Generalizability of Manual Control Skills between Control Tasks of Varying Difficulty

Marc A. Pieters and Peter M. T. Zaal
San José State University
NASA Ames Research Center

Introduction

Long-duration space missions require more self reliance of crews:

- 1. Not everything can be trained before launch
- 2. No direct support from mission control
- Loss of skills over duration of mission

Different training strategies are required:

- 1. Training of generalizable skills
- 2. In-mission training

Introduction

Research question:

 Do manual control skills generalize between similar tasks of varying difficulty?

What is new:

- Manual control skills
- Cybernetic approach

Method

- Between-subject design with two groups
- Ten days of testing

Training					Transfer		Evaluation				
D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12
Group 1											
~~~.					X						
Group	2										
							~				





## Experiment Setup

 Desktop computer with BG Systems joystick

Ten 90-second runs each day

 Nine task-naïve participants per group



# **Experiment Setup**

#### Calculated variables for each axis:

- 1. Tracking performance  $(RMS_e)$
- 2. Control effort  $(RMS_u)$
- 3. Operator model parameters  $(K_p, T_L, \tau_v, \frac{\zeta_m, \omega_m}{\zeta_m})$

$$y_{lc} = p_a + (p_0 - p_a)(1 - F)^x$$

#### Dependent measures:

1. Learning curve parameters  $(p_0, p_a, F)$ 

### Results – Calculations

- 1. Data from six participants not used
- 2. Time-average of two runs
- 3. MLE for fitting operator models
- 4. Least squares for fitting learning curves on averaged data
- 5. Learning curve if Pearson's coefficient R > 0.3
- 6. Two-way mixed ANOVA (Group X Training)

# Results – Tracking Performance

X: p₀ = 0.31, p_a = 0.18, F = 0.18, R = 0.95 Y: p₀ = 0.32, p_a = 0.12, F = 0.14, R = 0.96

10

20





No significant difference between groups

30

40

50

- 2. Significant training effect
- 3. Better performance in y

Run number Evaluation

Group 1

# Results – Tracking Performance



- Significantly better performance for group 1
- 2. Significant effect of training

Group 2



Run number **Training** 

# Results – Control Activity

Group 1





- No significant difference between groups
- 2. Significant training effect
- 3. Lower control activity in y

Run number **Evaluation** 

# Results – Control Activity



- No significant differences between groups
- 2. No significant effect of training

Group 2



Run number **Training** 

### Results - Control Gain

Group 1





- No significant difference between groups
- No significant training effect

Run number Evaluation

### Results – Control Gain



- No significant differences between groups
- 2. No significant effect of training

Group 2



# Results – Lead Time Constant

X: p₀ = 1.5, p_a = 1.2, F = 0.25, R = 0.57 Y: p₀ = 2, p_a = 1.1, F = 0.32, R = 0.85





- No significant difference between groups
- 2. Significant training effect

Run number Evaluation

rom 1

### Results – Lead Time Constant



- No significant differences between groups
- 2. No significant effect of training





#### Conclusions

- 1. No significant difference between groups
- 2. Significant effect of training

Training with easy task – effects on hard task	Training with hard task – effects on easy task			
Higher learning rates	Higher learning rates			
No effect on performance	Better performance			
Higher control activity	Higher control activity			
Higher control gain	Lower control gain			
Less visual lead	More visual lead			

Thank you!

Questions?

peter.m.t.zaal@nasa.gov