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Key Points:

e We present a framework to estimate irrigation from soil moisture data assimilation using
a particle batch smoother

e A suite of synthetic experiments is conducted to systematically evaluate the impacts of
known error sources

e The method is most sensitive to unknown irrigation timing within a day and systematic
errors between observed and modeled soil moisture
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Abstract

Knowledge of irrigation is essential to support food security, manage depleting water resources,
and comprehensively understand the global water and energy cycles. Despite the importance of
understanding irrigation, little consistent information exists on the amount of water that is
applied for irrigation. In this study, we develop and evaluate a new method to predict daily to
seasonal irrigation magnitude using a particle batch smoother data assimilation approach, where
land-surface model soil moisture is applied in different configurations to understand how
characteristics of remotely sensed soil moisture may impact the performance of the method. The
study employs a suite of synthetic data assimilation experiments, allowing for systematic
diagnosis of known error sources. Assimilation of daily synthetic soil moisture observations with
zero noise produce irrigation estimates with a seasonal bias of 0.66% and correlation of 0.95
relative to a known truth irrigation. When synthetic observations were subjected to an irregular
overpass interval and random noise similar to the SMAP satellite (0.04 cm’cm), irrigation
estimates produced a median seasonal bias of < 1% and correlation of 0.69. When systematic
biases commensurate with those between NLDAS-2 land-surface models and SMAP are
imposed, irrigation estimates show larger biases. In this application, the particle batch smoother
outperformed the particle filter. The presented framework has the potential to provide new
information into irrigation magnitude over spatially continuous domains, yet its broad
applicability is contingent upon identifying new method(s) of determining irrigation schedule
and correcting biases between observed and simulated soil moisture, as these errors markedly
degraded performance.

Plain Language Summary

Irrigated agriculture is the world’s largest consumer of global freshwater producing more than
40% of global food, yet the amount of water being used in irrigation remains largely unknown.
This paper presents and evaluates a new method to estimate the amount of water used in
irrigation that involves giving computer models of the land surface different amounts of
information on soil moisture and then evaluating how well irrigation can be predicted. We show
that the method can accurately predict daily irrigation magnitude so long as the model simulation
of soil moisture is closely in line with observations. The method is also generally robust to
common sources of error in a NASA satellite-based soil moisture. However, when differences
between simulated soil moisture from operational models and satellite-based soil moisture are
too large, then the method will require pre- or post-processing to correct errors between the two
sources. This study provides a useful step towards producing new estimates of irrigation while
highlighting the importance of improving the realism of simulated soil moisture.

1 Introduction

Irrigated land produces more than 40% of global food and agricultural commodity outputs on
only 20% of agricultural land worldwide [V6rosmarty and Sahagian, 2000]. Irrigation is the
largest anthropogenic use of fresh water, consuming about 70-75% of the world’s freshwater
[Zhang et al., 2017], directly contributes to groundwater depletion [Rodell et al., 2009;
Famiglietti et al., 2011; Scanlon et al., 2012] and impacts the water and energy cycles
[Haddeland et al., 2006; Ozdogan et al., 2010; Jiang et al., 2014] underscoring the importance of



60
61
62
63
64
65
66
67
68

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

quantifying the magnitude of this flux. Despite its importance, few methodologies exist to
produce a continuous, observationally-based irrigation estimate. Most existing irrigation datasets
focus on mapping the occurrence of irrigation [Ozdogan and Gutman, 2008; Deines et al., 2017,
Salmon et al., 2015] or rely solely on models to estimate irrigation magnitude [Haddeland et al.,
2006; Ozdogan et al., 2010; Jiang et al., 2014]. As it stands there exist few published
methodologies designed to estimate irrigation magnitude suitable for global application. Here,
we present a new methodology to use data assimilation (DA) with Land Surface Model (LSM)
simulated soil moisture (SM) to estimate daily to seasonal irrigation magnitude at the model’s
spatial resolution.

Historically, irrigation water-use has been monitored using a power consumption
coefficient (PCC) assumption, which estimates the amount of water being pumped for irrigation
as a function of the power an irrigation well draws [Hurr, 1989]. However, the relatively small
number of these in situ irrigation observations limits the large-scale applicability of this method
[Brocca et al., 2018]. Most large-scale irrigation datasets rely on statistical surveys or simply
identify areas equipped for irrigation [Siebert and D61, 2000; Thenkabail et al., 2005; Salmon et
al., 2015]. While these maps are generally spatially consistent over commonly irrigated areas,
issues of accuracy arise at larger scales that could be improved through the incorporation of
remote sensing [Liu et al., 2018]. Attempts to map irrigation extent with remote sensing have
leveraged vegetation indices from Advanced Very High Resolution Radiometer (AVHRR)
[Loveland et al., 2000; Thenkabail et al., 2008], Moderate Resolution Imaging Spectroradiometer
(MODIS) 250 [Ozdogan and Gutman, 2008; Teluguntla et al., 2017; Ambika et al., 2016], and
Landsat 30 [Deines et al., 2017; Ozdogan et al., 2006; Pun et al., 2017] satellite products. Most
recently, remotely sensed SM from Sentinel-1 has shown potential to compliment vegetation
index irrigation mapping techniques to produce irrigation maps at high spatial resolutions and
relatively high temporal resolutions [Gao et al., 2018; Bousbih et al., 2018].

LSMs have served a unique role in irrigation mapping. While they have traditionally
lacked a formal irrigation scheme, it is possible to infer irrigation by contrasting simulated land-
surface evapotranspiration with remotely sensed observations that implicitly include an irrigation
signal [Romaguera et al., 2012]. Over the past two decades, efforts to improve modeled
representation of irrigation have sought to assess the effects of irrigation on LSM-derived water
and energy balances, and to improve the representation of managed lands in land-surface
schemes. LSM studies have shown that irrigation increases SM leading to greater
evapotranspiration with increases in latent heat flux, and decreases in both sensible heat flux and
coupling between SM and latent heat flux in water limited environments [Mahmood and
Hubbard, 2002; de Rosnay, 2003; Haddeland et al., 2006; Tang et al., 2007; Ozdogan et al.,
2010; Jiang et al., 2014; Lawston et al., 2015; Badger and Dirmeyer, 2015]. This repartitioning
of the surface energy and water balances causes lower surface air temperature and elevated
atmospheric water vapor that contributes to the greenhouse effect [Boucher et al., 2004;
Haddeland et al., 2006; Tang et al., 2007; Ozdogan et al., 2010; Jiang et al., 2014; Lawston et al.,
2015]. Frameworks to model irrigation within LSMs follow simple rules based on balancing
available water supply with plant and atmospheric water demand [de Rosnay, 2003; Haddeland
et al., 2006; Tang et al., 2007; Ozdogan et al., 2010]. However, uncertainties in irrigation
mapping and weather data can result in variations of irrigation water demand of about 30%
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[Wisser et al., 2008]. Irrigation estimates have typically been validated with local reports of
annual consumptive water use [Haddeland et al., 2006; Ozdogan et al., 2010] or
evapotranspiration as a proxy for irrigation given the lack of irrigation monitoring [Lawston et
al., 2015]. Therefore, despite recent advances, model irrigation studies remain largely under-
validated, particularly at time scales less than one month.

Given the importance of constraining and validating these irrigation studies and lack of in-situ
data, attempts to use remote sensing to monitor agricultural water use have been explored,
primarily using remotely sensed evapotranspiration [Droogers et al., 2010; Wu et al., 2015; Sun
et al., 2017; van Dijk et al., 2018] and SM [Brocca et al., 2018; Zaussinger et al., 2018]. While
SM retrievals are now available from a number of passive microwave and scatterometer-based
instruments [Kim et al., 2015; Kerr et al., 2012; Wagner et al., 2013; Gao et al., 2017; El Hajj et
al., 2017; Entekhabi et al., 2010], a key challenge lies in whether remotely sensed SM can
adequately capture irrigation signals. Recent studies have concluded that the Soil Moisture
Active Passive satellite (SMAP), Sentinel-1 satellites, and the Advanced Scatterometer (ASCAT)
can reliably detect irrigation signal, and the Soil Moisture Ocean Salinity mission (SMOS)
mission, Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-
E), the Advanced Microwave Scanning Radiometer 2 (AMSR2) and the ESA CCI product can
detect irrigation signal but with lower skill [Lawston et al., 2017; Gao et al., 2018; Bousbih et al.,
2018; Escorihuela and Quintana-Segui, 2016; Zhang et al., 2018; Jalilvand et al., 2019; Kumar et
al., 2015]. Recently, Brocca et al., [2018] input remotely sensed SM into an inverted soil water
balance equation to calculate monthly irrigation amounts during non-rainy satellite overpasses.
Jalilvand et al., [2019] built on Brocca et al., [2018] by removing bias from estimated irrigation
by estimating model bias over non-irrigated or rain-fed cropland areas and used these biases for
correcting the simulation at irrigated pixels. Zaussinger et al., [2018] quantified seasonal
irrigation by attributing biases between remotely sensed soil wetting and modeled soil wetting to
irrigation. Although remotely sensed soil moisture captures irrigation signals, these retrievals
alone are insufficient to assess spatiotemporally continuous estimates of irrigation and its effects
on the water and energy cycles. Studies like Lievens et al., [2017] that assimilate observations
from both SMAP and Sentinel-1 leverage the strengths of each and have the potential to
ameliorate issues from prior studies that relied exclusively on SMAP retrievals to estimate
irrigation magnitude given that the coarse spatial resolution failed to resolve local irrigation
practices [Brocca et al., 2018; Zaussinger et al., 2018]. Sentinel-1 soil moisture observations (10
m resolution) may be more appropriate than SMAP observations (3-36 km) to resolve local
irrigation practices in many regions worldwide where the footprint of irrigation application is
smaller than the SMAP resolution. However, a key limitation of Sentinel-1 retrievals are their
less frequent overpass intervals (6-days) [Bousbih et al., 2018; Gao et al., 2018].

The goal of DA is to leverage the strengths of spatiotemporally continuous model
simulations, e.g. constrained water and energy balances, with the veracity of observations, using
observations to ‘correct’ key model states such as SM [Reichle et al., 2008; Lievens et al., 2015].
Correction of model states with DA have been used to provide more accurate estimates of model
outputs such as SM, streamflow, and snow water equivalent [Lievens et al., 2015; Margulis et
al., 2015; Dong et al., 2015; Smyth et al., 2019] and correct model inputs, such as precipitation
[Crow and Bolten, 2007; Crow and Ryu, 2009; Crow et al., 2011; Zhan et al., 2015]. A key
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assumption in most DA techniques is that the errors in observations and model forecasts are
strictly random and that on average, the observations and model estimates agree with true Earth
states. In reality, biases are unavoidable, and it is difficult to attribute the bias to the model or
observations [Kumar et al., 2012]. Often these biases are treated prior to assimilation through
cumulative distribution function (CDF) matching to essentially rescale observations to the
modeled climatology.

However, a critical problem arises in CDF-matching observations to a model
climatology, in particular when the model physics do not account for processes such as
irrigation. The goal of CDF-matching is to map the observed climatology to the land model,
which intends to erase biases between the land-model and observations due to instrument and
retrieval errors. Yet, when the LSM does not account for irrigation, the CDF rescaling also
removes the impact of unmodeled processes, such that observed irrigation signal also gets erased
[Kumar et al., 2015]. Thus, removing biases between observations and the model is important in
DA, and treatment of biases arising from unmodeled processes (i.e. irrigation) represents an
unresolved challenge. On-going research exploring DA over irrigated regions to resolve or
circumvent this issue includes: calibrating LSMs in NASA’s Land Information System (LIS) to
in-situ SM observations, CDF-matching observations to the climatology of an LSM using an
irrigation scheme, and assimilating multiple remotely sensed variables that contain irrigation
signal, e.g. evapotranspiration or evaporative stress index. Because bias correction over irrigated
land remains an unresolved issue, this study follows Dee, [2005] and uses a bias-blind DA
approach without any a priori bias correction. Biases are documented and their impact is
evaluated across the conterminous U.S. (CONUS). The inferences from this study are expected
to contribute towards the development of bias correction strategies that preserves signal of
unmodeled processes.

