

NASA

Overview

- Background
- Scenario Design
- Low SWaP Experiment 1
 - Experimental Design
 - Results
 - Conclusions
- Low SWaP Experiment 2
 - Experimental Design
 - Results
 - Conclusions
- FT6 Full Mission Implications

NASA

Background

- HSI performed two human-in-the-loop (HITL) simulations investigating the effects of shorter RADAR surveillance ranges on DAA system performance in support of Phase 2
 - The studies were designed to:
 - Serve as a validation of the fast-time simulation work performed by the Modeling and Sim team
 - Identify whether any new DAA display, alerting and guidance requirements are needed for UAS equipping with low SWaP sensors
 - Establish a baseline for the Flight Test 6 Full Mission configuration flights
 - The scenario design & encounters used in these HITLs were replicated in FT6
- <u>Low SWaP 1</u> (Nov 2018) examined system performance with two candidate non-cooperative DAA well clear (DWC) definitions as selected by M&S
- Low SWaP 2 (Sept 2019) assessed DAA system performance with four different RADAR declaration ranges

- Low SWaP HITLs 1 & 2 used a similar scenario design, which was leveraged for FT6 Full Mission
- Oakland Center airspace was modeled and staffed with confederate ATC and "pseudo" pilots

- Mission altitude = 8000ft MSL
- Pilots flew 4 experimental trials different mission routes
 - Used Vigilant Spirit Control Station (VSCS) to control the vehicle
 - The scenarios included a 'Racetrack' route and an active TFR to mimic what would be flown in FT6
 - 6 scripted DAA encounters per trial
 - 4 non-cooperative & 2 cooperative

- Vehicle Model: Generic RQ-7 Shadow
 - Smaller than the Tiger Shark but modeled similar performance:
 - Cruise Speed: 60 kts
 - Turn Rate: 7°/sec
 - Climb/Descent Rate: ± 500 ft/min
 - Surveillance:
 - Cooperative Sensor: ADS-B In
 - Detection Range: 20nm
 - Vertical Range: ± 5000ft
 - Lateral Range: 360°
 - Non-Cooperative Sensor: Low SWaP RADAR
 - Detection Range: 1.5-3.5nm (varied by study)
 - ± 110° azimuth
 - ± 15° elevation

• DAA Alerting Structure

Icon	Alert Level	Expected Pilot Response	Time to Loss of DAA Well Clear	Aural Alert Verbiage
	DAA Warning Alert	Maneuver immediately	30 sec	"Traffic, Maneuver Now" x2
	Corrective DAA Alert	Maneuver following ATC approval	60 sec	"Traffic, Avoid"
	Preventive DAA Alert	Monitor traffic; maneuver not currently required	N/A	"Traffic, Monitor"
A	Guidance Traffic Alert	No maneuver required	N/A	N/A
A	Remaining Traffic	No maneuver required	N/A	N/A

DAA Maneuver Guidance

- Shown as 'banding' to help pilots determine which trajectories are predicted to lead to loss of DWC
 - Yellow bands = predicted to lead to Corrective alert
 - Red bands = predicted to lead to Warning alert
- Altitude bands were saturated to show no vertical maneuvers would maintain DWC
- Guidance to regain DWC would appear at the point that a loss of DWC was unavoidable

- Primary Metrics
 - Alerting Performance
 - How did the IV impact the type/frequency of DAA alerts?
 - Response Times
 - How long did it take pilots to notice a DAA alert and upload an avoidance maneuver?
 - Losses of DAA Well Clear (LoDWC)
 - How often did pilots lose well clear against the scripted conflicts?
 - Subjective Feedback
 - How acceptable did pilots find the various experimental conditions?

LOW SWAP EXPERIMENT 1

Experimental Design

- Independent Variables:
 - DWC Definition (within-subjects) Primary Variable
 - "Tau" (DWC1) = 2000ft HMD, 450ft ZTHR, 15s modTau
 - "Disc" (DWC2) = 2200ft HorzDist, 450ft ZTHR, no modTau
 - Ownship Speed (between-subjects)
 - Slow (60kts)
 - Fast (100kts)
 - Intruder Speed (within-trial)
 - Slow (100kts)
 - Fast (170kts)
 - Intruder Approach Angle (within-trial)
 - Head-on (0°)
 - Crossing (45-90°)

These variables were included to capture as many different closure rates as possible

