a significant computational burden for 

today’s space processors. Additionally, due to the amorphic 

nature of the self-learned system, new protocols must be 

implemented to account for symbol timing acquisition and 

transmitter/receiver coordination during training. Recently, 

this area has received significant attention in the research 

community and several potential architectures have been 

proposed. In [22], the need for a feedback path during 

training was removed and a live implementation was 

demonstrated using hardware radios.  

 

Fig. 3 High-level view of a learned communication system 

5 Cognitive Networks 

The focus of cognitive networks covers many different 

aspects of networking. This includes the higher-level 

objective of realizing an autonomous system of systems: the 

autonomous aspects not only understand the interfaces 

between the systems but also can optimize to fulfill specific 

objectives. At a lower level, there is the objective of 

autonomy and automation for the existing network 

infrastructure.  

5.1 Delay Tolerant Networking 

NASA has a demonstrated need for networks that are tolerant 

to delay and disruption, known as Delay-Tolerant 

Networking (DTN). DTN can refer to a network that is 

affected by disruption or delay, an architecture [23], a set of 

tools, a protocol [24], [25], or a specific implementation of a 

protocol [26]. For the sake of clarity, this paper will 

disambiguate its use of DTN as it relates to the various ways 

in which cognition may be added to different elements of the 

DTN portfolio. 

Generally, DTN is an architecture. An implementation of 

DTN is a set of protocols and techniques that realizes a 

network that is tolerant to delay and disruption. One key 

aspect of DTN is the capability to customize an 

implementation to match its environment: if an environment 

is not anticipated to carry links with long delays, for example, 

protocols such as LTP [27] may not be necessary. 

5.2 Intelligence in the DTN Architecture 

One aspect of DTN study is the identification, maintenance, 

and assignment of endpoints and their mapping to Minimum 

Reception Groups (MRGs). The DTN architecture allows an 

entire constellation of spacecraft (for instance) to act as a 

single, shared DTN endpoint in a larger network. To date, 

however, there generally has been a 1:1 correspondence 

between physical machines with specific endpoints. In an 

intelligent system, this does not need to be the case.  

An intelligent DTN application can provide flexibility: rather 

than each node in a constellation acting as an individual 

endpoint, the entire constellation may serve as a single 

endpoint (with a shared logical bundle protocol agent). The 

constellation can then send and receive DTN data in a 

coherent, locally coordinated fashion, reducing the number of 

times that bundles must be encoded and decoded. This 

reduces unnecessary overhead, allowing implementation of 

DTN in non-traditional locations, such as between individual 

nodes in a constellation that may not individually suffer from 

large degrees of delay or disruption.  

 

Fig. 4 Managing data across distributed endpoints 

An intelligent approach to realizing a delay-tolerant network 

is to monitor a constellation for failures and/or new available 

assets, and to adjust the MRG accordingly. The system might 

also predict and move data to specific elements of an MRG 

that would be most likely to need that data for future events. 

Another potential advantage is the freedom to manage data 

movement between nodes in a MRG; this capability (Fig. 4) 

allows selection of a prime data downlink based on expected 

availability, and dynamic reassembly of data fragments 

within the context of a distributed MRG. This area of study is 

referred to as Drop Data Anywhere (DDA). 

An additional area relates to the means by which data might 

be prepared and processed: this applies not only at the data’s 

origin but also, through the application of virtualization, at 

each incremental hop in data’s movement toward its 

destination. A cognitive routing scheme could ensure that the 
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data passes through incremental nodes that have the correct 

processing ability.  

Routing between multiple delay-tolerant networks is a 

common challenge. While a number of approaches have been 

explored to date, there is still more work needed on the 

integration of physical and link scheduling with network 

routing decisions. For example, there is active work in the 

area of applying Spiking Neural Networks (SNNs) to the area 

of information transfer through delayed and/or disrupted 

networks [28]. The referenced author has considered using 

Software-Defined Networking (SDN) protocols to propagate 

routing information through a network. 

5.3 Cognition in the DTN Protocols 

Cognition in the DTN protocol suite would blend global 

(architectural) goals with local ones. For instance, specific 

protocols might be necessary to support the maintenance and 

establishment of an MRG. While these protocols would not 

be cognitive in and of themselves, the protocols would serve 

as a means to realize cognition in the larger network. One 

such protocol example is the ability to dynamically discover, 

enumerate, and control radio capabilities, allowing the system 

to understand its environment and communicate its decisions 

to others. Work in this area can build on existing protocols 

that are well-known [29]. It can also build on newer entries 

into the protocol arena such as [30], which is an approach to 

the management and monitoring of a delayed and/or 

disrupted network: while not suited for a well-connected 

network, this protocol is useful for situations where coherent 

networks need to exchange information or commands 

through hops that are somehow constrained. 