Here, we present a methodology that uses SM DA to estimate irrigation magnitude and
improve understanding of irrigation’s effects on surface SM. We apply and evaluate the
methodology using a suite of synthetic DA experiments [Reichle et al., 2008; Kumar et al., 2012;
Kumar et al., 2015] that use SM outputs from a control simulation as a surrogate for remotely
sensed SM retrievals. While we do not directly assimilate remotely-sensed soil moisture, we
impose categorical errors in the experiments using the characteristics of soil moisture from
NASA’s SMAP satellite as a way to systematically evaluate both the performance and
limitations of the method in an applied context. Evaluations are presented in the context of
SMAP retrievals because these have been shown to yield the most accurate SM estimates relative
to other sensors [Lievens et al., 2017; Chen et al., 2018; Kumar et al., 2018]; although, the
method can be applied to any SM product or land model. This study follows an approach similar
to Crow et al., [2011], except that unlike Crow et al., [2011] who were interested in improving
estimates of precipitation, here we seek to quantify water input from irrigation. This manuscript
is organized around a suite of synthetic experiments, presented to systematically evaluate the
impacts of known, SMAP-based error sources on the DA system. We seek to evaluate the impact
of the following system characteristics on the performance of estimated irrigation: (i) the
window length of the DA smoothing algorithm, (ii) the frequency of satellite overpasses, (iii)
noise in the SM data, (iv) relative magnitude of irrigation compared to precipitation, (v) biases
between the LSM and the satellites, and (vi) the challenge of unknown irrigation timing.
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2 Materials and Methods

2.1 Approach

We use the Particle Batch Smoother (PBS) DA method [Vrugt et al., 2013; Dong et al., 2015;
Margulis et al., 2015] to estimate the unmodeled irrigation process on the basis of minimizing
errors between simulated and observed SM states. Particle-type data assimilation algorithms
have been used to successfully increase accuracy of moisture states and fluxes in small-scale
problems assimilating in-situ soil moisture observations [Dong et al., 2015] and in large-scale
problems assimilating remotely sensed soil moisture observations [Crow and Ryu, 2009; Crow et
al., 2011]. An important distinction of the PBS is that it tracks the accuracy of individual model
simulations, e.g. particles, and gives more weight to accurate particles. In contrast, the other
common assimilation method—the Ensemble Kalman Smoother (EnKS)—adjusts, e.g. nudges,
the state of the model closer to the observed state estimate. We elect to use the PBS over the
EnKS because estimating model inputs, i.e. precipitation and irrigation, from the EnKS requires
parameters external to the land model that are difficult to calibrate [Crow and Ryu, 2009; Crow
et al., 2011]. Conversely, particle accuracy, or weights from the PBS, can be directly translated
into respective particle forcings to determine a best estimate of water input (the sum of irrigation
and precipitation), from which known precipitation can be subtracted to estimate irrigation. The
implicit assumption is that accurate SM states are the product of accurate model forcing.
Application of a known amount of irrigation in these experiments allows us to comprehensively
validate the method under key sources of error introduced sequentially (i.e. one at a time) and in
combination. We elect to specify irrigation amount, rather than use observations or census data,
so0 as to avoid confounding the analysis with sparse and biased data [Brocca et al., 2018; Kumar
et al., 2015]. Because the objective of this manuscript is to critically evaluate a new approach, we
elect to specify a ‘truth’ irrigation signal which allows for the systematic diagnosis of the known
error sources as well as overcome data limitations [Brocca et al., 2018], both of which are
needed for a comprehensive validation. Hence, all data assimilation experiments in this study use
synthetic observations derived from LSM simulations rather than remotely sensed retrievals.

Core experimentation is conducted on a single grid cell in a heavily irrigated region of
Nebraska, with an extended analysis performed on other irrigated regions across CONUS to
evaluate the role of climate on method performance. Synthetic experiments assume perfect
knowledge of when and where irrigation is present. Although irrigation maps accurately predict
the location of irrigation [Gao et al., 2018; Bousbih et al., 2018; Ozdogan and Gutman, 2008;
Teluguntla et al., 2017; Ambika et al., 2016], their temporal resolution is not fine enough to
determine temporal boundaries of the irrigated season. In this study, we assume the irrigation
season follows Yonts, [2002], and acknowledge that non-synthetic applications of this method
will require identification of the irrigation season at the model’s spatial.

The suite of synthetic DA experiments use an identical twin experiment setup [Kumar et
al., 2015], presented in Figure 1. All simulations are run over a single model grid-cell in
Nebraska. A two-year spin-up generated initial conditions for the DA experiments. The 2015
irrigation season (April 29" — August 6™) [Yonts, 2002] is evaluated. The VIC LSM simulation
forced with the NLDAS-2 data is termed the open loop (OL) integration (Table 1). The VIC
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LSM simulation forced with NLDAS-2 data and a prescribed quantity of irrigation is used as the
“truth” simulation (Table 1). From the truth simulation, observations are generated. These
synthetic observations are assimilated with an ensemble of particles forced with NLDAS-2 data
across a range of irrigation magnitudes. Each particle receives weights from the PBS over
defined fixed-window intervals. Weights are traced to particle forcings to describe a posterior
probability density function (PDF) of precipitation plus irrigation, while also managing the
population of particles. The population is managed by resampling from a set of preferential, i.e.
high-weighted, particle states at the beginning of each new window using the sequential
importance resampling methodology [Gordon et al., 1993; Weerts and El Serafy, 2006], and
particles with lower weights are generally discontinued (Figure 2a). The expected value of the
posterior PDF yields a single best estimate of precipitation plus irrigation for each smoothing
window. NLDAS-2 precipitation is subtracted from this best estimate of precipitation plus
irrigation to yield a single best estimate of irrigation for each smoothing window. Here, the
standard deviation of irrigation’s posterior PDF is used to represent the uncertainty of the
estimated irrigation (Figure 2b).

| Synthetic Truth | Ensemble Generation

Perturbed NLDAS-2
met. and veg.
fraction + ensemble
of irrigation values

NLDAS-2 met. and
veg. fraction +
known irrigation

|

VIC-4.2.d

vic-4.2d

|
|
|
I I
I I
I
PBS Ensemble of I
soil moisture |

Weights for each particle l | Resample for next

“Truth” soil
moisture

at each time-step window using weights

||

Best estimate soil moisture
and (precipitation + irrigation)

Subtract NLDAS-2 precipitation
\ 4

Best estimate
Irrigation

Figure 1. Structure of synthetic data assimilation experiment.

Key variables are defined in section 2.1.1, the basic implementation of the PBS is
described in section 2.1.2. The experimentation on methodological error sources follows for
window length (2.2.1), frequency of observations (2.2.2), observational noise (2.2.3), irrigation



250  magnitude (2.2.4), model bias (2.2.5), irrigation application timing (2.2.6), and a comprehensive
251  evaluation combining frequency of observations, observational noise and irrigation application
252  timing (2.2.7), with the metrics for performance evaluation presented in section 2.3.
253 2.1.1 Definitions
254  Key variables used in the synthetic DA experiments are referenced in Table 1. IRRG 18
255  created from a spline interpolation of weekly corn water use [Yonts, 2002]. The aggregate of
256  both sources of water, Ayum = Poss + IRRGyum, 1s used to force the synthetic truth LSM
257  simulation. Irrigation is added to the LSM as supplemental precipitation forcing. For consistency
258  with the SMAP 6 AM overpass timing [Entekhabi et. al, 2014; Jackson et al., 2012], LSM
259  outputs at 6 AM local-time are used as the truth synthetic observations, SM., in the PBS
260  algorithm.
261  Table 1. Definitions of key variables and terms used in synthetic data assimilation experiments.
262  Additional details can be found in section 3 describing data sources.

Variable/Term | Definition

Pobs Gridded historical precipitation

IRRGtruth Synthetic irrigation following published weekly water use patterns in Western Nebraska

[Yonts, 2002]
Auruth Aggregate of observed precipitation and truth irrigation, Asum = Poss + IRRG . Used as
forcing in the “Truth Simulation”
Open loop Simulation designed to portray non-irrigated land
simulation

Truth simulation

Simulation designed to portray irrigated land

SMor Surface SM outputs from open loop simulation.

SMiyush 6 AM surface SM outputs from truth simulation. Used as synthetic observations in DA
experiments.

SMuruth+0verpass 6 AM surface SM outputs of truth simulation on days of valid SMAP overpasses. Used as
synthetic observations in DA experiments.

Particles Simulations forced with Poss + precipitation perturbations. Precipitation perturbations account
for noise in Poxs and unknown irrigation quantities.

Ppariicte Precipitation used to force particles in PBS simulations

Apss Best estimate precipitation + irrigation from particle batch smoother algorithm

IRRGpss Best estimate irrigation from particle batch smoother algorithm. (4rps — Poss)




OlRRG—PBS Standard deviation of the discrete posterior PDF of the irrigation ensemble, used here as a

measure of /RRGpgs uncertainty
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2.1.2 Precipitation perturbations and the particle batch smoother

Here we describe how the particle batch smoother (PBS) algorithm is implemented. We refer the
reader to Dong et al., 2015 for a comprehensive and general presentation of the PBS.

Precipitation is perturbed over all time steps to generate the suite of 99 particles by
introducing multiplicative Gaussian noise with a 10% standard deviation, N(0,0.1), accounting
for random noise in precipitation observations. Here, € is a Monte Carlo sample from this
distribution. A second perturbation, /RRG(r), is superimposed during the irrigated season.
Precipitation perturbations () and precipitation forcing applied to particle simulations (P'paricie)
are described by equations la and 1b, respectively.

' = Pops € + IRRG'(7) (equation 1a)
Piparticle = Pops + 7]i (equation lb)

where 7’ is the perturbation added to P,ss, and IRRG'(r) is a random sample from a uniform
distribution range, r, of irrigation magnitudes, and i denotes the i’ particle in the ensemble,
hence Pparicie 1s @ 99x1 vector at each timestep. The range of superimposed irrigation
perturbations, 7, is 0-30 mm/day during the irrigation season and » = 0 elsewhere. A uniform
distribution is used because we assume no prior knowledge of irrigation magnitude, thus the
entire possible range of irrigation is considered equally. I[RRG'(r) is applied continuously each
day to the i particle during the irrigation season, matching the same timing of IRRGum. We
apply irrigation continuously each day given that 80% of irrigated lands in Nebraska rely on
sprinkler systems [Johnson et al., 2011] that are commonly in use 22 hours per day [Ross, 1997].
Multiple irrigated fields are observed by each 9 km SMAP sensing pixel, so we assume irrigation

is applied continuously in each coarse pixel during a growing season.
An ensemble of model states evolves in parallel using the forward model:
X'= f(x,ut,bY) + wi (equation 2)

Where x';is the model state (SM) of the i particle at time ¢, u/; are the perturbed forcing data, b’
is a vector of time invariant model parameters, w';is the model error, and f'is the forward model
(VIC). Here, x; is a 99x1 vector because SM is the only assimilated state.

Posterior expected values for precipitation plus irrigation, Apss, are calculated as the
mean precipitation forcing of the discrete posterior density given from the PBS. The posterior
density is fully described by the conditional PDF given by Bayes’ theorem [Margulis et al.,
2015],

T .
: 1 —-0.5(yi—x%) ¢yt (y;—xb .
P(}’t—L+1:t|xé—L+1:t) = H§=t—L+1 (2n)n/2det(cv)1/2e[ (y] x}) v (y} x])] (equation 3)
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or the likelihood of observed states, y, given particle estimates, x, in window #-L+1/.:t. Where, L
represents the length of the window. In a special case where L=1, observations are assimilated
sequentially, i.e. the particle filter (PF). In cases where L>1, the PBS assimilates observations
within a window in a single batch. The likelihood function is specified as a Gaussian PDF that is
a function of observation error covariance (Cy), residuals between simulated SM and all
observations within a window, and the number of assimilated states or fluxes (n). In this case,
n=1 because only SM is assimilated. Particles that produce SM states with small residuals
relative to observed states receive relatively higher likelihood estimates compared to particles
that produce SM states with larger residuals. Cy plays a large roll in controlling the spread of
weights in that a smaller Cy results in fewer particles with high weights. Synthetic experiments
that use SMy.. as observations assume Cy to be unknown, and the model’s ensemble variance at
the time of assimilation is used as a proxy for Cy. A weakness of this assumption is that
observation uncertainty becomes a function of window length, since the ensemble spread
increases for longer window lengths. Experiments that use these perfect observations provide an
exposition of the method, but in our core experimentation we use more realistic values of
prescribed observational error, where this prescribed error is used for Cy. We advise the reader to
use prescribed product errors for Cy in the likelihood calculation for any application of this
method.

