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;E: addressing changing observing systems and

4 representation of transport

< _JPSS-1, 2,3 & 4 OMPS-! . o .

& e Stratospheric chemical reanalysis work at the GMAO
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* Laundry list of thoughts and questions about the theme

SPARC-DAWG Workshop, 2019, Theme 1: chemical reanalysis
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Differences between six major reanalyses and
the SWOOSH.

Step changes in observations have
consequences for studies of the long-term
ozone variability
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Latitude

Differences between six major reanalyses and
the SWOOSH.

Step changes in observations have
consequences for studies of the long-term
ozone variability
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Correction of discontinuities

MERRA-2 — M2-GMI difference

70 hPa, tropics In this approach we use a
chemistry model simulation
shaded regions are used After bias correction driven by assimilated

to compute the biases

meteorology (M2GMI) as a
transfer standard to correct step
changes in MERRA-2 ozone that
<4 Step changes = arise from changes in the
observing system.

MLS V2.2

2000 2005 2010
year

It would be preferable to have a
reanalysis output that is already
discontinuity-free.

G MAO k gmao.gsfc.nasa.gov

Wargan et al., 2018
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« OMPS Limb Profiler on Suomi NPP
(2012—present) and planned for JPSS-
2, 3, & 4 well into the 2030s

« Switching from MLS to OMPS-LP (or
to assimilating both) would lead to a
discontinuity

» The discontinuity is eliminated by
simple homogenization

« Assimilation of the homogenized data
will eliminate the discontinuity but not
the drift in OMPS-LP (not shown)

Sean suggested assimilating water vapor and
ozone homogenized the way it was done in
SWOOSH

. gmao.gsfc.nasa.gov



National Aeronautics and Space Administration

RN LN SRS I B I S R S e
DIFF:  0.05 ppmv : DIFF:  0.14 ppmv
SIGMA: 0.48 ppmv . SIGMA: 0.51 ppmv
R: 0.72 IR: 0.70

DIFF:  0.23 ppm DIFF:  0.33 ppm
SIGMA: 0.78 ppmv SIGMA: 0.86 ppmv
IR: 0.59 R: 0.54

[T T T[T T T[T T[T

N~
1

-
>

»

-
N

e
o
T T T

@
LI L

OMPS analysis

T T T T Y T S N

OMPS analysis

'1kll

6 8 12 14 6 8 10 12 14

MLS analysis [mPa]
MLS analysis [mPa]

k

0.0e+00 0.0e+00

6 8 10 12 14

sondes [mPa] sondes [mPa] 254 sondes sondes [mPa] sondes [mPa]

[T T T[T T T [T T[T T 5.2e-02 [T T T[T T T[T rT T L S B

[N
1

R B B
DIFF:  0.02 ppmv
SIGMA: 1.43 ppmv
1R: 0.89

L B TR
DIFF:  0.19 ppmv
SIGMA: 1.25 ppmv
R: 0.76

T
.00 ppmv
8 ppmv
1

T
DIFF: 0
SIGMA: 1

0

.0
R: .8

T T
DIFF: -0.04 ppmv
SIGMA: 1.44 ppmv
R: 0.88

N

,

7

’
& v
2

OMPS analysis
OMPS analysis

I T T Y T T T A

—
(C
Q.
=
R
v
=
©
C
©
%]
w—
=

MLS analysis [mPa]

C & ]
1 - - -
4 LI C ]
P NI A S AR A bl b b b b by 147 0.0e+00
10 12 1

» [_ V. ' L p
o INIT - n
PRI RTINS I S bl b b by b b by By 0.0e+00
8 6 8 10 12 14 8 10 1

4 6 8 10 12 14

sondes |mPa| sondes |mPa| sondes [mPa] sondes [mPa]

Joint probability distributions of global ozonesonde data and the two analyses at different levels
relative to the tropopause. MLS and OMPS-LP analyses exhibit very similar characteristics

2 4 6

gmao.gsfc.nasa.gov




National Aeronautics and Space Administration

DIFF: -0.32 ppmv DIFF: -0.37 ppmv
SIGMA: 1.42 ppmv . SIGMA: 1.44 ppmv
IR: 0.91 IR: 0.90

N
o
N
[}

S S e T R
DIFF:  0.04 ppmv
SIGMA: 1.71 ppmv
R: 0.88

)#f\‘ a
W,
2

8 km
110I‘ll15I‘II l|I‘II‘l10IIlI15I

sondes [mPa] sondes [mPa] 254 sondes sondes [mPa] sondes [mPa]

