Unmanned Aircraft Systems (UAS)
Integration in the National Airspace
System (NAS) Pro;ect

a.ﬁ P
-

<—~~

S——

" Low Size, Weight, and Power (SWaP)
Experiments 1 & 2

e ~ Flight Test Series 6 VIP Day

/ .. = N
,,/,,’ = Presented by:
Conrad Rorie

November 13, 2019 UAS INTEGRATION IN THE NAS Human Systems Integration




Overview

* Background
* Scenario Design

* Low SWaP Experiment 1
— Experimental Design

— Results

— Conclusions

Low SWaP Experiment 2
— Experimental Design

— Results

— Conclusions

FT6 Full Mission Implications



Background

* HSI performed two human-in-the-loop (HITL) simulations
investigating the effects of shorter RADAR surveillance ranges
on DAA system performance in support of Phase 2

— The studies were designed to:

e Serve as a validation of the fast-time simulation work performed by the
Modeling and Sim team

* |dentify whether any new DAA display, alerting and guidance requirements
are needed for UAS equipping with low SWaP sensors

» Establish a baseline for the Flight Test 6 Full Mission configuration flights
— The scenario design & encounters used in these HITLs were replicated in FT6

* Low SWaP 1 (Nov 2018) examined system performance with
two candidate non-cooperative DAA well clear (DWC)
definitions as selected by M&S

* Low SWaP 2 (Sept 2019) assessed DAA system performance
with four different RADAR declaration ranges




Scenario Design

e Low SWaP HITLs 1 & 2 used a
similar scenario design, which was
leveraged for FT6 Full Mission

e Oakland Center airspace was
modeled and staffed with >
confederate ATC and “pseudo”
pilots

— UAS route remained within Class E
alrspace
— Mission altitude = 8000ft MSL

* Pilots flew 4 experimental trials
different mission routes ==
— Used Vigilant Spirit Control Station
(VSCS) to control the vehicle

— The scenarios included a ‘Racetrack’
route and an active TFR to mimic what
would be flown in FT6

— 6 scripted DAA encounters per trial
* 4 non-cooperative & 2 cooperative




@ Scenario Design

e \Vehicle Model: Generic RQ-7 Shadow

— Smaller than the Tiger Shark but modeled similar performance:
* Cruise Speed: 60 kts
e Turn Rate: 7°/sec
e Climb/Descent Rate: + 500 ft/min
— Surveillance:
* Cooperative Sensor: ADS-B In
— Detection Range: 20nm
— Vertical Range: £ 5000ft
— Lateral Range: 360°
* Non-Cooperative Sensor: Low SWaP RADAR
— Detection Range: 1.5-3.5nm (varied by study)
— +110° azimuth
— *15° elevation
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Scenario Design

* DAA Alerting Structure

lcon Alert Level Expected Pilot Time to Loss of Aural Alert
Response DAA Well Clear Verbiage
“Traffic
DAA Warni . . ,
arning Maneuver immediately 30 sec Maneuver
Alert ”
Now” x2
Corrective DAA | Maneuver following ATC 60 sec “Traffic, Avoid”
Alert approval
Preventive DAA ma nlc\e/lu?/nel:zr(;rizf:;ntl N/A “Traffic,
Alert : Y Monitor”
required
A Guidance Traffic No maneuver required N/A N/A
Alert
Remaining .
Traffic No maneuver required N/A N/A




@ Scenario Design

e DAA Maneuver Guidance

— Shown as ‘banding’ to help pilots
determine which trajectories are
predicted to lead to loss of DWC

* Yellow bands = predicted to lead to
Corrective alert

* Red bands = predicted to lead to Warning
alert
— Altitude bands were saturated to show
no vertical maneuvers would maintain
DWC

— Guidance to regain DWC would appear < i
at the point that a loss of DWC was k |
unavoidable |




Scenario Design

* Primary Metrics
— Alerting Performance
* How did the IV impact the type/frequency of DAA alerts?
— Response Times

* How long did it take pilots to notice a DAA alert and upload an avoidance
maneuver?

— Losses of DAA Well Clear (LoDWC()
* How often did pilots lose well clear against the scripted conflicts?

— Subjective Feedback
* How acceptable did pilots find the various experimental conditions?