Weights for each particle are equated to likelihood estimates. Weights defining the discrete
posterior PDF are normalized between 0 and 1 of likelihood estimates:

i _ p(Yt—L+1:t|xé—l:+1:t)
Zliv=1p(yt—L+1:t|x£—L+1:t)

(equation 4)

where W/, is the normalized weight assigned to the entire window, and is a 99x1 vector at each
timestep, which is repeated at each timestep in a fixed window; i.e. weights are constant within a
fixed window.

We use Sequential Importance Resampling (SIR) [Gordon et al., 1993; Weerts and El Serafy,
2006] to avoid degeneracy (collapse) of the posterior weights after several updates [Margulis et
al., 2015]. The resampling process is analogous to rolling an N-sided loaded die, where N is the
number of particles generated; here N=99. The probability of rolling each side of the die are
defined by weights calculated in equation 4. The die is rolled N times. Each time the die lands on
a particle’s side, a new particle is generated from the particle’s state at the end of the previous
fixed window and propagated to the start of the current fixed window. Hence, particles with
higher weights have higher probabilities of propagating their states to be initial conditions in the
subsequent window.
Apss, the expected time series of precipitation plus irrigation, is calculated as,

L

_ N i .
APBS,t — Zi=1 W¢ particle,t (equatlon 5)

where P'yaicie, 18 the precipitation forcing particle 7 at time ¢. The estimated irrigation from PBS
simulations, /RRGPpgs, is calculated by subtracting Poss from Apps.



333 We quantify the uncertainty of JRRGpss, as the standard deviation of the discrete posterior
334  PDF of the irrigation ensemble [Montgomery and Runger, 2018]:
335 O1RRG—-PBS = \[Z?’:lwti (IRRG'(r) — IRRG pgs)? (equation 6)
336 2.2 Sensitivity experiments of the data assimilation system
337  The performance of the DA system is evaluated against the error sources described below and
338  presented in Table 2. DA performance has been shown to be sensitive to initial conditions in
339  experiments assessing different observational frequency and window length [Dong et al., 2015].
340  For this reason, the first two experiments were run at least 10 times with different initial
341  conditions, e.g. different starting dates, as a way to comprehensively evaluate model
342 performance. Initial conditions were taken from a 2-year spin-up simulation that used identical
343  inputs as the truth simulation excluding irrigation forcing. Experiments that include random
344  observation noise, (Sections 2.2.3 & 4.3,2.2.4 & 4.4 and 2.2.7 & 4.7) were run 20 times
345  applying a unique time series of random noise to account for multiple realizations of random
346  noise, since these results were shown to be particularly sensitive to different instances of random
347  noise.
348  Table 2. Experiment descriptions with corresponding Methods and Results sections.
Experiment Relevant | Experiment Description
Name Methods
and
Results
Sections
Window length | 2.2.1 and | Evaluate the impact of 1 to 30-day windows on irrigation performance. Assimilate
4.1 daily SM.s with zero noise or bias. Force particle and truth simulations with
irrigation applied on a continuous schedule.
Frequency of | 2.2.2 and | Evaluate the impact of hypothetical satellite overpass intervals of 1 to 9 days using
observations 4.2 a short, medium, and long window length, 10-, 16- and 24-day respectively.
Assimilate SM;..» with zero noise or bias. Force particle and truth simulations with
irrigation applied on a continuous schedule.
Observation 223 and | Evaluate irrigation performance when synthetic observations are imposed with 0-
noise 4.3 mean Gaussian noise with standard errors of: 0.01 cm?*cm™, 0.02 cm’cm?3, 0.03
cm’ecm, 0.04 cm*cm™ and 0.05 cm?cm™ using a short, medium, and long window
length, 10-, 16- and 24-day, respectively. Assimilate SMui+overpass With zero bias.
Force particle and truth simulations with irrigation applied on a continuous
schedule.
Irrigation 224 and | Evaluate irrigation performance across a range of irrigation/precipitation ratios
magnitude 4.4 using a short, medium, and long window length, 10-, 16- and 24-day, respectively.

Force truth simulations with varying combinations of Poss and IRR G rum, rescaling
Pows and IRR G rurn via scalar multipliers to maintain the same magnitude of Pops +
IRRG s for all experiments while varying the ratio of IRRG um / Pops. Conduct




experiments for each truth simulation. Assimilate SMush+overpass imposed with O-
mean Gaussian noise with a standard error of 0.03 cm?cm™ and zero bias. Force
particle and truth simulations with irrigation applied on a continuous schedule.

Model-
Observation
bias

2.2.5 and
4.5

Evaluate the impact of systematic bias between the model particles and truth
simulation using a medium window length, 16-day. Assimilate SMuin+overpass
imposed with static systematic biases [-0.2 cm*cm™ — 0.2cm3cm?®] and zero
random noise. Force particle and truth simulations with irrigation applied on a
continuous schedule.

Irrigation
application
timing

2.2.6 and
4.6

Evaluate the impact of unknown irrigation timing and discontinuous irrigation
schedules on irrigation performance using a long, 24-day, window length. Five
experiments are conducted with different combinations of truth irrigation timing
and particle irrigation timing. Force the first truth simulation with irrigation
applied continuously (as done previously). Force the second truth simulation with
irrigation applied every day from 4AM-10AM. Force the third truth simulation
with irrigation applied all day, 2-days per week. In the first three experiments, the
particle simulations are forced with irrigation applied on a continuous schedule,
which assumes no a priori knowledge of irrigation timing. Force the fourth truth
simulation with irrigation applied all day, 2-days per week. Force the fifth truth
simulation with irrigation applied every day from 4AM-10AM. In the fourth and
fifth experiments, particle simulations are forced with irrigation applied on the
same schedule as truth irrigation to investigate the impact of a priori knowledge of
irrigation timing. Daily SMi..« 1s assimilated with zero noise or bias for all five
experiments.

Comprehensive

evaluation

2.2.7 and
4.6

Evaluate the impact of unknown irrigation timing, discontinuous irrigation
schedules, irregular overpass intervals and observational noise on irrigation
performance. Conduct five irrigation timing experiments explained in section 2.2.6
when synthetic observations are imposed with 0-mean Gaussian noise with a
standard error of 0.04 cm*cm™. Assimilate SMu+overpass With zero bias.
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2.2.1 Window length

Window length is a potentially limiting factor for the performance of the presented method given
that weights are constant from each window. This has the effect of producing constant irrigation
estimates during each window, assuming no random noise from precipitation, i.e. € in equation
la is 0. However, in the presented synthetic data assimilation experiments, we assume random
noise in precipitation observations exist, so discrepancies between Pparicie and Poss exist due to
both random perturbations and irrigation perturbations (equation 1a) causing irrigation estimates
in each fixed window to not be constant (Figure 2b). A tradeoff exists in using shorter versus
longer window lengths, since irrigation estimates using shorter window lengths can capture finer
temporal variations in truth irrigation although noisy observations can be potentially impactful.
Longer window lengths miss high frequency fluctuations, but since they include more
observations, they produce more stable irrigation estimates that are less sensitive to noisy
observations than shorter windows. Here, synthetic DA experiments are conducted where daily
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SMiun 1s assimilated with particles using window lengths of 1-30 days. We assess the median
statistics, or measure of the central tendency, of each window. The particle filter (PF) is
considered a special case of the PBS when the window length is 1-day. Understanding that
tradeoffs between shorter and longer window lengths are present, we evaluate the method’s
sensitivity in the context of 3 example windows, 10-, 16- and 24-days in latter experiments.

2.2.2 Frequency of observations

Remotely sensed surface SM retrievals generally occur at infrequent and irregular intervals based
on their orbit. We evaluate the performance of the method across a range of observational
overpass intervals commensurate with those from operational satellites. Here, nine synthetic DA
experiments are conducted where the synthetic observations, i.e. SM., are assigned regular
return intervals of 1 to 9 days, respectively. A tenth experiment is conducted that applies
SMAP’s irregular return interval to SMj.x. Synthetic observations with SMAP’s return interval
are referred to as SMyuwm+overpass-

2.2.3 Observation noise

Remotely sensed retrievals are inherently noisy, and assimilating less noisy observations are
expected to result in more accurate estimates from DA simulations [Reichle et al., 2008]. To this
end, synthetic observations are generated by adding random 0-mean Gaussian noise with
standard errors of 0.01 cm?cm, 0.02 cm’cm -3, 0.03 cm’cm 3, 0.04 cm?cm - and 0.05 cm’cm -3
t0 SMiyuth +0verpass. Random Gaussian noise settings of 0.01-0.02 m*m are optimistic, whereas
reported unbiased root mean square error for state-of-the-art remotely sensed measurements
generally fall between 0.03-0.05 cm?cm = [Kerr et al., 2010; Entekhabi et al., 2010; Colliander et
al., 2017].

2.2.4 Irrigation magnitude

We acknowledge that irrigation water use is regionally variable depending on the amount of
precipitation received and crop-water used. We seek to evaluate performance across a range of
plausible irrigation rates relative to their background precipitation, which are representative of
different regions within CONUS. We analyze the method in context of seasonal precipitation
magnitude over irrigated sites in Nebraska, Florida, Mississippi, California’s Central Valley and
Oregon. The baseline method was evaluated in Nebraska, which has been a focus of other
irrigation studies [Johnson et al., 2011; Scanlon et al., 2012; Ozdogan et al., 2010; Zaussinger et
al., 2018; Jiang et al., 2014; Pun et al., 2017]. These new experiments superimpose /RRG 4 to a
range of background precipitation forcings. All truth simulations receive the same aggregated
water input, e.g. precipitation plus irrigation (1380 mm/season), assuming a roughly fixed
magnitude of plant water use over a single season, noting that evaporative demand in different
climates will effectively increase or decrease the plant-available water. A semi-continuous range
of irrigation over precipitation ratios is created, ranging from 0.25 to 26.25, by rescaling
precipitation and irrigation, IRRGuim/Poss, from the Pops and IRR G used in prior experiments
with scalar multipliers. Irrigation over precipitation ratios are tested with evenly spaced intervals
of 2. Experiments assimilate SMium +overpass imposed with typical noise for the SMAP satellite,
0.03 cm*cm?.
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2.2.5 Model-Observation bias

The above experiments have assumed that models and observations are unbiased estimators of
true SM states, specifically that the only bias present between modeled SM and observed SM is
the irrigation signal. However, systematic biases between modeled SM and observed SM are
widely known to exist because simulated SM is dependent upon numerous model-specific
assumptions related to soil texture, physics parameterizations, and vertical discretization [Koster
et al., 2009; Dirmeyer et al., 2006]. For this reason, bias correction is common practice in DA
systems, including SM DA over irrigated [Kumar et al., 2015; Nair and Indu, 2019] and non-
irrigated [Reichle et al., 2004; De Lannoy et al., 2007; Kumar et al., 2012] regions. Although
remotely sensed SM offers promise to improve unmodeled irrigation estimates, developing a bias
correction technique that does not erase unmodeled signals such as those from irrigation, e.g. in
adjusting observations to the LSM climatology, remains an unresolved issue in using DA to
quantify irrigation water use [Kumar et al., 2015; Nair and Indu, 2019; Zhang et al., 2018].
Therefore, we evaluate the proposed method in the context of systematic biases caused by errors
in modeled or observed SM, since studies like Kumar et al., [2015] suggest that this source of
bias is important. While we study the role of bias on methodological performance, we do not
attempt to develop a new bias correction scheme here, given the lack of consensus in bias
correcting modeled and unmodeled processes.