-
o
T
w
T

-
o

T L —
o

T L

o
L

w
T T T

6.5e-03 4.1e-03

OMPS analysis
OMPS analysis

0.0e+00

o
[ S

0.0e+00

MLS analysis [mPa]
MLS analysis [mPa]

8 10 12 14

s o e W B
-0.07 ppmv

1.38 ppmv
0.89pp

D
o

3.3e-02

[T T T T T

AL BN L B

T[T
DIFF:  0.23 ppmv
SIGMA: 0.74 ppmv
R: 0.94

R B B
DIFF:  0.22 ppmv
SIGMA: 0.67 ppmv
1R: 0.95

DIFF: -0.16 ppmv 271
SIGMA: 1.38 ppmv <
R: .89 (i +4 | 2.6e-02

]

DIFF:
SIGMA:
R:

(4]
T

o
T T T T

(4]
T T T

6.6e-03 1.3e-02

OMPS analysis

OMPS analysis

k

o
LI

0.0e+00

0.0e+00

—
(C
Q.
=
R
v
=
©
C
©
%]
w—
=

MLS analysis [mPa]

10 km |

10 10 15 6 8 10 12 14

sondes |mPa| sondes |mPa| sondes [mPa] sondes [mPa]

Joint probability distributions of global ozonesonde data and the two analyses at different levels
relative to the tropopause. MLS and OMPS-LP analyses exhibit very similar characteristics

gmao.gsfc.nasa.gov




National Aeronautics and Space Administration

{DIFF:

?SIGMA 0.21 ppmv
£ 096pp

-0.06 ppmv]_ |

o

~

w

no

MLS analysis [ppmv]

- 43.9hP;

—

OMPS-LP analysis [ppmv]

—
Q

o

2 3 4
ACE-FTS [ppmv]

2 3 4 5
ACE-FTS [ppmv]

{DIFF; 0.
[SIGMA: 0
|R: 057

ppmv
4 ppmv

{[DIFF:

mv
[sicwa Zppmv) |

1 ppmv
005

MLS analysis [ppmv]

g

i P
i 4
P
»

n
£0.V

OMPS-LP analysis [ppmv]
= DR CORNE-P N O B OO .\‘

(b)

ACE-FTS [ppmv]

—_
o

2]

—_
o

e}

»

=
£
Q
&
2
0
>
(]
| =4
<
()
|
=

8.

OMPS-LP analysis [ppmv]

S

e L1 11 0.0e+00

6 8 10
ACE-FTS [ppmv]

no
N

MLS analysis [ppmv]

I[DTFF:

HSIGMA: 0.27 p
1R:

015 ppmv
ppmv ft

0.98

- 4.56 hPa

6 8 10
ACE-FTS [ppmv]

PSVLP analysis [ppmv]

DIFF:  -0.19 ppmv|
SIGMA: 0.35 ppmv f
R: 0.97

6 8 10
ACE-FTS [ppmv]

e 2.3e-02

”,
.
/3

7
.
.,
’,
2 }
7

DI, 012 ppmv| |
ESIGMA 831 ppmv

1.9e-02

1.4e-02

2.95 hPa

9.3e-03 ;-

4.6e-03

OMPS-LP analysis [ppmv]

0.0e+00

4 5 6 7
ACE-FTS [ppmv]

2 3 4 5 6 7
ACE-FTS [ppmv]

— N R

0
c
[
3
o
d)

»
RRARRRRRS"

OMPS-LP analysis [ppmv]

0.0e+00

4 5 6
ACE-FTS [ppmv]

5
ACE-FTS [ppmv]

Joint probability
distributions of global
ACE-FTS ozone and
the two analyses at
selected pressure
levels. MLS and
OMPS-LP analyses
exhibit very similar
characteristics

...and the analyses
perform very well,
within estimated ACE-
FTS/MLS uncertainties
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Points made so far

* Achieving continuity of reanalysis ozone

GMAO
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Transport

G MAO gmao.gsfc.nasa.gov
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Two ways of doing specified dynamics:

e CTM

* ‘Replay’

Both driven by MERRA-2, both use versions of
the GMI chemistry model; CTM has somewhat

updated chemistry
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Figure 6. Smoothed 12-month zonal means of differences between simulated and SBUV MOD total O3 columns. (a) M2

GMI Replay. (b) GMI CTM. The black dashed line on each panel indicates the year 1998. Very different response to the 1998/1999
GMI CTM - M2 GMI Replay 12 Month Zonal Mean ST80 25 at 139 hPa (~15 km)
60 H
- WAnl observing system change (TOVS/ATOVS
transition), apparently related to QBO-induced
transport.