The other approach to protocol-level cognition is through 

optimization of protocol parameters themselves. If, for 

example, a system knows what the expected link round trip 

time and link rate will be, it can optimize elements of its own 

protocols to use that information without having to rediscover 

that information for itself. Work here has explored modeling 

existing protocols [31] to predict the impact of a specific 

protocol-level decision. 

5.4 Legacy, Infrastructure, and Bootstrapping Intelligence 

One major challenge associated with DTN involves its 

infusion into existing infrastructure. Traditionally, NASA’s 

space network infrastructure has focused on information 

transfer from an asset in space to the ground. Expanding such 

a network requires increasing the number of available 

dedicated antennas or number of unique spectrum bands 

available to support missions. The network will expand until 

the supply of either frequency or antennas is exhausted. 

Recent decreases in launch costs, an evolution in mission 

design to move toward distributed (e.g. multi-spacecraft) 

missions, and a general increase in demand for space-faring 

missions have all begun to place a severe strain on the fixed 

pool of resources available. This has led to applied research 

at the intersection of resource allocation and DTN. 

Automated scheduling techniques to reserve network 

resources (e.g., antennas, bandwidth) are one mitigation. To 

implement automated scheduling, DTN can find an optimal 

network routing solution, and a machine-to-machine interface 

can schedule time on the corresponding nodes. This creates a 

strong sense of vertical integration between different 

elements. 

Additionally, MRGs can fuse multiple short physical events 

(i.e., antenna time) into one larger logical event. This allows 

missions to create a long logical event without necessitating 

the implementation of point solutions to support such a use-

case. Given that smaller scheduling blocks allow for 

improved flexibility when scheduling, this offers benefits to 

both the mission and the service provider: missions can get 

more aggregate service time, and providers can increase the 

duty cycle of the resources they have available to them. 

5.4 Virtualization in Future Cognitive Networks 

Virtualization is an attractive mission-level solution to 

support flexible on-board processing and routing capabilities 

in a cognitive network. When implemented correctly, the 

overhead associated with virtualization can be minimal, while 

offering benefits to reliability, load balancing, and the ability 

to scale-up / scale-down. 

One candidate for virtualization in a space environment 

involves the Core Flight Executive (cFE) framework [32]. 

The common development libraries, framework, and 

environment has allowed for code re-use across a diverse set 

of missions. Work is ongoing in the area of building cFE 

applications as Real-Time Executive for Multiprocessor 

Systems (RTEMS) virtual machines. This would allow an 

intelligent system to migrate elements of its own execution to 

any compatible virtualization environment in real-time. It 

also offers the network a capability to treat members less like 

an individual, and more like a distributed piece of a coherent 

whole, realizing a cloud-compatible approach to service 

management in space environments. 

Notably, both intelligent systems (e.g. inference and on-line 

learning capabilities) as well as network functions themselves 

(e.g. DTN) can be realized as discrete sets of coherent 

functions, each of which can execute on a participating 

member of a cloud-centric service architecture in a space 

setting. 

6 Cognitive Systems 

The Cognitive Systems focus area aims to optimize 

performance across entire space communication systems, 

improving the interaction between mission spacecraft and 

service provider infrastructure. With increased system 

autonomy, the mission spacecraft can negotiate access to 

communication services based on its current data transfer 

needs. This architecture of automated resource allocation 

from spacecraft-initiated requests, called User-Initiated 

Service (UIS), aims to provide more responsive access to 

high-performance space communications [33], [34], [35]. 
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6.1 User-Initiated Service 

In current practice, network operators manage access to the 

highest performance services based on requests from each 

mission’s operations staff. Mission operators must anticipate 

spacecraft commanding and data transfer needs potentially 

weeks in advance. However, an increasing number of 

spacecraft have event-driven service requirements with 

demand that is difficult to predict. Current practice limits the 

network’s ability to negotiate schedules rapidly. The ideal 

network infrastructure incorporates automation and cognitive 

techniques to allocate resources exactly meeting each user’s 

immediate demand. In the UIS concept, the mission 

spacecraft itself originates a request for communications or 

navigation service based on current needs. For example, a 

spacecraft recording scientific data from a transient 

astronomical event can automatically send a request for data 

downlink service when its onboard storage is nearly full. In 

this new paradigm, access to high-performance service can be 

requested using machine-to-machine communications over 

low-rate, high-availability control channels.  

The use of control channels to request resources from a 

wireless network is seen during the base station association 

process of terrestrial mobile networks or the Proximity-1 

hailing channel used by Mars spacecraft [35], [36]. Examples 

of existing control channels include the multiple-access 

capability of NASA’s TDRSS and various commercial 

services that provide low-rate, on-demand messaging 

capabilities. Fig. 5 shows an overview of the process. A 

request for service is received over the control channel by a 

central Event Manager that is aware of both spacecraft and 

communications network capability. The Event Manager 

contracts on behalf of the requesting spacecraft for 

communication service with any network capable of 

establishing a link with the mission spacecraft. The Event 

Manager then sends the necessary waveform configuration, 

ground station or space relay location, and contact time back 

to the requesting spacecraft via the same control channel. At 

the start of the negotiated access window, the spacecraft 

exchanges data with its mission operations center over the 

contracted high-rate data channel. 

