Energy Tech 2019 Conference

IX Center – Cleveland, OHIO

10/22 to 10/25, 2019

Gas Turbine Energy Conversion Systems for Lunar & Planetary Nuclear Power Plants including Ground Based Applications using LiFTR "Liquid Fluoride Thorium Reactor" Technology

Session 7 (10/22/19)

Albert J. Juhasz – PhD NASA - GRC, Cleveland, Ohio

Background & Motivation

- Advanced Nuclear Power named in Energy Policy Act of 2005 (Gen IV Nuclear Systems Initiative)
 - Gen. Baseload GW's Power -> Solve Depletion of Earth's HC (hydro-carbon) Resources
 - Ameliorate world climate problems by eliminating Greenhouse Gas Emissions
- Thorium Energy Independence & Security Act of 2008 (S.3680)
 Thorium Power Plant Construction (100 GWe over next 25 yrs) would re-invigorate US and World economies
- Gen IV Candidate Advanced Nuclear Power Plants
 - Gas Turbine Modular He Reactor (GT-MHR) Systems Space
 - Liquid Fluoride Thorium Reactor (LFTR) GT Systems Terrestrial
- High Temperature Gas Turbine Power plants offer large Thermal Efficiency
 improvement over Steam plants
 - Amenable to formation of nuclear micro-grid elements housed in off-shore submarine hulls

Energy Conversion Cycle Comparisons

Requirements – i.e. Power System Design Drivers

- Space (Lunar-Mars) Power Systems
 - MWe Power Levels require CBC (Closed Brayton Cycle) Conversion
 - Emphasis is on Minimum System Mass
 - High System Reliability, Autonomy and long Operational Life required to compensate for little or no maintenance
 - Need least complex systems w. minimum components
 - Thermal Efficiency can be traded to achieve Low Mass, i.e. nonregenerated and direct heated/cooled cycles eliminate heat exchanger (regenerator HX, HSHX, CSHX) mass at reduced Eff.
 - Location in permanently shadowed Lunar craters is ideal for CBC Nuclear Power systems, by enabling "Low Temperature Heat Rejection", i.e. (High Efficiency at low radiator area).
- Terrestrial Nuclear Power Systems e.g. LFTR Power Plant
 - Emphasis is on maximizing Thermal Efficiency, ηt and thus Power Output, Revenue, Profit & Return on Investment
 - High Temp. Materials R&D enables high TIT, and thus high ηt
 - System Maintenance possible during regularly scheduled Periods
 - High System Mass and Complexity are acceptable as long as high Power Plant Availability/Reliability is assured
 - Ideal for Micro Grid nuclei

Space CBC Systems and Analysis

In-direct Heat Input & Heat Rejection via Radiator for Regenerated Closed Brayton Cycle (CBC) Power System via Heat Exchangers

Direct Heat Input and Rejection via Radiator for Non-Regenerated Closed Brayton Cycle (CBC) Power System

Spacecraft with Trapezoidal Heat Pipe Radiator (Ref. SP-100 Program)

SP – 100 Radiator Panel/Cone Configuration

GAS TURBINE (BRAYTON CYCLES)

Regenerator Specific Mass vs. Effectiveness with Heat Transfer Coefficient U as a Parameter for He Working Fluid

Influence of Regenerator Effectiveness (ERG) on Cycle Efficiency at Cycle Temp. Ratio of 3.0 and 4.0

 $\eta_{PC} = \eta_{PT} = 0.9; \quad \gamma = 1.666$

Advanced Power System Applications

Interplanetary Fusion Propulsion Space Vehicle

Ground Based CBC Systems

Recall GAS TURBINE (BRAYTON CYCLES) - W/O RH & IC

Three Stage Reheat & Intercool Brayton Cycle Temperature – Entropy Diagram

Three Stage Intercool Only Brayton Cycle Temperature – Entropy Diagram

Entropy – J/kg - K

Proposed Vertical Orientation of GT-MHR* Turbomachinery

* Gas Turbine Modular Helium Reactor

Typical Axial Radial Turbo-compressor

Axial/Radial Compressor with Axial Intake

Type AR 250-8-2 axial-centrifugal compressor with axial intake

- Medium Flow volume Intake pressure Discharge pressure Rotational speed Drive rating
- 272 000 m³/h 1.01 bar 6.4 bar 4 550 rpm 22 700 kW (turbine)

Air

Flow Diagram for AR Compressor with Axial Intake

Energy from Thorium

via

Liquid Fluoride Thorium Reactor- LFTR

for Terrestrial Power

<u>References:</u> Kirk Sorensen, W. Thesling R. Hargraves – "Thorium energy cheaper than coal"

Thorium and Uranium Abundance in the Earth's Crust

Fig. 5.13. The chemical composition of the Earth's crust.

Thorium₂₃₂ - Uranium₂₃₃ Breeding Cycle

Protactinium-233 decays more slowly

remainder can be used to

breed additional fuel.