- Participants:
 - 12 active-duty UAS pilots; confederate ATC & pseudo-pilots
- Low SWaP RADAR Characteristics:
 - RADAR Declaration Range = 3.5nm (held constant)
 - Sensor noise was **not** modeled

Alerting Performance

- Tau candidate nominally provided pilots with less time to resolve a threat & coordinate with ATC
 - <u>Tau candidate</u>: **4 of 8** encounter types had Corrective alert duration greater than 15 sec
 - <u>Disc candidate</u>: 6 of 8 encounter types had Corrective alert duration greater than 15 sec
- As a result, intruders progressed to a DAA Warning alert twice as often in the Tau condition than the Disc condition

Response Times

- No effect of DWC candidate on response times
 - Nearly identical responses to Correctives & Warnings
- Responses were faster in Low SWaP HITL 1 than they were in previous Phase 1 work
 - Pilots appeared to respond with more urgency
 - Likely the result of frequent short-duration Corrective alerts

Losses of DAA Well Clear

- There were 3 LoDWC across all conditions (3/289 = 1%)
 - Zero NMACs recorded
 - Nearly identical to Phase 1 results

Subjective Feedback

- Two-thirds of pilots indicated that 3.5nm or more would be their minimum acceptable surveillance range
 - One third would find 2.5-3nm acceptable

Conclusions

- The "Disc" (DWC2) DWC candidate provided pilots with the most time to coordinate with ATC
- Both candidates resulted in an extremely low number of losses of DAA well clear
- DWC2 was selected as the new non-cooperative DWC definition at the March SC-228 F2F meeting
- It was determined that a study was needed to look at smaller surveillance ranges with DWC2

LOW SWAP HITL 2

Experimental Design

- Independent Variables
 - RADAR Declaration Range (within-subjects) Primary Variable
 - 3.0nm
 - 2.5nm
 - 2.0nm ← identified by the fast-time work as the 'breaking point'
 - 1.5nm
 - Ownship Speed (between-subjects)
 - Slow (60kts)
 - Fast (100kts)
 - Intruder Speed (within-trial)
 - Slow (100kts)
 - Fast (170 kts)
 - Intruder Approach Angle (within-trial)
 - Head-on (0°)
 - Crossing (45-90°)
- Participants
 - 9 active-duty UAS pilots; researcher acted as ATC, no pseudo-pilots
- Low SWaP RADAR Characteristics:
 - Honeywell Sensor Model provided representative cooperative (ADS-B) and non-cooperative (ATAR) sensor performance

Same closure rate variables as Experiment 1

Alerting Performance

- 1.5nm & 2nm declaration ranges rarely allow for Corrective alerts and never provide > 15sec Corrective alert duration
 - They both typically provide less than the full Warning alert time
- 2.5nm & 3nm declaration ranges nearly always provide for the full Warning alert
 - Short-duration Corrective alerts are still common at these ranges

Time to Loss of DWC at First Alert

Response Times

- Response times decreased with surveillance range
 - Greater proportion of Warning alerts at smaller ranges meant faster response times due to lack of ATC coordination

Losses of DAA Well Clear

- Shortened alerting time associated with 1.5nm & 2nm ranges led to substantial increases in instances of LoDWC and NMACs
 - Pilots could not react in time to avoid frequent separation violations
 - Particularly a problem with faster ownship speeds (100kts)

Subjective Feedback

- The minimally acceptable range was driven by which ownship speed condition participants had been exposed to
 - Those with the slow ownship speed (60kts) selected 2nm (with exception of 1 pilot that selected 2.5nm)
 - All of those in fast ownship speed condition (100kts) selected 2.5nm

NASA

Conclusions

- A 2.5nm declaration range is necessary to provide pilots with sufficient time to reliably maintain DAA well clear
 - At this range, however, ATC coordination is typically not viable
 - A larger range may ultimately be required by SC-228 if ATC coordination is deemed necessary for these encounter types
- FT6 Full Mission Implications
 - These results paired with the fast-time work established our low SWaP RADAR declaration range requirement of 2.5nm for the Full Mission flights
 - FT6 Full Mission leveraged the scenario design of the HITLs to maximize comparability
 - Vehicle performance, mission route, airspace, ATC interactions, and encounter geometries were kept as similar as possible
 - Will allow us to compare alerting performance, response times, proportion of losses of DAA well clear, and pilot acceptability across the studies

• Questions?