 

Fig. 5 Overview of the User-Initiated Service process 

An on-orbit experiment using NASA’s SCaN Testbed 

demonstrated the concept with TDRSS [37]. The low-rate S-

band multiple access service was used as a control channel to 

send requests to schedule high-rate Ka-band single access 

service for data transfer. Though both services were provided 

by the TDRSS, the high-performance Ka-band link is capable 

of supporting data rates 5,000 times greater than those of the 

S-band multiple access system [38]. For missions that do not 

have space-to-space communications capability, the 

feasibility of establishing a control channel between an Earth-

orbiting spacecraft and an omnidirectional antenna co-located 

at a NASA ground station site was evaluated in [39]. Future 

work will demonstrate the use of a low-rate commercial relay 

service as an additional control channel. 

6.2 System-Wide Intelligence 

There has been a growth of commercial ground station and 

relay satellite networks in recent years, offering more 

potential links to a spacecraft than ever before. By adding 

scheduling interfaces for commercial networks, the Event 

Manager can schedule service with one of several networks 

on behalf of the spacecraft. This capability expands the 

capacity of communications service available to the 

spacecraft. Such a multi-provider framework offers a 

heterogeneous mix of links representing a trade-off between 

different characteristics. The Event Manager must choose the 

optimal link.  

System optimization could take place across many factors: 

availability, cost, latency, data volume, contact time, etc. 

Machine learning techniques have recently shown great 

promise in handling these types of multi-objective 

optimization problems including in the space communication 

environment [17]. Using these and similar techniques, the 

Event Manager could select the optimal link to meet the UIS 

request while balancing network load across multiple assets. 

An added benefit is that machine-learning techniques can 

detect service provider anomalies by examining mission 

performance across multiple providers or provider 

performance across multiple missions. Time-varying 

characteristics such as optimization for weather conditions 

affecting a given ground station could be considered. 

Furthermore, a cognitive engine learns from past allocations 

to improve mission communications performance over time.  

7 Enabling Technology 

7.1 Reconfigurable Hardware 

The hardware necessary to implement cognitive 

communications capabilities on-board spacecraft typically 

mimics the hardware that enables artificial intelligence and 

machine learning on the ground. Radiation-hardened space 

processors tend to be about two generations behind terrestrial 

processors. Examples of enabling cognitive processing 

capabilities for space include: 

 General purpose Graphics Processing Units (GPUs) 

and multi-core processors 

 Neuromorphic processors 

 Field-Programmable Gate Arrays (FPGAs) 

In each case, these technologies must have low size, weight 

and power (SWaP) for integration into the spacecraft 

communication system, with tight coupling to the functions 

of the spacecraft software defined radio. Additionally, 



7 
 

processor radiation tolerance is necessary for long-term 

survivability in the space environment, although software 

techniques (e.g., triple mode redundancy, regular system 

resets) can mask radiation effects to some extent. 

Neuromorphic processors implement a non-von Neumann 

computing architecture that utilizes analog and digital 

electronic circuits to mimic the neuro-biological architectures 

present in the nervous system. Neuromorphic systems exhibit 

increased energy efficiency, execution speed, and robustness 

over traditional computing architectures, and can provide 

pattern recognition capabilities for SWaP-constrained 

applications [40]. 

7.2 Cognitive Processing Challenges 

Enhanced onboard processing of science data products 

reduces the amount of data transferred to a mission 

operations center, therefore reducing cost and demand on the 

network. High fidelity science instruments (e.g. synthetic 

aperture radar) are capable of generating volumes of data that 

far surpass a spacecraft communication system’s capability, 

requiring compression or preprocessing [41]. The machine 

learning algorithms discussed throughout this paper may also 

require significant computation during the training process. 

8 Conclusion 

The objectives of cognitive links, networks, systems, and 

enabling hardware discussed in this paper aim to provide 

increased autonomy and reliability for NASA’s 

communication architecture. This will require increased on-

board processing in the space environment, eventually 

resembling a terrestrial cloud computing architecture. Instead 

of simply providing point-to-point links, the future 

architecture for space communication must include 

communication, processing and storage. In such a service-

oriented architecture with distributed cognition, all of the 

optimizations and concepts discussed in this paper become 

possible. 

Machine learning and related automation technologies are a 

new thrust in space communication. Implemented correctly, 

these technologies have the potential to make 

communications networks more efficient and resilient in the 

challenging space environment as they have done on the 

ground. As the envisioned NASA space communications 

network evolves into a cognitive system-of-systems, this will 

enable improved science return, resource efficiency, and 

reliability for both missions and the communication networks 

providers. 
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