(half-life of 27 days) to uranium-233 by Thorium-233 decays emitting a beta particle (an electron). quickly (half-life of 22.3 It is important that Pa-233 NOT min) to protactinium-233 absorb a neutron before it by emitting a beta particle decays to U-233-it should be (i.e. an electron). shielded from any neutrons until it decays. Pa-233 New Element Th-233 U-233 (Fissile) (New Isotope) Uranium-233 is fissile and will fission when struck by a neutron, releasing energy and Thorium-232 absorbs a 2 to 3 neutrons. One neutron neutron from fission and is needed to sustain the chainbecomes thorium-233. reaction, one neutron is needed for breeding, and any

Th-232

(Fertile)

Glasstone & Sesonske

Thorium – Uranium Fuel Cycle

Three Step process

Step 1 - Change of Atomic Mass (Isotope) via neutron absorption

1. $_{90}$ Th²³² + $_{0}$ n¹ -> $_{90}$ Th²³³ + γ (neutron absorption)

Steps 2 & 3 - Change of Atomic Number (Element) via β decay 2. ${}_{90}$ Th²³³ -> -₁β⁰ + ${}_{91}$ Pa²³³ (β decay – λ = (ln 0.5)/(HL= 22.3 min)*

3. $_{91}Pa^{233}$ -> $_{1}\beta^{0} + _{92}U^{233} (\beta \text{ decay} - \lambda = (\ln 0.5)/(\text{HL} = 27 \text{ days}) *$

*(where λ is Decay Constant

HL is Half Life)

Time for 99.9% Beta Decay of Protactinium to U-233

• Looking at Step 3, the time required for 99.9% of Pa^{233} decaying to U^{233} and 0.1% remaining Pa^{233} , let N(t) = 0.1 and N₀ = 99.9 in eq. (1)

 $N(t) = N_0 e^{-\lambda t}$ (1) where λ is the *decay constant* computed from $\lambda = (\ln .5)/T_{0.5}$, with $T_{0.5}$ being the *Half Life* = 27 days So $\lambda = -0.693/27 = -0.02567 \text{ days}^{-1}$ Substituting in (1) : $0.1 = 99.9 e^{-0.02567* t}$ (2)

Dividing (2) by 99.9 ~100, and taking the In of both sides, we have

Ln .001 = - .02567 t t = - 6.9077 / -.02567 = 269 days, or ~ 9 months for 99.9% of Pa -> U²³³

• Note that for 99 % transmutation to U²³³ only 179.5 days would be required

Energy Extraction Comparison for U₂₃₈ and Th₂₃₂

Uranium-fueled light-water reactor: 35 GW*hr/MT of natural uranium

Thorium-fueled liquid-fluoride reactor: 11,000 GW*hr/MT of natural thorium

Uranium fuel cycle calculations done using WISE nuclear fuel material calculator: http://www.wise-uranium.org/nfcm.html

Thorium: Virtually Limitless Energy

World Thorium Resources

Reserve Base			
Country	(tons)		
Australia	340,000		
India	300,000		
USA	300,000		
Norway ("Thorcon" in Oslo)	180,000		
Canada	100,000		
South Africa	39,000		
Brazil	18,000		
Other countries	100,000		
World total	1,400,000		

Source: U.S. Geological Survey, Mineral Commodity Summaries, January 2008

- Thorium is abundant around the world:
 - Found in trace amounts in most rocks and soils
 - India, Australia, Canada, US have large minable concentrations. (Main Ore "Monazite")
 - US has about 20% of the world reserve base
- No need to hoard or fight over this resource:
 - A single mine site in Idaho could produce 4500 MT of thorium per year
 - Replacing the total US electrical energy consumption would require ~400 MT of thorium

The United States has buried 3200 metric tonnes of thorium nitrate in the Nevada desert.

There are 160,000 tonnes of economically extractable thorium in the US, even at today's "worthless" prices!

Gen-4 Liquid 2 Salt Configuration Reactor Concept - ORNL

Developers : Jerome Wigner and Saul Weinberg

CBC Energy Conversion System Analysis (with Comp. IC & Turbine Re-Ht)

Key Cycle Input Parameters

•	Compressor Inlet Temperature (TIC), K	300
•	Cooling Water Temperature, K	288
•	Reactor Heat Loss, percent	1.0
•	Polytropic Efficiency—Compressor, percent	86
•	Polytropic Efficiency—Turbine, percent	92
•	Recuperator Effectiveness, percent	95
•	Intercooler HX Pressure Loss, percent	0.5
•	Reheat HX Pressure Loss, percent	0.8
•	Turbine Pressure Ratio Fraction, percent	96
•	Generator Efficiency, percent	98

Temp Ratio = 4.0 Efficiency = 50.6 % Turbine Power =1758 MW Compressor Power = -738 MW

