

Physics-Based Modeling and Simulation of Emerging Battery Technologies for <u>Aerospace</u>

Mohit Mehta and John Lawson Presentation date: 08/21/2019

1. Batteries for Aviation

2. Batteries for Space

Courtesy NASA/JPL-Caltech

Introduction to modeling and simulation

Mehta, M. & Andrei, P., 2014. ECS Transactions, 61(15), pp.39–55

Aerospace Battery Requirements

Major requirement is: High Energy Density

Other requirements are **rechargeable**, **safety**, power, recharge time, cost, etc.

Batteries for Aviation (exploring Li-O₂**)**

Modeling a lithium-oxygen battery

Over-voltage thermodynamic $\eta = \phi_{\rm Li} - \phi - E^0 - V_{\rm discharge}$ electrolyte electrode Li₂O₂ -I(electron current) $\nabla \cdot \left(\sigma_{\text{eff}} \nabla \phi \right) + R_C = aC_d \frac{\partial \left(\phi - \phi_{\text{Li}} \right)}{\partial \mu}$ -I_i (electrolyte current) $\nabla \cdot \left(\kappa_{\rm eff} \nabla \phi_{\rm Li} + \kappa_{\rm D} \nabla \ln c_{\rm Li} \right) - R_{\rm C} = a C_d \frac{\partial \left(\phi - \phi_{\rm Li} \right)}{\partial t}$ -*I*_{Li} (electrolyte diffusion flux) $\frac{\partial \left(\epsilon c_{\mathrm{Li}}\right)}{\partial t} = \nabla \cdot \left(D_{\mathrm{Li,eff}} \nabla c_{\mathrm{Li}}\right) - \frac{1 - t^{+}}{F} R_{C} - \frac{I_{\mathrm{Li}} \cdot \nabla t^{+}}{F}$ $-I_{O2}(O_2 \text{ diffusion flux})$ $\frac{\partial \left(\epsilon c_{o_2}\right)}{\partial t} = \nabla \cdot \left(D_{o_2, eff} \nabla c_{o_2}\right) - \frac{R_C}{n_E}$ ϵ (porosity change -from Li₂O₂ deposition) $\frac{\partial \epsilon}{\partial t} = -R_C \frac{M_{\text{discharge}}}{nF\rho_{\text{m,discharge}}}$

Model calibration for simulating high current

Simulating cells for high power cell needs accurate electrolyte properties and current dependent kinetics

Electrochemical mass distribution

Cell mass distribution

Mass distribution separated into solid and liquid phases

All three components of Li-O₂ cell can be optimized to achieve high specific power

Polarization test: The effect on power

Operating at "high" current densities can lead to 25% power loss during 1hr discharge

Polarization test: Oxygen Partial Pressure

Increasing oxygen partial pressure improves power as well as non-electrochemical mass

Influence of separator on performance

Separator does not contribute to battery performance at high current densities

Effect of cathode thickness on performance

Optimal cathode thickness depends on operation conditions

Influence of microstructure on performance

Optimal values for porosity, particle size, and tortuosity depend on discharge current density and discharge time

Influence of electrolyte properties

Diffusion requirements can be relaxed based by changing operating partial pressure and choosing lower salt concentration

Simulation-based optimization (30 min.)

The oxygen diffusion length (under steady-state) determines cathode thickness and cathode mass

Thin and optimized cathodes, and better oxygen transport electrolytes can provide Li-O₂ for high-specific power cells

Pack level simulation (better optimization)

Active cathode design shows performance improvement but at a power cost of 5-30% for running external systems

Pack level simulation (better optimization)

Batteries for Space (Motivation)

Courtesy NASA/JPL-Caltech

Batteries for Space (Motivation)

© COMPOUND INTEREST 2015 - WWW.COMPOUNDCHEM.COM | Twitter: @compoundchem | Facebook: www.facebook.com/compoundchem This graphic is shared under a Creative Commons Attribution-NonCommercial-NoDerivatives licence.

Ci

Requirements for "Space" Batteries

- **Operating Temperature: -170°C 200°C**
- Specific Energy (Reversible): > 500 Wh/Kg
- **Extremely Low Self-discharge (0-volt)**
- Battery System needs to be low mass and volume
- Current systems need temperature regulation for optimal performance
- Batteries need to be Safe and Reliable

Emerging Battery Technologies for Space

Li-CO₂ Battery:

Solvent-in-Salt Battery

Solid-State Battery:

Utilizing Venus and Mars atmosphere

Li-CO₂ Battery: $4 \operatorname{Li}^+ + 3 \operatorname{CO}_2 + 4 \operatorname{e}^- \longrightarrow 2 \operatorname{Li}_2 \operatorname{CO}_3 + \operatorname{C} (E^\circ = 2.8 \operatorname{V})$ $4 \operatorname{Li}^+ + \operatorname{CO}_2 + 4 \operatorname{e}^- \longrightarrow 2 \operatorname{Li}_2 \operatorname{O} + \operatorname{C} (E^\circ = 1.89 \operatorname{V})$

Modeling Framework identical to Li-O₂

- OCV similar to Li-O₂ chemistry
- The reaction pathway changes below 1.89V
- Lithium Carbonate is more insulating than Li_2O_2
- The kinetics are facile than Li-O₂

Modeling <u>similarities</u> with Li-O₂ chemistry

Morphology of Discharge product

Particle deposition

Polymer Electrolytes (CO₂)

Low current density (O₂)

 $E_{xponential}$ e^{-} Li⁺ CO_2/O_2

Film deposition

Liquid Electrolytes (CO₂)

High current density (O₂)

Liu, J., Rahimian, S. K. & Monroe, C. W. Physical Chemistry Chemical Physics 18, 22840–22851 (2016).

Electrolyte Transport

<u>Different</u> Solubility: 125mM (CO₂) > 2mM (O₂) <u>Similar</u> Diffusivity: 10⁻⁵ cm²/s (CO₂) \approx 2×10⁻⁵ cm²/s

Summary

1. Batteries for Aviation

- Physics-based models can guide cell and pack designs for aviation batteries
- Both current density and cell mass needs to be optimized for high specific power
- Optimal cell design changes based on discharge time, discharge current density, and operating conditions

2. Batteries for Space

- Physics-based models for emerging chemistries need to be developed
- Models on Li-O₂ can be ported to simulate Li-CO₂ batteries for Mars and Venus

Laboratory cell (not optimized)

Cell optimized for low electrochemical mass

Acknowledgements

NASA Glenn Research Center

William Bennett Donald Dornbusch James Wu Vadim Lvovich Rocco Viggiano

NASA Ames Research Center

Justin Haskins Balachandran Gadaguntla Radhakrishnan Charles Bauschlicher John Lawson Lauren Abbott

Funding

NASA Aeronautics Research Mission Directorate (ARMD) Convergent Aeronautics Solutions (CAS) Project, LiON (Lithium-Oxygen batteries for NASA) sub-project.

UC Berkeley

Kristian Knudsen Pedro Arrechea Brian McCloskey

> "We'll continue work to make flight even safer ... to make it quieter ... and through a healthy investment in aeronautics, we'll reach new heights in pursuit of making it cleaner and greener." - NASA Administrator Charles Bolden

#StateOfNASA