In these experiments, a range of static systematic biases [-0.2 cm*cm™ — 0.2cm3cm?] are
applied to SMiuih +overpass at €ach time step prior to assimilation. 40 DA simulations are run,
uniformly sampling the range of biases. The range of imposed biases is based on actual biases
present between NLDAS-2 LSMs and the SMAP satellite, calculated over the entire NLDAS
domain (25°-53°N, 125°-67°W), excluding the top 8% most intensively irrigated regions defined
in the MIRCA2000 dataset [Portmann et al., 2010] and points in space-time where SMAP was
flagged for poor quality. Comparisons were made exclusively over non-irrigated or lightly
irrigated regions so as to address systematic biases between LSMs and SMAP that are due to
factors other than unmodeled irrigation.

2.2.6 Irrigation application timing

While the continuous irrigation schedule applied is fairly common in the United States [Johnson
et al., 2012; Ross, 1997], this scheduling is rarely applied in Europe and elsewhere. For example,
in Europe a 2-day per week irrigation schedule is expected to be commonplace. We seek to
evaluate DA performance when /RRG . 1s not applied on the previously assumed continuous
schedule in scenarios where irrigation timing is both known and unknown. Unknown irrigation
timing is represented by differences in timing between /RRG .. and DA particles. We present
results from the 24-day window experiment in Section 2.2.1 where a continuous, i.e. all day
every day, irrigation schedule is applied to both the truth simulation and the particles. We then
conduct two experiments with new truth irrigation schedules, and these schedules are assumed to
be unknown. In these experiments, particle irrigation is applied all day every day and IRRGum is
applied (i) every day only during the hours of 4AM-10AM [Warren and Bilderback, 2002; Park,
2008] and (ii) all day, 2 days per week [Seginer, 1967; Hassanli et al., 2009]. Both of these
experiments preserve the weekly and seasonal magnitude of irrigation relative to the original
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IRRG yrumn. Two synthetic DA experiments are conducted where SM...» produced from respective
truth simulations are assimilated with the ensemble of particles. To evaluate performance when
irrigation schedule is known, two similar experiments are conducted where /RRG i 1s applied
(1) every day only during the hours of 4AM-10AM and (ii) all day, 2 days per week, identical to
the former two experiments, with the exception that in these experiments particles receive
irrigation on the same schedule as IRRGum, €.g. assuming irrigation timing is known.

2.2.7 Comprehensive evaluation

The above experiments have introduced sources of errors on the DA system one at a time. Here
we consider a combination of error sources to carry out a synthetic real-world experiment. We
run irrigation timing experiments as described in Section 2.2.6, except now assimilating
synthetic observations generated by adding random 0-mean Gaussian noise with a standard error
of 0.04 cm3cm > to SMiyush +overpass. This experiment explores uncertainties of irrigation timing as
discussed in Section 2.2.6 in a real-world context based on the use of realistic synthetic
observations.

2.3 Comparison Metrics

We compute commonly used statistical performance measures between the DA system, e.g. daily
IRRGPpgs, against the synthetic truth, e.g. daily /RRGum exclusively during the irrigation season.
These measures include: percent bias (PBIAS) to help identify average biases (overprediction vs.
underprediction) for irrigation estimates over an entire season, and Pearson’s correlation
coefficient (R) to quantify timing errors, or the degree of collinearity between estimated and
truth irrigation [Moriasi et al., 2015].

3 Data sources

3.1 Land surface model

The Variable Infiltration Capacity (VIC) [version 4.2.1.d Liang et al., 1994] model is chosen for
this study given its comparable complexity to other state-of-the-art LSMs, its use in NLDAS-2
[Xia et al., 2012a; Xia et al., 2018] and the Land Information System (LIS) [Peters-Lidard et al.,
2007; Kumar et al., 2006]. VIC is run in water and energy balance mode at an hourly time step,
forced with: precipitation, relative humidity, wind speed, partial vegetation cover fraction,
atmospheric pressure, air temperature, incoming shortwave and longwave radiation. All model
integrations use the standard 10 cm depth for the uppermost soil layer. In real world applications,
the depth of the upper layer should be adjusted to accommodate the sensing depth of SMAP SM
(<5cm).

3.2 Land surface model inputs

NLDAS-2 hourly meteorological and monthly vegetation greenness fraction data [Xia et al.,
2012b] are used to force all simulations over a single grid-cell in the study watershed. Relative
humidity, shortwave radiation, longwave radiation and pressure are interpolated bilinearly, while
precipitation and wind are interpolated bicubically to the location of the study grid cell, given the
shorter lengths of variability associated with precipitation and wind [Livneh and Hoerling, 2016].
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Interpolated precipitation is referred to as Pops in Table 1. Monthly NLDAS-2 vegetation
greenness fraction is uniformly disaggregated to hourly data and spatially interpolated using the
nearest-neighbor approach. Soil parameters were obtained from the Livneh dataset [Livneh et al.,
2015]. For core experimentation, irrigation (819 mm/season) follows corn water use patterns in
Western Nebraska [Yonts, 2002], i.e. IRRGn (Table 1). For experiments exploring sensitivity
to irrigation magnitude relative to precipitation, section 2.2.4, irrigation forcings follow the same
pattern as that described in [ Yonts, 2002], but scaled to seasonal magnitudes discussed in section
2.2.4.

3.3 SMAP

Although SMAP data is not directly used in this study, the experimental set up is guided by key
SMAP attributes, e.g. overpass time, frequency, shallow sensing depth, etc. SMAP provides
morning and evening (6 AM and 6 PM local time) estimates of surface SM, globally every 1-3
days [Entekhabi, 2014], has a sensing depth of approximately 0—50 mm and meets the mission
goal of 0.04 mm?® mm™ unbiased root-mean-squared-error [Colliander et al., 2017; Chan et al.,
2018]. Here, we consider only the 6 AM overpasses because the SMAP algorithm assigns a
single temperature to both the soil and its overlying canopy, a condition that is best met in the
morning hours [Entekhabi 2014; Jackson et al., 2012]. We exclude SMAP data that have been
flagged for uncertain quality.

4 Results

Figure 2 illustrates the performance of the key elements of the DA system, the translation of
assimilation weights from surface SM into a single best estimate irrigation over a growing
season. The color of the 99 lines in Figure 2a show the weights assigned to each particle in the
PBS algorithm, assigned based on their proximity to synthetic observations, shown in red dots, in
each fixed-window. The vertical grey dashed lines denote 16-day fixed-window bounds. A
weighted average of the particles is considered the best estimate SM time series (black line in
Figure 2a). This best estimate closely matches SM;.x, and therefore accurately reflects the
effects of truth irrigation on modeled SM, unlike OL SM that lacks knowledge of irrigation
(dashed back line). For clarity, Figure 2a only shows a portion of the irrigation season, but the
same approach is applied to the entire time period shown in Figure 2b.

The translation of particle weights from SM DA into precipitation and irrigation weights
is shown in Figure 2b, producing an estimated irrigation time series, /[RRGpgs, (black line with
grey band of uncertainty in Figure 2b). The results from this baseline experiment, prior to
introducing errors into the daily synthetic observations, yield PBIAS and R values of 0.66% and
0.95, respectively. The purpose of this study is to assess how well the particle batch smoother
(IRRGpas) can be used to estimate /RRG i (Figure 2b, red line) when considering the variety of
errors that are likely to be present when assimilating remotely sensed SM.
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519  Figure 2. (a) Time series for sub-section of the irrigation season of 99 particles colored by

520  weight assigned based on proximity to the SM..» shown as red circles, with the weighted

521  particle average plotted as a solid black line and OL SM without irrigation plotted as a dotted
522  black line, (b) The corresponding time series of /[RRGpgs (black line), ojgrg_pgs (grey shading)
523  and IRRGum (red line).

524 4.1 Window length

525  The performance of irrigation estimates improves with increasing window length for all skill

526  metrics until it plateaus at a window length longer than approximately 10-days, beyond which
527  (10- to 30-day window lengths) PBIAS is less than 2%, R is greater than 0.9, and the uncertainty,
528  Ojrrc—pas, 18 less than 0.2 mm/day (see Figure 3). When window lengths are short (<10-days),
529 errors between particle SM and observed SM tend be dominated by the initial states of the fixed
530  window rather than particle forcing. Longer window lengths shrink the effect of particles’ initial
531  condition on PBS assigned weights and allows for weights to be driven by the accuracy of model
532  inputs (e.g. irrigation). The particle filter (PF) is considered a special case of the PBS when the
533  window length is 1-day. Hence, a PBS is more effective for estimating irrigation than a PF. In a
534  multi-objective optimization context, the 16- and 24-day windows can be considered roughly
535  equal performing, or non-dominated relative to each other, and the 10-day window is dominated,
536  or outperformed, by both the 16- and 24-day windows.

537  Orrc—pps 18 related to the spread of weights assigned in the particle smoothing algorithm. A
538  small g;pre_pps indicates there is a narrow grouping of particles receiving high weights with the
539  extreme case being that only one particle receives weight. This extreme case is approached either
540  as observational uncertainty, C, from eq. 3, decreases or as the ensemble variance increases.
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Longer windows allow for the spread of the ensemble to expand, thus explaining the narrowing
O1rrc—pas With window length. Here, decreasing o;zr;_pgs also corresponds with degeneracy in
the PBS algorithm. For cases of the 10-, 16- and 24-day windows, the mean number of particles
resampled during the irrigation season in the SIR process are approximately 22, 18 and 15,
respectively. This supports that degeneracy is more pronounced with an increasing window
length.
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Figure 3. Performance of estimated irrigation produced from data assimilation experiments
assimilating SM.« using window lengths of 1-30 days. Dots represent median summary
statistics for each window length from a suite of 10 synthetic data assimilation experiments
initialized from staggered start dates. (a) Absolute PBIAS comparing IRRGpps with IRRG .
(b) R comparing /RRGpps with IRRGusm. (€) Uncertainty of IRRGpras (Orre—pBs)-

4.2 Frequency of Observations

More frequent observations yield more accurate estimates of irrigation, with longer window
lengths more robust to the variability of infrequent observations as shown in Figure 4. Longer



556  windows tend to be more stable because more observations are assimilated within each fixed
557  window relative to shorter window lengths. A key threshold is seen in the 10-day window case
558  (blue dots), for return intervals of five days or greater since two or fewer observations can be
559  accounted for in each fixed window. When too few observations are assimilated in a fixed

560  window the irrigation signal can be overwhelmed by noise in precipitation forcing and errors are
561  more likely to be propagated forward from one window to the next by resampling particles from
562  inaccurate initial conditions. The green highlighted region in Figure 4 represents the range of
563  return interval of the SMAP satellite [Entekhabi, 2014]. Here, all tested windows produce a

564  median absolute PBIAS of less than 3.4%, 16- and 24-day windows yield a median R of at least
565  0.91, with the simulations using a 10-day window yield a median R of at least 0.88. 0;rrc—p5s
566  (not shown) is effectively insensitive to return interval.
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568  Figure 4. Performance of estimated irrigation produced from data assimilation experiments
569  assimilating SM.., with regular return intervals shown on the horizontal axis. The green
570  highlighted region represents return interval range of SMAP. Dots represent median values from
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50 synthetic data assimilation experiments for each return interval scenario. (a) Absolute PBIAS
comparing /RRGpps with IRRGum. (b) R comparing IRRGpss with IRR G rush.

We also conducted a similar experiment to Figure 4 where we imposed irregular return
intervals such as those from SMAP, assimilating SMyun +overpass as synthetic observations (not
shown) yielding a median PBIAS of less than 1% and median R of greater than 0.90 for
simulations using 16- and 24-day windows. Simulations using a 10-day window yield slightly
degraded performance with a median PBIAS of 2.57% and median R of 0.87. Results from
experiments using irregular overpass intervals are consistent with performance from experiments
using regular overpass intervals, indicating that the return intervals from SMAP are generally not
a major limiting factor to overall performance.