1000 MWe Power Plant 2 Salt Configuration Thorium Molten Salt Reactor He CBC w. Rht. & Intcl.- 1200 K Turbine Inlet Temp

- Comparison to Space System-Direct Heat Input and Rejection via Radiator for Non-Regenerated Closed Brayton Cycle (CBC) Power System

100 MWe Power Plant Flowrate w. Intercool & Reheat Cycles (3 Inter-cooled Compressors in Series)

Submarine Based Power Plants Compact, Portable Thorium Reactors

Proposal to use US mothballed shipyards to produce hundreds of portable thorium nuclear gas turbine power plants

Concluding Remarks

- Numerically confirmed that Nuclear Power Plants with CCGT Conversion Technology can achieve > 50% Thermal Efficiency at TIT ~ 1200 K.
- Above result obtained for both 'Intercool + Reheat' and 'Intercool Only' Cycle Configurations
- 'Intercool + Reheat' Configurations have higher Complexity (number of ducts and heat exchangers) but lower Working Fluid Mass Flow (He) requirements thus reducing Ducting and Heat Exchanger Size
- Liquid Fluoride Thorium Reactor Technology (LFTR) can meet the goals of the Gen IV Nuclear Energy Systems Initiative–Energy Policy Act '005
 - Uses fertile Th232 breeding to fissile U233
 - Can meet world energy demands for tens of millennia
 - ~300 times Energy Density of current LWR Nuclear Power Plants with corresponding reduction in fission products. Decay <300 yrs.
 - Inherently Safe due to negative temp. coefficient of reactivity
 - Load Leveling operation to produce H2, & Sea Water Desalination
- Submarine based Power Plants located "off-shore" could serve as decentralized micro-grid elements, hardened against cyber threats (EMP).

Backup Slides

Typical Machine Sizes for 1000 MWe He Plant

- Single Turbo-Alt at 10 MP a and Pr=2; (TIT=1200K; TR=4)
 - Mass Flowrate ~ 1420 kg/sec
 - Dia. = 6.5 m; L = ~20 m; Speed = 1800 rpm
 - Recuperator Volume ~ 360 m³
 - Thermal Eff. = 48%
- Three Reheat/Intercooled Turbo-Alt's
 - Mass Flowrate ~ 474 kg/sec
 - P=20 Mpa (Pr=2); Dia = 1.9 m, L = 4.5m, Speed = 72000 rpm
 - P=10 Mpa (Pr=2); Dia = 2.7 m, L = 6.3m, Speed = 5400 rpm
 - P= 5 Mpa (Pr=2); Dia = 3.8 m, L = 8.5m, Speed = 3600 rpm
 - Recuperator Volume ~ 120 m³
 - Thermal Eff. = 51.5%

Partial BRMAPS Code Output Results for 5 MWe Lunar Power Plant

BRAYTON CYC	LE CALCULATI	ONS - NO	N REGENER	ATED - 1500	K- POWEI	& PEAEF =	5.00 MW	E TSI	¥K-K =	190
TEMP RATIO	ETAB	ETAPC	ETAPT	ERG	GAMMA	LPC	ETM	EPSIL	TI	(T-K
3.000	.990	.900	.900	.000	1.667	.980	.950	.900	1	500
OPTIMUM PRE	SSURE RATIOS	(MAX THEF	M EFF; MI	N ARP, MASS) = 4	4,550	3.200 3.	400 T	IC-К =	500
PR RATIO	THERM EFF. A	RP (M2/KW)	MSYS (MG)	W(KM/S-MW)	TREJ-K	TREFF-K	TOC-K	ТОТ-К	ETAC	ETAT
4.5500	.2604	.4076	20.8974	.3895	862.88	630.73	1005.81	862.88	.867	.925
3.2000	.2382	.3554	19.6747	.3122	985,29	663.87	850.84	985.29	.875	.919
3,4000	.2446	.3566	19.6355	.3170	963.13	658.18	875.51	963.13	.874	.920
3,2000	.2382	.3554	19.6747	.3122	985.29	663.87	850.84	985.29	.875	.919
THEORETICAL	OPTIMUM PRE	SSURE RATI	O (PROPTI	(M) = 4	.579					
NUMBER OF I	TERATIONS (I	CTE, ICTA, I	(CTM) =	7 9	9					

TURBO - ALTERNATOR POWER DISTRIBUTION

GAS	MOLECULAR	WEIGHT	(KG/MOL)	=	4.000
-----	-----------	--------	----------	---	-------

- MASS FLOWRATE (KG/SEC) = 6.178
- COMPR. PRESSURE RATIO = 3.200

NO. INTC. COMP. STAGES = 1

NO. REHEAT TURE.STAGES = 1

- COMPR. BLEED PCT. = .500
- COMPRESSOR POWER (MW) = -10.921
- TURBINE POWER (MW) = 16.190
 - POWER LOSSES (MW) = .269
- POWER SUM BALANCE (MW) = 5.000 (= GENERATOR TERMINAL ELECTRICAL POWER-(MW))