Idealized tracer
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It matters how specified dynamics is done
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Stauffer et al. 2019
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Ozone
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autumn ozone “resetting”
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Nothing like this for HCI.
There is no one such thing as
transport
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Points made so far

* Achieving continuity of reanalysis ozone
 Importance of transport

GMAO
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A GEOS chemical reanalysis of the stratosphere: work in

progress

e 4-year project funded by MAP (Modeling, Analysis, and Prediction)

* Asignificant extension of NASA GMAQ’s GEOS Data Assimilation System to include
assimilation of several stratospheric constituents beyond ozone

* Currently assimilating: water vapor, HNO,, HCI from MLS

* Planning: N,O and potentially CIO

e Goal: produce an MLS mission-long reanalysis of the stratosphere for chemistry, composition
and transport studies. Note, this is similar to the BASCOE Reanalysis of Aura MLS v2 (BRAM?2)

* Perform a high-resolution multiyear scientific analysis of polar processing during winter and
spring in both hemispheres

* Assess the predictability of polar stratospheric ozone and water vapor (WV) fields on short to
seasonal time scales

* Investigate the lower stratospheric WV budgets and WV-ozone interactions in the middle
latitudes

G MAO ; gmao.gsfc.nasa.gov
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Data assimilation system

o This work wuses a version o the GEOS general circulation model with a
stratospheric chemistry model driven by MERRA-2 meteorology; GMAO
analyses to date have used a simple parameterized chemistry scheme

o The chemistry model, StratChem:

o 51 transported and 17 derived species

o 149 gas-phase and 39 photolysis reactions

o Reaction rates follow the recommendations in JPL 2015
o Includes a PSC scheme and heterogeneous reactions

o Currently assimilating ozone, water vapor, HNO3, and HC| data from MLS
and total ozone from OMI

GMAO
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Good fit to the assimilated
Analysis and MLS water vapor at 100 hPa, 23 December 2015 21UTC data, although there are
' . , vl some outliers. This is the
Sl first time stratospheric water
vapor has been successfully
assimilated in GEOS-DAS.

e s iy e

P0%3senssanon

Some disagreement = = _ AR | N " ‘-L ~~s. Amer. Monsoon; : observations are
with MLS R\ Y- | e (> i
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Schwartz et al. 2013 mixing ratio
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R Gghn

Assimilation has lasting effects on
the mean HNO; several months
after the system ceased to see the
data. This is very long compared to
its chemical lifetime (~1 day).
Predictability

SN oY (0 (P

h - 8.1e-02
SIGNIA: 87786515’&“
' 094 Sl Assimilation of HNO; alters the
/ 49e-02 & NOy budget.
3.2e-02 v NOY =
= NO+NO,+NO;+
+2N,0.+HNO,+CIONO,
0.0e+00
ACE-FTS [ppbv] ACE-FTS [ppbv] SO, IS th|S gOOd neWS?

G MAO V gmao.gsfc.nasa.gov
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,3=P9_global NOy=NO+NOZHNO3+2N205+HNO3 _ HNO; assimilation affects total NO, and nitrogen
partitioning.

This reduces HNO; bias but does it improve the
other nitrogen species? Not in StratChem

NO, NO,, N,Oc are poorly represented in StratChem
but also in GMI. How about other models?

NO+NOZ+2NZO5

NO+NO,+NO;+2N,0:+HNO; free 20 a5
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GMAO

Points made so far

Achieving continuity of reanalysis ozone
Importance of transport

Interconnectivity, predictability, and feedbacks in
chemical DA; impact on non-assimilated species
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Challenges, questions

 MLS and MIPAS provide observations of many key constituents for chemical reanalyses of
the stratosphere, 2003 (to be generous) to present. What happens when MLS is gone?
Connection with Theme 3.
 More fundamentally: what is the minimal set of observed stratospheric constituents?
 What is the best strategy for eliminating systematic differences between data sources?
 What do we do about drifts (MLS WV and N,O, OMPS-LP ozone)
* Focus on transport:
Do we assimilate constituent data into a SD simulation? What'’s the right way to do
specified dynamics to achieve fidelity of transport?
Do we assimilate constituents within a full data assimilation system (along with
meteorology)? Is that computationally feasible?
* In either case, how do we address discontinuities in the analyzed meteorology?
 What is the impact of constituent assimilation on non-assimilated species/families? How
well are the latter represented? Implications for predictability

G MAO k gmao.gsfc.nasa.gov
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Potential discussion points

* What science questions can stratospheric chemical reanalyses address?
* A comprehensive assessment of what a reanalysis can and cannot do would be useful
 How can we effectively communicate all this to other researchers?

G MAO ‘ ) gmao.gsfc.nasa.gov