4.3 Observation noise

DA experiments with more noisy observations yield both less accurate and more uncertain
estimates of irrigation, with the performance of longer windows less impacted by noise. Figure 5
shows the median performance and its uncertainty and highlights the range of error standard
deviations (0.021-0.056 cm*cm™) expected from SMAP’s mission [Colliander, 2017]. For
experiments imposing noise equivalent to SMAP’s mission goal (0.04 cm*cm™), experiments
using a 10-day window show a median seasonal PBIAS and correlation of 16% and 0.54,
respectively. Experiments using a 16-day window show a median PBIAS and R of 10% and
0.74, respectively. Experiments using a 24-day window show the best performance with a
median PBIAS and R of 1% and 0.76, respectively. Figure 5c corroborates Figure 3: uncertainty,
O1rrRG—PBS> 1S generally lower for longer windows. Figure 5c also shows that o;zr;_pps increases
with observational noise, which is a direct reflection of the PBS likelihood formulation (eq. 3)
that drives particle weighting. As the error covariance of the synthetic observations increase,
particle weighting becomes more uniform, i.e. more particles receive relatively high weights, in
turn the uncertainty (eq. 4) increases.
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Figure 5. Performance of estimated irrigation produced from DA experiments assimilating
SMiruth +0verpass perturbed with 0-mean Gaussian noise with a standard error denoted by the
horizontal axis. 20 simulations are run for each observational noise scenario, producing a new
time series of perturbed observations each simulation. Filled circles represent the median
summary statistic from the 20 simulations, and upper and lower error bars represent the 85" and
15" percentiles. The green highlighted region represents the reported range of unbiased noise
from SMAP at core validation sites. (a) Absolute PBIAS comparing IRRGpps with IRRGyu. (b)
R comparing IRRGpss with IRRGum. (€) Uncertainty of IRRGpras (O1rre—pBs)-

4.4 Irrigation magnitude

The DA system shows increasing skill as the ratio of irrigation/precipitation (I/P) increases until
the ratio reaches approximately 4, with known irrigation regions within CONUS shown by
vertical colored lines in Figure 6. Experiments where irrigation is small compared to
precipitation (I/P <4) produce larger errors because multiplicative precipitation perturbations and
noise in the synthetic SM observations are large compared to the irrigation signal. The persistent
positive PBIAS is reflective of the skewness of the 99-member ensemble towards the uniform
particle irrigation estimates, e.g. 0-30 mm/day, which are larger than the amount of IRRG s,
e.g. roughly 2.6 mm/day for smaller I/P ratios towards the left part of Figure 6. In this case, the
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maximum underestimation for irrigation is approximately 2.6 mm/day; whereas the maximum
overestimation of irrigation is approximately 27.4 mm/day. Therefore, random noise in synthetic
SM observations and precipitation perturbations tends to favor overestimates of irrigation. It is
worth noting, this artifact would be removed if the range of irrigation applied to the particles
were perfectly symmetric about JRRG .. Overall, it appears that the DA system tends to
produce positive biases across both drier and wetter climate regimes where irrigation plays larger
or smaller roles, and application of this method over wetter climates where irrigation plays
smaller roles will produce less skilled estimates of irrigation.
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Figure 6. Performance of estimated irrigation across a range of seasonal irrigation versus
precipitation ratios. Dark grey bands represent the 10" and 90 percentiles and light grey
represents the 25" and 75" percentiles of summary statistics from the 20 synthetic data
assimilation experiments for each tested Irrigation/Precipitation ratio. The black line represents
the median summary statistic from the 20 data assimilation experiments with vertical colored
lines reflecting estimated irrigation over precipitation ratios for 5 sites (site locations displayed in
Figure 7).

4.5 Systematic Bias

Biases between NLDAS-2 LSMs and SMAP are computed across the CONUS, Figure 7a
and 7b, revealing that systematic LSM-SMAP biases are often large enough to potentially
dominate DA performance, noting that we assume the LSM 10 cm depth for the uppermost soil
layer is comparable to the SMAP sensing depth of < 5 cm. When these systematic biases exceed
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+/- 0.01 cm’cm™, seasonal PBIAS performance exceeds 20%. Figure 7¢ shows the resulting
PBIAS of the DA system when subjected to biases imposed to SMwui +0verpass Prior to
assimilation. In experiments where model-observation biases are positive, relatively dry
observations favor particles forced with lower irrigation quantities resulting in underestimations
of irrigation. In experiments where model-observation biases are negative, relatively wet
observations favor particles forced with higher irrigation quantities resulting in overestimations
of irrigation. Results indicate <20% seasonal PBIAS can be obtained from only 3.6%, 5.0%, and
13.6% (for VIC, Noah and Mosaic, respectively) of locations without bias correction,
underscoring the importance of systematic bias and identifying a suitable correction scheme.
Biases between models and observations present a large obstacle for the usability of the method
until advances are made in SM bias correction that preserve observed irrigation signal or models
are successfully calibrated to produce unbiased SM estimates relative to observations.
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648  Figure 7. (a) Biases between NLDAS-2 ensemble (VIC, Noah and Mosaic) mean surface SM
649  and SMAP surface SM. Irrigated locations excluded from the bias histogram in (7b) are shown
650 as black boxes. Latitude, longitude and respective precipitation amounts during the irrigation
651  season for sites discussed in section 2.2.4 and 4.4 are included. (b) Histograms of mean biases
652  between three NLDAS-2 LSMs and SMAP over non-irrigated regions. (¢) PBIAS comparing
653  IRRGpps with IRRGyum. IRRGPpss 1s estimated from data assimilation experiments assimilating
654  SMiyumn +overpass perturbed with a temporally static bias (model-observation biases shown on the
655  horizontal axis). Vertical colored lines represent the median error-based bias between respective
656  LSMs and SMAP, derived from the histograms in (b).
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4.6 Irrigation application timing

Discrepancies between assumed and actual irrigation timing can result in important errors
between /RRGpps and IRRG . Irrigation timing sensitivities are similar in magnitude and
characteristic to model-observation bias sensitivities described in the previous section. When
IRRG rum timing produces wetter states than /RRGpps timing (for the same magnitude of
irrigation), the LSM will have a dry bias relative to SMy.. For example, evaporative losses are
reduced in a scenario where irrigation is applied only during morning hours, thus resulting in
wetter states than cases where irrigation is applied throughout a day. Also, similar to Haddeland
et al., [2002], a simulation with uniform irrigation application, i.e. all day every day, results in
drier states than the same amount of irrigation applied in higher concentrations, i.e. 2-days per
week. Figure 8 shows the SM time series for the 3 truth simulations that apply irrigation on
different schedules (explained in section 2.3.6). Table 3 reports the mean SM over the irrigated
season for each truth simulation, and the resulting summary statistics from five DA experiments
described by the timing of /RRG . and particle irrigation. As expected, the experiment that
applied /RRG i €ach morning yielded a relatively wet SM.., compared to particles that applied
irrigation continuously each day, resulting in /RRGpps with the largest PBIAS (56%). However,
IRRGpps from this experiment captured the temporal variation of irrigation well, indicated by a
high R (0.91). When assumed irrigation timing matches the timing of /RRG -, performance on
a weekly timestep is consistent for the three tested irrigation schedules (see grey rows in Table
3). These results indicate that irrigation timing is not a limiting factor to the application of this
method on a weekly time-scale. However, if irrigation timing is unknown /RRGpgs will exhibit
large biases relative to IRRGum, particularly for shorter timescales.

0.4

o
w

Irrigation Timing
—All Day Every Day

—All Day, 2 Days Per Week
o —Every Morning (4-10 AM)
04/2015 05/2015 06/2015 07/2015 08/2015 0972015 10/2015

Figure 8. Three SM;..i, time series from the same amount of irrigation applied: all day, every day
(black), every morning (blue) and all day two times per week (red). The irrigated season is
highlighted in green.
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Table 3. Summary statistics from the five time-sensitivity experiments, where the mean
irrigation season soil moisture represents the mean soil moisture from respective truth
simulations over the irrigated season and irrigation summary statistics are calculated comparing
IRRGpps with IRRGyum from the five DA experiments. Rows shaded in grey indicate experiments
where IRRG i and particle irrigation are applied on identical schedules, representing “known”

irrigation timing.

Irrigation Summary
Statistics

True Irrigation

Particle Irrigation

Mean Irrigation

PBIAS(%)

R

Schedule Schedule Season Moisture Daily [Weekly]
(cm3/cm?)

All day, every All day, every day 0.26 -1 0.94 [0.95]

day

Every morning All day, every day 0.28 53 0.91 [0.95]

(4-10 AM)

Every morning | Every morning (4-10 0.28 4 0.94 [0.97]

(4-10 AM) AM)

All day, 2-days All day, every day 0.27 28 0.11 [0.94]

per week

All day, 2-days | All day, 2-days per 0.27 1 0.79 [0.97]

per week

week

Since this method estimates the amount of irrigation needed to achieve target SM states
for a given set of inputs, including assumed irrigation timing, these types of experiments could
conceivably be used to determine the efficiency of an irrigation schedule. For example, a suite of
alternative irrigation schedules could be evaluated to identify the most efficient approach to
achieve a target SM for a given crop.

4.7 Comprehensive evaluation

Observational noise and an irregular return interval only slightly reduces the correlation between
IRRGpps and IRRG ru as seen when comparing the median from synthetic experiments that
impose noise on SMium +overpass (Table 4) with experiments that use perfect observations (Table
3). In all cases, IRRGpps has a higher correlation with JRRG s on a weekly, rather than daily,
time step. This is especially true when /RRGui 1s applied 2-days per week, but the assumed
irrigation schedule is continuous. /JRRGpps produced from experiments assuming known timing
of IRRG i are non-dominated in a multi-objective optimization context relative to each other
(see grey rows in Table 4). Hence, this method is not timing specific and can be used over a
range of irrigation schedules, but the accuracy is heavily dependent on a priori knowledge of
irrigation timing. Errors in /RRGpps are dominated by issues that arise from discrepancies in




712 timing between particle irrigation and /RR G rather than observational noise or frequency for
713 experiments assuming the timing of /RRG . 1s unknown (see white rows in Table 4).

714  Table 4. Summary statistics from the five time-sensitivity experiments, where irrigation

715  summary statistics are calculated comparing /RRGpas with IRRG i from the five DA

716  experiments. Rows shaded in grey indicate experiments where truth irrigation timing is assumed
717  to be known. The 15", 50", and 85" percentiles are reported for each statistic from the 20

718  simulations conducted for each timing scenario.

Irrigation Summary Statistics
True Particle PBIAS(%) Daily R Weekly R
Irrigation Irrigation PCTL[15,50,85] PCTL[15,50,85] PCTL[15,50,85]
Schedule Schedule
All day, every | All day, every day [-10,0,13] [0.59,0.69,0.84] [0.83,0.88,0.94]
day
Every All day, every day [34,61,95] [0.62,0.75,0.85] [0.86,0.91,0.93]
morning (4-
10 AM)
Every Every morning [-2,13,26] [0.68,0.80,0.86] [0.87,0.93,0.95]
morning (4- (4-10 AM)
10 AM)
All day, 2- All day, every day [15,34,60] [0.05,0.07,0.08] [0.87,0.91,0.93]
days per week
All day, 2- All day, 2-days [-25,-5,4] [0.72,0.75,0.79] [0.78,0.86,0.94]
days per week per week

719

720 5 Discussion and Conclusions

721 In this study, we evaluate a new approach for estimating irrigation magnitude by assimilating
722 SM with an LSM. Through synthetic experiments, the sensitivity of the DA system is assessed
723 relative to: (i) the window length of the particle batch smoother algorithm (ii) the frequency of
724  observations, (iii) the amount of noise in the SM data, (iv) the relative magnitude of irrigation
725  compared to precipitation, (v) the magnitude of biases between models and observations, and
726  (vi) the timing of irrigation. Experiments are designed in the context of assimilating observations
727  from the SMAP satellite with the VIC LSM. However, this DA system can be used with a wide
728  variety of SM observations and models. Based on the above results, the following conclusions
729  can be drawn:

730 1. DA experiments using synthetic observations assigned SMAP’s overpass schedule and
731 zero random noise produce accurate irrigation estimates (PBIAS<2% and R>0.9) for
732 window lengths longer than 10-days. Therefore, smoothing DA algorithms, e.g. the
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particle batch smoother, must be used with this method rather than filtering DA
algorithms, e.g. the particle filter, that assimilate single data points in isolation.
Experiments using a large window length, e.g. 24-days, are more robust to overpass
frequency and observation noise because longer window lengths assimilate a greater
number of observations in each window. This provides the algorithm with more irrigation
signal relative to random observational noise and increases the likelihood of better
irrigation estimates. These results are also consistent with Brocca et al., [2018] where
irrigation data were aggregated at a monthly time scale to reduce the influence of
observation noise.

