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Background & Motivation

Advanced Nuclear Power named in Energy Policy Act of 2005 (Gen
IV Nuclear Systems Initiative)

— Gen. Baseload GW'’s Power -> Solve Depletion of Earth’s HC
(hydro-carbon) Resources

— Ameliorate world climate problems by eliminating Greenhouse
Gas Emissions

Thorium Energy Independence & Security Act of 2008 (S.3680)

Thorium Power Plant Construction (100 GWe over next 25 yrs)
would re-invigorate US and World economies
Gen IV Candidate Advanced Nuclear Power Plants
— Gas Turbine Modular He Reactor (GT-MHR) Systems - Space
— Liquid Fluoride Thorium Reactor (LFTR) GT Systems - Terrestrial

High Temperature Gas Turbine Power plants offer large Thermal Efficiency
Improvement over Steam plants

— Amenable to formation of nuclear micro-grid elements housed in
off-shore submarine hulls



Energy Conversion Cycle Comparisons
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Requirements — i.e. Power System Design Drivers

e Space (Lunar-Mars) Power Systems

MWe Power Levels require CBC (Closed Brayton Cycle) Conversion
Emphasis is on Minimum System Mass

High System Reliability, Autonomy and long Operational Life required to
compensate for little or no maintenance

Need least complex systems w. minimum components

Thermal Efficiency can be traded to achieve Low Mass, i.e. non-
regenerated and direct heated/cooled cycles eliminate heat exchanger
(regenerator HX, HSHX, CSHX) mass at reduced Eff.

Location in permanently shadowed Lunar craters is ideal for CBC Nuclear
Power systems, by enabling “Low Temperature Heat Rejection”, i.e. (High
Efficiency at low radiator area).

e Terrestrial Nuclear Power Systems — e.g. LFTR Power Plant

Emphasis is on maximizing Thermal Efficiency, ntand thus Power Output,
Revenue, Profit & Return on Investment

High Temp. Materials R&D enables high TIT, and thus high nt
System Maintenance possible during regularly scheduled Periods

High System Mass and Complexity are acceptable as long as high Power
Plant Availability/Reliability is assured

Ideal for Micro — Grid nuclei




Space CBC Systems
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In-direct Heat Input & Heat Rejection via Radiator for
Regenerated Closed Brayton Cycle (CBC) Power System
via Heat Exchangers
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Direct Heat Input and Rejection via Radiator for Non-
Regenerated Closed Brayton Cycle (CBC) Power System
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Spacecraft with Trapezoidal Heat Pipe Radiator
(Ref. SP-100 Program)

| Radiator
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Turbo-
Alternators




SP — 100 Radiator Panel/Cone Configuration

Radiator panel
with 226 heat pipes

Evaporator

_______ : Design features

12-panel, conical radiator
Carbon-carbon heat pipes
Integral fins Radiator
Potassium working fluid configuration
Metal liner

Heat pipe
with end caps
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Design features

12-panel, conical radiator
Carbon-carbon heat pipes
Integral fins

Potassium working fluid
Metal liner

Radiator panel
with 226 heat pipes

Radiator
configuration

Figure 11.—SP-100 advanced heat pipe segmented radiator.
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Regenerator Specific Mass vs. Effectiveness with
Heat Transfer Coefficient U as a Parameter
for He Working Fluid
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Influence of Regenerator Effectiveness (ERG) on Cycle Efficiency
at Cycle Temp. Ratio of 3.0 and 4.0
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Advanced Power System Applications
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Ground Based CBC Systems
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Three Stage Reheat & Intercool Brayton Cycle
Temperature — Entropy Diagram
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Three Stage Intercool Only Brayton Cycle
Temperature — Entropy Diagram
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Proposed Vertical Orientation of GT-MHR* Turbomachinery
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1 - Generator 6 — Control Rod Drive
2 — Recuperator 7 —Core
3 - Turbocompressor B — Vessel System .
4 — Intercooler 9 — Reactor Shutdown * Gas_ Turbine Modular
5 — Precooler Cooling System Helium Reactor
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compressor