LOW SWAP EXPERIMENT 1



Experimental Design

* Independent Variables:

DWC Definition (within-subjects) — Primary Variable
 “Tau” (DWC1) = 2000ft HMD, 450ft ZTHR, 15s modTau
e “Disc” (DWC2) = 2200ft HorzDist, 450ft ZTHR, no modTau

Ownship Speed (between-subjects)
* Slow (60kts)

* Fast (100kts)

Intruder Speed (within-trial)

e Slow (100kts)

* Fast (170kts)

Intruder Approach Angle (within-trial)
* Head-on (0°)

e Crossing (45-90°)

* Participants:
— 12 active-duty UAS pilots; confederate ATC & pseudo-pilots

 Low SWaP RADAR Characteristics:
— RADAR Declaration Range = 3.5nm (held constant)

Sensor noise was not modeled

These variables were
included to capture as
many different closure

rates as possible



Alerting Performance

* Tau candidate nominally provided pilots with less time to
resolve a threat & coordinate with ATC

— Tau candidate: 4 of 8 encounter types had Corrective alert duration
greater than 15 sec

— Disc candidate: 6 of 8 encounter types had Corrective alert duration
greater than 15 sec

* As aresult, intruders progressed to a DAA Warning alert twice
as often in the Tau condition than the Disc condition
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Response Times

* No effect of DWC candidate on response times
— Nearly identical responses to Correctives & Warnings

* Responses were faster in Low SWaP HITL 1 than they were in
previous Phase 1 work

— Pilots appeared to respond with more urgency
* Likely the result of frequent short-duration Corrective alerts
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Losses of DAA Well Clear

* There were 3 LoDWC across all conditions (3/289 = 1%)
— Zero NMACs recorded
— Nearly identical to Phase 1 results
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@ Subjective Feedback

* Two-thirds of pilots indicated that 3.5nm — or more — would be
their minimum acceptable surveillance range
— One third would find 2.5-3nm acceptable

What would you consider to be the minimum acceptable
RADAR surveillance range for non-cooperative intruders?
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Conclusions

* The “Disc” (DWC2) DWC candidate provided pilots with the
most time to coordinate with ATC

* Both candidates resulted in an extremely low number of losses
of DAA well clear

* DWC2 was selected as the new non-cooperative DWC
definition at the March SC-228 F2F meeting

* |t was determined that a study was needed to look at smaller
surveillance ranges with DWC2



LOW SWAP HITL 2
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Experimental Design

* Independent Variables

— RADAR Declaration Range (within-subjects) — Primary Variable
* 3.0nm
* 2.5nm
* 2.0nm < identified by the fast-time work as the ‘breaking point’
* 1.5nm

— Ownship Speed (between-subjects)
* Slow (60kts)
* Fast (100kts)

— Intruder Speed (within-trial) _— Same closure rate
* Slow (100kts) variables as Experiment 1
* Fast (170 kts)

— Intruder Approach Angle (within-trial)
* Head-on (0°)
* Crossing (45-90°)

* Participants
— 9 active-duty UAS pilots; researcher acted as ATC, no pseudo-pilots

 Low SWaP RADAR Characteristics:

— Honeywell Sensor Model provided representative cooperative (ADS-B) and
non-cooperative (ATAR) sensor performance



Time-to-LoDWC

Alerting Performance

* 1.5nm & 2nm declaration ranges rarely allow for Corrective
alerts and never provide > 15sec Corrective alert duration

— They both typically provide less than the full Warning alert time

* 2.5nm & 3nm declaration ranges nearly always provide for the

full Warning alert

— Short-duration Corrective alerts are still common at these ranges
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@ Response Times

* Response times decreased with surveillance range

— Greater proportion of Warning alerts at smaller ranges meant faster
response times due to lack of ATC coordination

Response Times
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Losses of DAA Well Clear

* Shortened alerting time associated with 1.5nm & 2nm ranges
led to substantial increases in instances of LoDWC and NMACs
— Pilots could not react in time to avoid frequent separation violations
— Particularly a problem with faster ownship speeds (100kts)
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@ Subjective Feedback

* The minimally acceptable range was driven by which ownship
speed condition participants had been exposed to

— Those with the slow ownship speed (60kts) selected 2nm (with
exception of 1 pilot that selected 2.5nm)

— All of those in fast ownship speed condition (100kts) selected 2.5nm

Of the RADAR detection ranges you experienced today, please
select the range that you consider to be minimally
acceptable?
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Conclusions

* A 2.5nm declaration range is necessary to provide pilots with
sufficient time to reliably maintain DAA well clear

— At this range, however, ATC coordination is typically not viable

— A larger range may ultimately be required by SC-228 if ATC coordination
is deemed necessary for these encounter types

e FT6 Full Mission Implications

— These results — paired with the fast-time work — established our low
SWaP RADAR declaration range requirement of 2.5nm for the Full
Mission flights

— FT6 Full Mission leveraged the scenario design of the HITLs to maximize
comparability

* Vehicle performance, mission route, airspace, ATC interactions, and
encounter geometries were kept as similar as possible

* Will allow us to compare alerting performance, response times, proportion
of losses of DAA well clear, and pilot acceptability across the studies



e Questions?
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