DA performance is strongly related with the frequency of observations, where more
frequent return periods (e.g., every 2-3 days) produce more accurate estimates of
irrigation than experiments using synthetic observations with less frequent return periods
(e.g., weekly or longer). Moving from synthetic observations with regular intervals to
SMAP’s irregular return period does not appreciably hinder performance.

Performance is directly affected by the amount of random noise in the signal.
Experiments using synthetic observations perturbed with less random noise (0.01
cm®/cm?-0.02 cm?/cm?) yield better performance than experiments using synthetic
observations perturbed with larger random noise (0.03 cm*cm=-0.04 cm3cm).
Experiments that assimilate synthetic observations with both SMAP’s return period and
expected observational noise (0.04 cm*cm) produce estimates of irrigation with a
median PBIAS of 1% and R of 0.76, and range of PBIAS and R of -3.98%-13.85% and
0.57-0.94, respectively.

The presented methodology is likely to overestimate irrigation when the magnitude of
true irrigation is small in comparison to the range of particle irrigation because
multiplicative precipitation perturbations dominates the irrigation signal in these cases.
Further, when constraints on /RRGpss, i.e. range of irrigation applied to particles, are
asymmetric about /RRGum, IRRGpps will be underestimated or overestimated based on
the direction of the skewness. In this study the upper constraint (30 mm/day) was further
from IRRGum (3-8 mm/day) than the lower constraint (0 mm/day), thus causing random
noise in synthetic SM observations to favor overestimated irrigation throughout a season.
A large obstacle to implementing this method is the systematic bias between LSMs and
observations. Bias correction is necessary to implement this method to produce reliable
real-world irrigation estimates over large areas. This analysis underscores the importance
of developing and testing new bias correction methods that will not erase unmodeled
processes like irrigation.

The largest obstacle to implementing this method is a priori knowledge of irrigation
timing. When irrigation timing is assumed to be known, the method is able to accurately
predict the magnitude and temporal pattern of /RRG i for a suite of irrigation schedules,
but large errors arise in experiments where the timing of IRRG s 1s assumed to be
unknown. The presented algorithm estimates irrigation magnitudes given model inputs,
including an assumed irrigation scheduling. Therefore, the method is partially limited by
knowledge of the true irrigation schedule such that discrepancies in schedule between
particulate and truth irrigation can result in systematic biases between observed and
modeled SM. These SM biases propagate to biases in irrigation estimates. Although, this
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presents a limitation to the method, it also provides the opportunity to use the method to
assess the efficiency of irrigation strategies as a function of model inputs.

This study presents an evaluation of a new method to estimate irrigation quantities using the
particle batch smoother DA method. Future studies that seek to evaluate the method in non-
synthetic applications should first address the issue of identifying irrigation timing, and also
explore ways to correct biases between modeled and observed soil moisture so as to preserve the
natively observed irrigation signal. Because bias correction is an active area of research it may be
easier to resolve than knowledge of irregular irrigation timing. Both of these are valuable pre-
processing steps to a successful application of this methodology. Applications of this method
will require identification of the start and end dates of the irrigation season at the model’s spatial
resolution by employing methods such as that presented in Lawston et al., [2017] that showed
comparing SMAP SM to in situ precipitation data can identify the seasonal onset of irrigation.
Future efforts to advance the science of irrigation estimation through DA could assess a priori
bias correction methods in a bias aware DA system and build upon on-going LSM SM
calibration efforts, for example by NASA’s Land Information System (LIS) team, or assess
CDF-matching observations to the climatology of an LSM using an irrigation scheme, or could
explore assimilating multiple remotely sensed variables that contain irrigation signal.
Alternatively, it may be fruitful to asses posterior bias correction strategies such as removing
bias from estimated irrigation by estimating model bias over adjacent non-irrigated cropland
areas and used these to correct simulations over irrigated pixels [Jalilvand et al., 2019]. The issue
of bias may also be ameliorated by using a different type of model, e.g. Hydrus-1D, which has
been shown to agree relatively well with SMAP retrievals at core validation sites [Small et al.,
2018].

Acknowledgments, Samples, and Data

e The authors declare no conflict of interest

o This research was funded by the National Aeronautics and Space Administration: NASA
SUSMAP Grant, NNX16AQ46G: Monitoring soil evaporation using SMAP surface soil
moisture in a water balance framework and NASA NIP Grant, # SONSSC18K0951: A
Remotely Sensed Ensemble to Understand Human Impacts on the Water Cycle.

e This work utilized the RMACC Summit supercomputer, which is supported by the
National Science Foundation (awards ACI-1532235 and ACI-1532236), the University of
Colorado Boulder, and Colorado State University. The Summit supercomputer is a joint
effort of the University of Colorado Boulder and Colorado State University.

e The SMAP retrievals (https://doi.org/10.5067/ ZRO7EXJ80O3XI, O’Neill et al., 2016),
NLDAS-2 forcings (https://doi.org/10.5067/6JSLHHOHZHN4, Xia et al., 2012b),
NLDAS-2 simulations (https://doi.org/10.5067/47Z13FNQODKYV, Xia et al., 2012a)
used in this study can be obtained from public repositories.

References

Ambika, A.K., Wardlow, B., Mishra, V., 2016. Remotely sensed high resolution irrigated area
mapping in India for 2000 to 2015. Sci. Data 3, 160118.
https://doi.org/10.1038/sdata.2016.118



818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Badger, A.M., Dirmeyer, P.A., 2015. Climate response to Amazon forest replacement by
heterogeneous crop cover. Hydrol. Earth Syst. Sci. 19, 4547-4557.
https://doi.org/10.5194/hess-19-4547-2015

Boucher, O., Myhre, G., Myhre, A., 2004. Direct human influence of irrigation on atmospheric
water vapour and climate. Clim. Dyn. 22, 597-603. https://doi.org/10.1007/s00382-004-
0402-4

Bousbih, S., Zribi, M., El Hajj, M., Baghdadi, N., Lili-Chabaane, Z., Gao, Q., Fanise, P., 2018.
Soil Moisture and Irrigation Mapping in A Semi-Arid Region, Based on the Synergetic
Use of Sentinel-1 and Sentinel-2 Data. Remote Sens. 10, 1953.
https://doi.org/10.3390/rs10121953

Brocca, L., Tarpanelli, A., Filippucci, P., Dorigo, W., Zaussinger, F., Gruber, A., Fernandez-
Prieto, D., 2018. How much water is used for irrigation? A new approach exploiting
coarse resolution satellite soil moisture products. Int. J. Appl. Earth Obs. Geoinformation
73, 752-766. https://doi.org/10.1016/j.jag.2018.08.023

Chan, S.K., Bindlish, R., O’Neill, P., Jackson, T., Njoku, E., Dunbar, S., Chaubell, J., Piepmeier,
J., Yueh, S., Entekhabi, D., Colliander, A., Chen, F., Cosh, M.H., Caldwell, T., Walker,
J., Berg, A., McNairn, H., Thibeault, M., Martinez-Fernandez, J., Uldall, F., Seyfried, M.,
Bosch, D., Starks, P., Holifield Collins, C., Prueger, J., van der Velde, R., Asanuma, J.,
Palecki, M., Small, E.E., Zreda, M., Calvet, J., Crow, W.T., Kerr, Y., 2018. Development
and assessment of the SMAP enhanced passive soil moisture product. Remote Sens.
Environ. 204, 931-941. https://doi.org/10.1016/j.rse.2017.08.025

Chen, F., Crow, W.T., Bindlish, R., Colliander, A., Burgin, M.S., Asanuma, J., Aida, K., 2018.
Global-scale evaluation of SMAP, SMOS and ASCAT soil moisture products using triple
collocation. Remote Sens. Environ. 214, 1-13. https://doi.org/10.1016/j.rse.2018.05.008

Colliander, A., Jackson, T.J., Bindlish, R., Chan, S., Das, N., Kim, S.B., Cosh, M.H., Dunbar,
R.S., Dang, L., Pashaian, L., Asanuma, J., Aida, K., Berg, A., Rowlandson, T., Bosch, D.,
Caldwell, T., Caylor, K., Goodrich, D., al Jassar, H., Lopez-Baeza, E., Martinez-
Fernandez, J., Gonzalez-Zamora, A., Livingston, S., McNairn, H., Pacheco, A.,
Moghaddam, M., Montzka, C., Notarnicola, C., Niedrist, G., Pellarin, T., Prueger, J.,
Pulliainen, J., Rautiainen, K., Ramos, J., Seyfried, M., Starks, P., Su, Z., Zeng, Y., van
der Velde, R., Thibeault, M., Dorigo, W., Vreugdenhil, M., Walker, J.P., Wu, X.,
Monerris, A., O’Neill, P.E., Entekhabi, D., Njoku, E.G., Yueh, S., 2017. Validation of
SMAP surface soil moisture products with core validation sites. Remote Sens. Environ.
191, 215-231. https://doi.org/10.1016/j.rse.2017.01.021

Crow, W.T., Bolten, J.D., 2007. Estimating precipitation errors using spaceborne surface soil
moisture retrievals: SPACEBORNE RAINFALL ACCURACY. Geophys. Res. Lett. 34.
https://doi.org/10.1029/2007GL029450

Crow, W.T., Ryu, D., 2009. A new data assimilation approach for improving runoff prediction
using remotely-sensed soil moisture retrievals. Hydrol. Earth Syst. Sci. 13, 1-16.
https://doi.org/10.5194/hess-13-1-2009

Crow, W.T., van den Berg, M.J., Huffman, G.J., Pellarin, T., 2011. Correcting rainfall using
satellite-based surface soil moisture retrievals: The Soil Moisture Analysis Rainfall Tool
(SMART): SOIL MOISTURE ANALYSIS RAINFALL TOOL. Water Resour. Res. 47.
https://doi.org/10.1029/201 1WR010576

De Lannoy, G.J.M., Reichle, R.H., Houser, P.R., Pauwels, V.R.N., Verhoest, N.E.C., 2007.
Correcting for forecast bias in soil moisture assimilation with the ensemble Kalman filter:



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909

CORRECTING FOR FORECAST BIAS IN SOIL MOISTURE ASSIMILATION. Water
Resour. Res. 43. https://doi.org/10.1029/2006 WR 005449

de Rosnay, P., 2003. Integrated parameterization of irrigation in the land surface model
ORCHIDEE. Validation over Indian Peninsula. Geophys. Res. Lett. 30.
https://doi.org/10.1029/2003GL018024

Dee, D.P., 2005. Bias and data assimilation. Q. J. R. Meteorol. Soc. 131, 3323-3343.
https://doi.org/10.1256/qj.05.137

Deines, J.M., Kendall, A.D., Hyndman, D.W., 2017. Annual Irrigation Dynamics in the U.S.
Northern High Plains Derived from Landsat Satellite Data: Satellite-Derived Irrigation
Dynamics. Geophys. Res. Lett. 44, 9350-9360. https://doi.org/10.1002/2017GL074071

Dirmeyer, P.A., Gao, X., Zhao, M., Guo, Z., Oki, T., Hanasaki, N., 2006. GSWP-2: Multimodel
Analysis and Implications for Our Perception of the Land Surface. Bull. Am. Meteorol.
Soc. 87, 1381-1398. https://doi.org/10.1175/BAMS-87-10-1381

Dong, J., Steele-Dunne, S.C., Judge, J., van de Giesen, N., 2015. A particle batch smoother for
soil moisture estimation using soil temperature observations. Adv. Water Resour. 83,
111-122. https://doi.org/10.1016/j.advwatres.2015.05.017

Droogers, P., Immerzeel, W.W., Lorite, I.J., 2010. Estimating actual irrigation application by
remotely sensed evapotranspiration observations. Agric. Water Manag. 97, 1351-1359.
https://doi.org/10.1016/j.agwat.2010.03.017

El Hajj, M., Baghdadi, N., Zribi, M., Bazzi, H., 2017. Synergic Use of Sentinel-1 and Sentinel-2
Images for Operational Soil Moisture Mapping at High Spatial Resolution over
Agricultural Areas. Remote Sens. 9, 1292. https://doi.org/10.3390/rs9121292

Entekhabi, D., Reichle, R.H., Koster, R.D., Crow, W.T., 2010. Performance Metrics for Soil
Moisture Retrievals and Application Requirements. J. Hydrometeorol. 11, 832-840.
https://doi.org/10.1175/2010JHM1223.1

Entekhabi, D.; Yueh, S.; O’Neill, P.E.; Kellogg, K.H.; Allen, A.; Bindlish, R.; Brown, M.; Chan,
S.; Colliander, A.; Crow, W.T.; et al. SMAP Handbook; Laboratory, J.P., Ed.; JPL
Publication JPL 400-1567; NASA CalTech: Pasadena, CA, USA, 2014.