Typical Axial Radial Turbo




Axial/Radial Compressor with Axial Intake

Type AR 250-8-2 axial-centrifugal
compressor with axial intake

Medium Air

Flow volume 272 000 mé/h

Intake pressure 1.01 bar

Discharge pressure 6.4 bar

Rotational speed 4550 rpm

Drive rating 22 700 kKW
(turbine)
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Flow Diagram for AR Compressor with Axial Intake

1 — Intake Casing

2 — Discharge for Axial Section
3 — Intake for 1. Radial Section
4 — Discharge for 1. Radial S.
5 - Intake for 2. Radial Section
6 — Discharge for 2. Radial S.

7,8,9 — Stage Intercoolers

10 — Compressor Discharge Flow
11 - Start-up Valve

12 — Surge Control Valve

13 - Blow-off Line

14 — Start-up Relief Valve
15 — Intermediate Blow-off for Start.
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Energy from Thorium

Via

Liquid Fluoride Thorium Reactor- LFTR
for Terrestrial Power

References: Kirk Sorensen, W. Thesling
R. Hargraves — “Thorium energy cheaper than coal”




Thorium and Uranium Abundance in the Earth’s Crust
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Fig. 5.13. The chemical composition of the Earth’s crust.



Thorium,,, - Uranium,;; Breeding Cycle

Thorium-233 decays
quickly (half-life of 22.3
min) to protactinium-233
by emitting a beta particle
(i.e. an electron).

Th-233

(New Iso-
tope)

Thorium-232 absorbs a
neutron from fission and
becomes thorium-233.

Glasstone & Sesonske

Pa-233

New Element

Th-232
(Fertile)
24

U-233
(Fissile)

Protactinium-233 decays more slowly
(half-life of 27 days) to uranium-233 by
emitting a beta particle (an electron).

It is important that Pa-233 NOT
absorb a neutron before it
decays to U-233—it should be
shielded from any neutrons until
it decays.

o

Uranium-233 is fissile and will
fission when struck by a
neutron, releasing energy and
2 to 3 neutrons. One neutron

o Is needed to sustain the chain-
reaction, one neutron is
needed for breeding, and any
remainder can be used to
breed additional fuel.



Thorium —Uranium Fuel Cycle

Three Step process

Step 1 - Change of Atomic Mass (Isotope) via neutron absorption

1. 4,Th2+ nl->,Th?3 +y (neutron absorption)

Steps 2 & 3 - Change of Atomic Number (Element) via B decay
2 9oTh?¥  ->-B%+,,Pa? (B decay — A = (In 0.5)/(HL= 22.3 min)*

3. o,Pa%3%®  ->-B%+,,U?33 (B decay—A = (In 0.5)/(HL= 27 days) *

*(where A is Decay Constant

HL is Half Life)




Time for 99.9% Beta Decay of Protactinium to U-233

Looking at Step 3, the time required for 99.9% of Pa233 decaying to U233 and 0.1%
remaining Pa?33, let N(t) = 0.1 and N,=99.9 in eq. (1)

N(t) = N, e™ (1)
where A is the decay constant computed from
A=(In.5)/T, <, with T, . being the Half Life = 27 days
So A=-0.693/27 =-0.02567 days™
Substitutingin (1) : 0.1 =99.9 e0.02567%t (2)

Dividing (2) by 99.9 ~100, and taking the In of both sides, we have
Ln .001 =-.025671
t=-6.9077 /-.02567

= 269 days, or ~ 9 months for 99.9% of Pa -> U233

Note that for 99 % transmutation to U%33 only 179.5 days would be required
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Energy Extraction Comparison for U,;¢ and Th,,

Uranium-fueled light-water reactor: 35 GW*hr/MT of natural uranium

G i Conversion and 1,120,000 MW*days/35 MT 33%
othSLSéO” fabrication U235 at 3.2% enrichment L
0 (typical LWR fuel burnup) L

||||||||| steam turbine)
293 MT of 1000 MW*yr
natural U;Og 365 MT of natural 39 MT of enriched 3000 MW*yr of of electricity