Escorihuela, M.J., Quintana-Segui, P., 2016. Comparison of remote sensing and simulated soil
moisture datasets in Mediterranean landscapes. Remote Sens. Environ. 180, 99-114.
https://doi.org/10.1016/j.rse.2016.02.046

Estimating pumping time and ground-water withdrawals using energy- consumption data, 1989.
https://doi.org/10.3133/wri894107

Famiglietti, J.S., Lo, M., Ho, S.L., Bethune, J., Anderson, K.J., Syed, T.H., Swenson, S.C., de
Linage, C.R., Rodell, M., 2011. Satellites measure recent rates of groundwater depletion
in California’s Central Valley: CENTRAL VALLEY GROUNDWATER DEPLETION.
Geophys. Res. Lett. 38, n/a-n/a. https://doi.org/10.1029/2010GL046442

Gao, Q., Zribi, M., Escorihuela, M., Baghdadi, N., 2017. Synergetic Use of Sentinel-1 and
Sentinel-2 Data for Soil Moisture Mapping at 100 m Resolution. Sensors 17, 1966.
https://doi.org/10.3390/s17091966

Gao, Q., Zribi, M., Escorihuela, M., Baghdadi, N., Segui, P., 2018. Irrigation Mapping Using
Sentinel-1 Time Series at Field Scale. Remote Sens. 10, 1495.
https://doi.org/10.3390/rs10091495

Gordon, N.J., Salmond, D.J., Smith, A.F.M., 1993. Novel approach to nonlinear/non-Gaussian
Bayesian state estimation. IEE Proc. F Radar Signal Process. 140, 107.
https://doi.org/10.1049/ip-f-2.1993.0015



910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954

Haddeland, I., Lettenmaier, D.P., Skaugen, T., 2006. Effects of irrigation on the water and
energy balances of the Colorado and Mekong river basins. J. Hydrol. 324, 210-223.
https://doi.org/10.1016/j.jhydrol.2005.09.028

Haddeland, I., Matheussen, B.V., Lettenmaier, D.P., 2002. Influence of spatial resolution on
simulated streamflow in a macroscale hydrologic model: INFLUENCE OF SPATIAL
RESOLUTION. Water Resour. Res. 38, 29-1-29-10.
https://doi.org/10.1029/2001 WR000854

Hassanli, A.M., Ebrahimizadeh, M.A., Beecham, S., 2009. The effects of irrigation methods with
effluent and irrigation scheduling on water use efficiency and corn yields in an arid
region. Agric. Water Manag. 96, 93-99. https://doi.org/10.1016/j.agwat.2008.07.004

Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria, 2015. .
Trans. ASABE 58, 1763—1785. https://doi.org/10.13031/trans.58.10715

Jackson, T.J., Bindlish, R., Cosh, M.H., Zhao, T., Starks, P.J., Bosch, D.D., Seyfried, M., Moran,
M.S., Goodrich, D.C., Kerr, Y.H., Leroux, D., 2012. Validation of Soil Moisture and
Ocean Salinity (SMOS) Soil Moisture Over Watershed Networks in the U.S. IEEE Trans.
Geosci. Remote Sens. 50, 1530-1543. https://doi.org/10.1109/TGRS.2011.2168533

Jalilvand, E., Tajrishy, M., Ghazi Zadeh Hashemi, S.A., Brocca, L., 2019. Quantification of
irrigation water using remote sensing of soil moisture in a semi-arid region. Remote Sens.
Environ. 231, 111226. https://doi.org/10.1016/j.rse.2019.111226

Jiang, L., Ma, E., Deng, X., 2014. Impacts of Irrigation on the Heat Fluxes and Near-Surface
Temperature in an Inland Irrigation Area of Northern China. Energies 7, 1300-1317.
https://doi.org/10.3390/en7031300

Johnson, B., Thompson, C., Giri, A., NewKirk, S.V., n.d. Nebraska Irrigation Fact Sheet 6.

Kerr, Y.H., Waldteufel, P., Richaume, P., Wigneron, J.P., Ferrazzoli, P., Mahmoodi, A., Al
Bitar, A., Cabot, F., Gruhier, C., Juglea, S.E., Leroux, D., Mialon, A., Delwart, S., 2012.
The SMOS Soil Moisture Retrieval Algorithm. IEEE Trans. Geosci. Remote Sens. 50,
1384-1403. https://doi.org/10.1109/TGRS.2012.2184548

Kerr, Y.H., Waldteufel, P., Wigneron, J.-P., Delwart, S., Cabot, F., Boutin, J., Escorihuela, M.-J.,
Font, J., Reul, N., Gruhier, C., Juglea, S.E., Drinkwater, M.R., Hahne, A., Martin-Neira,
M., Mecklenburg, S., 2010. The SMOS Mission: New Tool for Monitoring Key Elements
ofthe Global Water Cycle. Proc. IEEE 98, 666—687.
https://doi.org/10.1109/JPROC.2010.2043032

Kim, S., Liu, Yi.Y., Johnson, F.M., Parinussa, R.M., Sharma, A., 2015. A global comparison of
alternate AMSR?2 soil moisture products: Why do they differ? Remote Sens. Environ.
161, 43—62. https://doi.org/10.1016/j.rse.2015.02.002

Koster, R.D., Guo, Z., Yang, R., Dirmeyer, P.A., Mitchell, K., Puma, M.J., 2009. On the Nature
of Soil Moisture in Land Surface Models. J. Clim. 22, 4322-4335.
https://doi.org/10.1175/2009JCLI2832.1

Kumar, S., Peterslidard, C., Tian, Y., Houser, P., Geiger, J., Olden, S., Lighty, L., Eastman, J.,
Doty, B., Dirmeyer, P., 2006. Land information system: An interoperable framework for
high resolution land surface modeling. Environ. Model. Softw. 21, 1402—-1415.
https://doi.org/10.1016/j.envsoft.2005.07.004

Kumar, S.V., Dirmeyer, P.A., Peters-Lidard, C.D., Bindlish, R., Bolten, J., 2018. Information
theoretic evaluation of satellite soil moisture retrievals. Remote Sens. Environ. 204, 392—
400. https://doi.org/10.1016/j.rse.2017.10.016



955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000

Kumar, S.V., Peters-Lidard, C.D., Santanello, J.A., Reichle, R.H., Draper, C.S., Koster, R.D.,
Nearing, G., Jasinski, M.F., 2015. Evaluating the utility of satellite soil moisture
retrievals over irrigated areas and the ability of land data assimilation methods to correct
for unmodeled processes. Hydrol. Earth Syst. Sci. 19, 4463—4478.
https://doi.org/10.5194/hess-19-4463-2015

Kumar, S.V., Reichle, R.H., Harrison, K.W., Peters-Lidard, C.D., Yatheendradas, S., Santanello,
J.A., 2012. A comparison of methods for a priori bias correction in soil moisture data
assimilation: BIAS CORRECTION IN SOIL MOISTURE DATA ASSIMILATION.
Water Resour. Res. 48. https://doi.org/10.1029/2010WR010261

Lawston, P.M., Santanello, J.A., Kumar, S.V., 2017. Irrigation Signals Detected From SMAP
Soil Moisture Retrievals: Irrigation Signals Detected From SMAP. Geophys. Res. Lett.
44, 11,860-11,867. https://doi.org/10.1002/2017GL075733

Lawston, P.M., Santanello, J.A., Zaitchik, B.F., Rodell, M., 2015. Impact of Irrigation Methods
on Land Surface Model Spinup and Initialization of WRF Forecasts. J. Hydrometeorol.
16, 1135-1154. https://doi.org/10.1175/JHM-D-14-0203.1

Liang, X., Lettenmaier, D.P., Wood, E.F., Burges, S.J., 1994. A simple hydrologically based
model of land surface water and energy fluxes for general circulation models. J. Geophys.
Res. 99, 14415. https://doi.org/10.1029/94JD00483

Lievens, H., Reichle, R.H., Liu, Q., De Lannoy, G.J.M., Dunbar, R.S., Kim, S.B., Das, N.N.,
Cosh, M., Walker, J.P., Wagner, W., 2017. Joint Sentinel-1 and SMAP data assimilation
to improve soil moisture estimates: SENTINEL-1 AND SMAP SOIL MOISTURE.
Geophys. Res. Lett. 44, 6145-6153. https://doi.org/10.1002/2017GL073904

Lievens, H., Tomer, S.K., Al Bitar, A., De Lannoy, G.J.M., Drusch, M., Dumedah, G.,
Hendricks Franssen, H.-J., Kerr, Y.H., Martens, B., Pan, M., Roundy, J.K., Vereecken,
H., Walker, J.P., Wood, E.F., Verhoest, N.E.C., Pauwels, V.R.N., 2015. SMOS soil
moisture assimilation for improved hydrologic simulation in the Murray Darling Basin,
Australia. Remote Sens. Environ. 168, 146—162.
https://doi.org/10.1016/j.rse.2015.06.025

Liu, Y., Wu, W., Li, H,, Imtiaz, M., Li, Z., Zhou, Q., 2018. Intercomparison on Four Irrigated
Cropland Maps in Mainland China. Sensors 18, 1197. https://doi.org/10.3390/s18041197

Livneh, B., Bohn, T.J., Pierce, D.W., Munoz-Arriola, F., Nijssen, B., Vose, R., Cayan, D.R.,
Brekke, L., 2015. A spatially comprehensive, hydrometeorological data set for Mexico,
the U.S., and Southern Canada 1950-2013. Sci. Data 2, 150042.
https://doi.org/10.1038/sdata.2015.42

Livneh, B., Hoerling, M.P., 2016. The Physics of Drought in the U.S. Central Great Plains. J.
Clim. 29, 6783—6804. https://doi.org/10.1175/JCLI-D-15-0697.1

Loveland, T.R., Reed, B.C., Brown, J.F., Ohlen, D.O., Zhu, Z., Yang, L., Merchant, J.W., 2000.
Development of a global land cover characteristics database and IGBP DISCover from 1
km AVHRR data. Int. J. Remote Sens. 21, 1303—-1330.
https://doi.org/10.1080/014311600210191

Mahmood, R., Hubbard, K., 2002. Anthropogenic land-use change in the North American tall
grass-short grass transition and modification of near-surface hydrologic cycle. Clim. Res.
21, 83-90. https://doi.org/10.3354/cr021083

Margulis, S.A., Girotto, M., Cortés, G., Durand, M., 2015. A Particle Batch Smoother Approach
to Snow Water Equivalent Estimation. J. Hydrometeorol. 16, 1752—-1772.
https://doi.org/10.1175/JHM-D-14-0177.1



1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046

Montgomery, D. C. and Runger G.C. (2013). Applied Statistics and Probability for
Engineers(6th ed.), Ch 3. . Danvers, MA: John Wiley & Sons.

Nair, A.S., Indu, J., 2019. Improvement of land surface model simulations over India via data
assimilation of satellite-based soil moisture products. J. Hydrol. 573, 406—421.
https://doi.org/10.1016/j.jhydrol.2019.03.088

O’Neill, P. E., Chan, S., Njoku, E. G., Jackson, T., and Bindlish, R.: SMAP Enhanced L3
Radiometer Global Daily 9 km EASE-Grid Soil Moisture Version 1, Boulder, Colorado
USA, NASA National Snow and Ice Data Center Distributed Active Archive Center,
available at: https://doi.org/10.5067/ZRO7EXJ803XI (last access: March 2019), 2016.

Ozdogan, M., Gutman, G., 2008. A new methodology to map irrigated areas using multi-
temporal MODIS and ancillary data: An application example in the continental US.
Remote Sens. Environ. 112, 3520-3537. https://doi.org/10.1016/j.rse.2008.04.010

Ozdogan, M., Rodell, M., Beaudoing, H.K., Toll, D.L., 2010. Simulating the Effects of Irrigation
over the United States in a Land Surface Model Based on Satellite-Derived Agricultural
Data. J. Hydrometeorol. 11, 171-184. https://doi.org/10.1175/2009JHM1116.1

Ozdogan, M., Woodcock, C.E., Salvucci, G.D., Demir, H., 2006. Changes in Summer Irrigated
Crop Area and Water Use in Southeastern Turkey from 1993 to 2002: Implications for
Current and Future Water Resources. Water Resour. Manag. 20, 467-488.
https://doi.org/10.1007/s11269-006-3087-0

Peters-Lidard, C.D., Houser, P.R., Tian, Y., Kumar, S.V., Geiger, J., Olden, S., Lighty, L., Doty,
B., Dirmeyer, P., Adams, J., Mitchell, K., Wood, E.F., Sheffield, J., 2007. High-
performance Earth system modeling with NASA/GSFC’s Land Information System.
Innov. Syst. Softw. Eng. 3, 157-165. https://doi.org/10.1007/s11334-007-0028-x

Portmann, F.T., Siebert, S., D6ll, P., 2010. MIRCA2000-Global monthly irrigated and rainfed
crop areas around the year 2000: A new high-resolution data set for agricultural and
hydrological modeling: MONTHLY IRRIGATED AND RAINFED CROP AREAS.
Glob. Biogeochem. Cycles 24, n/a-n/a. https://doi.org/10.1029/2008GB003435

Pun, M., Mutiibwa, D., Li, R., 2017. Land Use Classification: A Surface Energy Balance and
Vegetation Index Application to Map and Monitor Irrigated Lands. Remote Sens. 9,
1256. https://doi.org/10.3390/rs9121256

Reichle, R.H., Crow, W.T., Koster, R.D., Sharif, H.O., Mahanama, S.P.P., 2008. Contribution of
soil moisture retrievals to land data assimilation products. Geophys. Res. Lett. 35.
https://doi.org/10.1029/2007GL031986

Reichle, R.H., Koster, R.D., Dong, J., Berg, A.A., 2004. Global Soil Moisture from Satellite
Observations, Land Surface Models, and Ground Data: Implications for Data
Assimilation. J. Hydrometeorol. 5, 430—442. https://doi.org/10.1175/1525-
7541(2004)005<0430:GSMFS0>2.0.CO;2

Rodell, M., Velicogna, 1., Famiglietti, J.S., 2009. Satellite-based estimates of groundwater
depletion in India. Nature 460, 999—1002. https://doi.org/10.1038/nature08238

Romaguera, M., Krol, M.S., Salama, Mhd.S., Hoekstra, A.Y., Su, Z., 2012. Determining
Irrigated Areas and Quantifying Blue Water Use in Europe Using Remote Sensing
Meteosat Second Generation (MSG) products and Global Land Data Assimilation System
(GLDAS) Data. Photogramm. Eng. Remote Sens. 78, 861-873.
https://doi.org/10.14358/PERS.78.8.861

Ross, E. A. (1997). National Engineering Handbook: Irrigation Guide, Ch. 5. Fort Worth,
Texas: Technical Publishing Team, NRCS, National Cartography and Geospatial Center



1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091

Salmon, J.M., Friedl, M.A., Frolking, S., Wisser, D., Douglas, E.M., 2015. Global rain-fed,
irrigated, and paddy croplands: A new high resolution map derived from remote sensing,
crop inventories and climate data. Int. J. Appl. Earth Obs. Geoinformation 38, 321-334.
https://doi.org/10.1016/j.jag.2015.01.014

Scanlon, B.R., Faunt, C.C., Longuevergne, L., Reedy, R.C., Alley, W.M., McGuire, V.L.,
McMahon, P.B., 2012. Groundwater depletion and sustainability of irrigation in the US
High Plains and Central Valley. Proc. Natl. Acad. Sci. 109, 9320-9325.
https://doi.org/10.1073/pnas.1200311109

Seginer, 1., 1967. Net losses in sprinkler irrigation. Agric. Meteorol. 4, 281-291.
https://doi.org/10.1016/0002-1571(67)90028-3

Siebert, S., Doll, P., n.d. [ An Update for Latin America and Europe [ 46.

Small, E., Badger, A., Abolafia-Rosenzweig, R., Livneh, B., 2018. Estimating Soil Evaporation
Using Drying Rates Determined from Satellite-Based Soil Moisture Records. Remote
Sens. 10, 1945. https://doi.org/10.3390/rs10121945

Smyth, E.J., Raleigh, M.S., Small, E.E., 2019. Particle Filter Data Assimilation of Monthly Snow
Depth Observations Improves Estimation of Snow Density and SWE. Water Resour. Res.
55, 1296-1311. https://doi.org/10.1029/2018WR 023400

Sun, L., Anderson, M.C., Gao, F., Hain, C., Alfieri, J.G., Sharifi, A., McCarty, G.W., Yang,
Yun, Yang, Yang, Kustas, W.P., McKee, L., 2017. Investigating water use over the
Choptank River Watershed using a multisatellite data fusion approach: WATER USE
OVER THE CHOPTANK WATERSHED. Water Resour. Res. 53, 5298-5319.
https://doi.org/10.1002/2017WR020700

Tang, Q., Oki, T., Kanae, S., Hu, H., 2007. The Influence of Precipitation Variability and Partial
Irrigation within Grid Cells on a Hydrological Simulation. J. Hydrometeorol. 8, 499-512.
https://doi.org/10.1175/JHM589.1

Teluguntla, P., Thenkabail, P.S., Xiong, J., Gumma, M.K., Congalton, R.G., Oliphant, A.,
Poehnelt, J., Yadav, K., Rao, M., Massey, R., 2017. Spectral matching techniques
(SMTs) and automated cropland classification algorithms (ACCAs) for mapping
croplands of Australia using MODIS 250-m time-series (2000-2015) data. Int. J. Digit.
Earth 10, 944-977. https://doi.org/10.1080/17538947.2016.1267269

Thenkabalil, P.S., Biradar, C.M., Noojipady, P., Dheeravath, V., Li, Y.J., Velpuri, M., Reddy,
G.P.O., Cai, X., Gumma, M.K., Turral, H., Vithanage, J., Schull, M., Dutta, R., 2008. A
Global Irrigated Area Map (GIAM) using remote sensing at the end of the last
millennium. International Water Management Institute (IWMI).
https://doi.org/10.5337/2011.0024

Thenkabail, P.S., Schull, M., Turral, H., 2005. Ganges and Indus river basin land use/land cover
(LULC) and irrigated area mapping using continuous streams of MODIS data. Remote
Sens. Environ. 95, 317-341. https://doi.org/10.1016/j.rse.2004.12.018

van Dijk, A.ILJ.M., Schellekens, J., Yebra, M., Beck, H.E., Renzullo, L.J., Weerts, A., Donchyts,
G., 2018. Global 5-km resolution estimates of secondary evaporation including irrigation
through satellite data assimilation. Hydrol. Earth Syst. Sci. Discuss. 1-36.
https://doi.org/10.5194/hess-2017-757

Vorosmarty, C.J., Sahagian, D., 2000. Anthropogenic Disturbance of the Terrestrial Water
Cycle. BioScience 50, 753. https://doi.org/10.1641/0006-
3568(2000)050[0753:ADOTTW]2.0.CO;2



1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137

Vrugt, J.A., ter Braak, C.J.F., Diks, C.G.H., Schoups, G., 2013. Hydrologic data assimilation
using particle Markov chain Monte Carlo simulation: Theory, concepts and applications.
Adv. Water Resour. 51, 457-478. https://doi.org/10.1016/j.advwatres.2012.04.002

Wagner, W., Hahn, S., Kidd, R., Melzer, T., Bartalis, Z., Hasenauer, S., Figa-Saldafia, J., de
Rosnay, P., Jann, A., Schneider, S., Komma, J., Kubu, G., Brugger, K., Aubrecht, C.,
Ziger, J., Gangkofner, U., Kienberger, S., Brocca, L., Wang, Y., Bloschl, G., Eitzinger,
J., Steinnocher, K., 2013. The ASCAT Soil Moisture Product: A Review of its
Specifications, Validation Results, and Emerging Applications. Meteorol. Z. 22, 5-33.
https://doi.org/10.1127/0941-2948/2013/0399

Warren, S.L., Bilderback, T.E., 2002. Timing of Low Pressure Irrigation Affects Plant Growth
and Water Utilization Efficiency. . September 6.

Weerts, A.H., El Serafy, G.Y.H., 2006. Particle filtering and ensemble Kalman filtering for state
updating with hydrological conceptual rainfall-runoff models: PARTICLE AND
ENSEMBLE KALMAN FILTERING. Water Resour. Res. 42.
https://doi.org/10.1029/2005WR004093

Wisser, D., Frolking, S., Douglas, E.M., Fekete, B.M., Vorosmarty, C.J., Schumann, A.H., 2008.
Global irrigation water demand: Variability and uncertainties arising from agricultural
and climate data sets. Geophys. Res. Lett. 35. https://doi.org/10.1029/2008 GL035296

Wu, X., Zhou, J., Wang, H., Li, Y., Zhong, B., 2015. Evaluation of irrigation water use
efficiency using remote sensing in the middle reach of the Heihe river, in the semi-arid
Northwestern China: EVALUATION OF IRRIGATION WATER USE EFFICIENCY IN
THE SEMI-ARID REGION. Hydrol. Process. 29, 2243-2257.
https://doi.org/10.1002/hyp.10365

Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., Luo, L., Alonge, C., Wei,
H., Meng, J., Livneh, B., Lettenmaier, D., Koren, V., Duan, Q., Mo, K., Fan, Y., Mocko,
D., 2012a. Continental-scale water and energy flux analysis and validation for the North
American Land Data Assimilation System project phase 2 (NLDAS-2): 1.
Intercomparison and application of model products: WATER AND ENERGY FLUX
ANALYSIS. J. Geophys. Res. Atmospheres 117, n/a-n/a.
https://doi.org/10.1029/2011JD016048

Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., Luo, L., Alonge, C., Wei,
H., Meng, J., Livneh, B., Lettenmaier, D., Koren, V., Duan, Q., Mo, K., Fan, Y., and
Mocko, D.: NLDAS Primary Forcing Data L4 Hourly 0.125 0.125 degree V002,
Greenbelt, Maryland, USA, Goddard Earth Sciences Data and Information Services
Center (GES DISC), available at: https://doi.org/10.5067/6JSLHHOHZHN4 (last access:
March 2019), 2012b.

Yonts, C.D., n.d. G02-1465 Crop Water Use in Western Nebraska 5.

Zaussinger, F., Dorigo, W., Gruber, A., Tarpanelli, A., Filippucci, P., Brocca, L., 2018.
Estimating irrigation water use over the contiguous United States by combining satellite
and reanalysis soil moisture data. Hydrol. Earth Syst. Sci. Discuss. 1-42.
https://doi.org/10.5194/hess-2018-388

Zhan, W., Pan, M., Wanders, N., Wood, E.F., 2015. Correction of real-time satellite precipitation
with satellite soil moisture observations. Hydrol. Earth Syst. Sci. 19, 4275-4291.
https://doi.org/10.5194/hess-19-4275-2015

Zhang, G., Liu, C., Xiao, C., Xie, R., Ming, B., Hou, P., Liu, G., Xu, W., Shen, D., Wang, K., Li,
S., 2017. Optimizing water use efficiency and economic return of super high yield spring



1138
1139
1140
1141
1142

1143

maize under drip irrigation and plastic mulching in arid areas of China. Field Crops Res.
211, 137-146. https://doi.org/10.1016/j.fcr.2017.05.026

Zhang, X., Qiu, J., Leng, G., Yang, Y., Gao, Q., Fan, Y., Luo, J., 2018. The Potential Utility of
Satellite Soil Moisture Retrievals for Detecting Irrigation Patterns in China. Water 10,
1505. https://doi.org/10.3390/w10111505