UF, (247 MT U thermal ener

(248 MT U) 6 ( N (3.29%) UO, (35 MT U,ye) W dorzmwy

Thorium-fueled liquid-fluoride reactor: 11,000 GW*hr/MT of natural thorium

c . Thorium metal added 765,000 MW*days/.8 MT 50% conversion
onversion to blanket salt through 233 (complete burnup) e I e
to metal h ith efficiency (triple
exchange wi reheat closed-cycle
: pretElT helium gas-turbine)
| _ 0.8 MT of 233Pa formed in 2000 MW*yr 1000 MW*yr of
0.9 MT of 0.8 MT of thorium reactor blanket from of thermal electricity
i 233
natural ThO2 metal thorium (decays to 233U) energy (1048 MW*yr)
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Uranium fuel cycle calculations done using WISE nuclear fuel material calculator: http://www.wise-uranium.org/nfcm.html



Thorium: Virtually Limitless Energy

World Thorium Resources

Reserve Base

Country (tons)
Australia 340,000
India 300,000
USA 300,000
Norway (“Thorcon” in Oslo) 180,000
Canada 100,000
South Africa 39,000
Brazil 18,000
Other countries 100,000
World total 1,400,000

Source: U.S. Geological Survey, Mineral
Commodity Summaries, January 2008
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e Thorium is abundant around the world:
— Found in trace amounts in most rocks and soils

— India, Australia, Canada, US have large minable
concentrations. (Main Ore “Monazite”)

— US has about 20% of the world reserve base

 No need to hoard or fight over this resource:

— A single mine site in Idaho could produce 4500 MT
of thorium per year

— Replacing the total US electrical energy
consumption would require ~400 MT of thorium

The United States has buried 3200
metric tonnes of thorium nitrate in the
Nevada desert.

There are 160,000 tonnes of
economically extractable thorium in the
US, even at today’s “worthless” prices!
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Gen-4 Liquid 2 Salt Configuration Reactor Concept — ORNL

Developers : Jerome Wigner and Saul Weinberg
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CBC Energy Conversion System Analysis
(with Comp. IC & Turbine Re-Ht)
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Key Cycle Input Parameters

Compressor Inlet Temperature (TIC), K 300

Cooling Water Temperature, K 288
Reactor Heat Loss, percent 1.0
Polytropic Efficiency—Compressor, percent 86
Polytropic Efficiency—Turbine, percent 92
Recuperator Effectiveness, percent 95
Intercooler HX Pressure Loss, percent 0.5
Reheat HX Pressure Loss, percent 0.8
Turbine Pressure Ratio Fraction, percent 96

Generator Efficiency, percent 08



Temp Ratio =4.0 1000 MWe Power Plant 2 Salt Configuration

e ( .
Efficiency = 50.6 % Thorium Molten Salt Reactor He
Turbine Power =1758 MW LiF — BeF2

Compressor Power = 738 MW He CBC w. Rht. & Intcl.- 1200 K Turbine Inlet Temp i

940 K
1.01 MPa 300 K

1250 K

ThF4-

333 MW,

3600 rpm

Thorium
Reactor

1976 MW,;,

938 K 5400 rpm

4.04 MPa

7200 rpm

912 K
7.99 MPa

975K IEEEEEEEEEEENEEENN EEEEEEEEEN

= 7860 kg/s Specific Work = 2300 k3 / kg Ll el SHals

m,, =435 kg/s
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- Comparison to Space System-
Direct Heat Input and Rejection via Radiator for Non-
Regenerated Closed Brayton Cycle (CBC) Power System
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Temp Ratio =4.0
Efficiency = 50.5 %
Turbine Power = 178.9 MW
Compressor Power =— 76.9 MW

100 MWe Power Plant — 2 Salt Configuration
Thorium Molten Salt Reactor -
Helium Brayton Cycle, 1200 K Turbine Inlet Temp

He ---

MPC

346 K
1.84P

ThF4-UF4 ----

1061 K
1.73P

Notation: 1 P =1 MPa

300 K
1.84P

g

IC2
HX

ﬁ

100 MW,

LPT

7200 rpm

875K
1.02 P

1200 K
243 P

1230 K

1254 K

Thorium
Reactor

198 MW,;,

930 K

848 K 952 K

m, - =480 kg/s

m,,., =107 kg/s

Specific Work =933 kJ / kg
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100 MWe Power Plant Efficiency w. Intercool & Reheat Cycles

( 3 Inter-cooled Compressors in Series)
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100 MWe Power Plant Flowrate w. Intercool & Reheat Cycles
( 3 Inter-cooled Compressors in Series)

700 |
—@®— 1 Turbine
\ —— 3 Turbine
600 \
2 500
2 \
£ 400
nd
S \
L 300 N\
(7))
£ A
N\, "N
= \\ \\0\
100 ~.—
\.\*
0
600 700 800 900 1000 1100 1200 1300

Temperature (K)

36




[image: image1.emf]600 700 800 900 1000 1100 1200 1300


0


100


200


300


400


500


600


700


100 MWe – 3 Compressor Closed-Loop Brayton Cycle


Temperature ( K )


He Mass Flow Rate ( kg / s )


 


 


1 Turbine


3 Turbine





Submarine Based Power Plants
Compact, Portable Thorium Reactors

Proposal to use US mothballed
shipyards to produce hundreds
of portable thorium nuclear gas
turbine power plants




Concluding Remarks

Numerically confirmed that Nuclear Power Plants with CCGT Conversion
Technology can achieve > 50% Thermal Efficiency at TIT ~ 1200 K.

Above result obtained for both ‘Intercool + Reheat’ and ‘Intercool Only’
Cycle Configurations

‘Intercool + Reheat’ Configurations have higher Complexity (number of
ducts and heat exchangers) but lower Working Fluid Mass Flow (He)
requirements thus reducing Ducting and Heat Exchanger Size

Liquid Fluoride Thorium Reactor Technology (LFTR) can meet the goals
of the Gen IV Nuclear Energy Systems Initiative—Energy Policy Act '005

— Uses fertile Th232 breeding to fissile U233
— Can meet world energy demands for tens of millennia

— ~300 times Energy Density of current LWR Nuclear Power Plants
with corresponding reduction in fission products. Decay <300 yrs.

— Inherently Safe due to negative temp. coefficient of reactivity
— Load Leveling operation to produce H2, & Sea Water Desalination

Submarine based Power Plants located “off-shore” could serve as de-
centralized micro-grid elements, hardened against cyber threats (EMP).
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Backup Slides
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Typical Machine Sizes for 1000 MWe He
Plant

e Single Turbo-Alt at 10 MP a and Pr=2; (tit=1200k; TR=4)
— Mass Flowrate ~ 1420 kg/sec
— Dia. =6.5m; L =~20 m; Speed = 1800 rpm
— Recuperator Volume ~ 360 m?3
— Thermal Eff. = 48%

e Three Reheat/Intercooled Turbo-Alt's

— Mass Flowrate ~ 474 kg/sec

— P=20 Mpa (Pr=2); Dia=1.9m, L =4.5m, Speed = 72000
rpm

— P=10 Mpa (Pr=2); Dia=2.7 m, L = 6.3m, Speed = 5400 rpm

— P= 5 Mpa (Pr=2); Dia =3.8 m, L=8.5m, Speed = 3600 rpm

— Recuperator Volume ~ 120 m?3

— Thermal Eff. = 51.5%
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Partial BRMAPS Code Output Results for 5 MWe Lunar Power Plant

BRAYTOM CYCLE CALCULATIONS - NoMN REGEMERATED - 1500 K- BOWER LEVEL = 5.00 MWE TEINKE-XK = 194
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