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CMC Damage Behavior is Influenced by Constituent Landscape Effects
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Hypothesis: Locally averaged structural features are significant drivers in the 
manner in which damage accumulates, moves, and interacts

Corman and Luthra, Handbook of Ceramic Composites (2005). 
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Acoustic Emission (AE) Enables Real-Time Damage Assessment
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x = sensor separation
Δt = arrival time difference

Δtx = difference in arrival times 
across AE window500 
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AE can be used to locate event sources and characterize damage in the bulk 
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Advantages

• In-operation monitoring

• Damage localization

• Volumetric inspection

• Early detection of damage

Acoustic Emission (AE) Enables Real-Time Damage Assessment
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Specimen ID BN Thickness (µm) Vf (%) VBN (%) Vm (%) Area (mm2)

HFC 1.9 ± 0.6 33.5 24.6 41.8 0.167

LFC 0.3 ± 0.08 21.3 2.2 76.5 0.266

Minicomposites Provide Simplified Architecture Suited to Study Microscale Damage

Courtesy of Richard Rauser (GRC)

High τ, Γ Low τ, Γ
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Minicomposites Provide Simplified Architecture Suited to Study Microscale Damage

Courtesy of Richard Rauser (GRC)

Specimen ID Sliding Stress (τ) Debond Toughness (τ)

HFC 34.5 ± 13.0 MPa 5.5 ± 3.9 J/m2

LFC 18.1 ± 4.8 MPa 1.2 ± 0.5 J/m2
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A Multi-Modal Approach for Damage Characterization

6

In-SEM Mechanical Testing

200 um

Acoustic Emission (AE)

sensor

SEM mapping of surface 
damage at incremental 

stresses  within gage

Test minicomposite 
to failure

sensor

Continuous monitoring 
of AE events
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Incremental Loading to Capture Damage Progression
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Incremental Loading to Capture Damage Progression
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Matrix-Dominated Damage

• Matrix crack initiation 
• Matrix crack propagation
• Interfacial debonding
• Fiber sliding
• Early fiber failures

Fiber-Dominated Damage

• Fiber loading 
• Fiber sliding
• Fiber breakage
• Fiber pullout

Crack Saturation

Two Domains: Matrix-Dominated and Fiber-Dominated Damage
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PL Stress



Dominant Mechanisms

• Matrix crack initiation 
• Fiber breakage

Nondominant Mechanisms

• Matrix crack propagation
• Interfacial debonding
• Fiber sliding
• Fiber pullout

High Energy AE

Low Energy AE

Two Domains: Matrix-Dominated and Fiber-Dominated Damage
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PL Stress



Damage Accumulation below PL due to Propagation of Flaws
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Agreement between In-SEM Measured and AE-Predicted Crack Density Evolution
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LFC Experimental

LFC AE

HFC Experimental

HFC AE

𝐶𝐷𝐸 𝑁 = CDrup. ∙
Cumulative AE (N)

Cumulative AE at saturation



• Agreement at early stresses 
shows transverse cracking

• Variations in real and predicted 
response[s] due to other 
phenomena detected by AE

• Agreement at early and 
intermediate stresses shows 
transverse matrix cracking 
dominance

Agreement between In-SEM Measured and AE-Predicted Crack Density Evolution
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LFC Experimental

LFC AE

HFC Experimental

HFC AE
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Clustered, local events correlate with failure

Lower interfacial properties enable nondominant 
mechanisms that drive crack growth at intermediate 
stresses

LFC Global AE

Spatially-resolved AE suggests that some cracks 
evolve as more probable failure locations

Correlation of Spatially-Resolved AE and In-SEM Observed Damage



Correlation of Spatially-Resolved AE and In-SEM Observed Damage
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HFC Global AE

More matrix-dominated AE suggests alternate cracking path



Incremental vs. Through-Thickness Crack Propagation
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Local Microstructural Effects Influence Crack Opening Displacement (COD)
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High τ, ΓLow τ, Γ

• High fiber content for initial crack 
bridging

• Earliest crack openings: 600 nm

• Fiber sliding w/ larger debond lengths to 
accommodate opening

• Saturation of non-dominant phenomena 
prior to fiber breaks

• Fiber breaks redistribute load to tow

• Earliest crack openings: 300 nm

• Fiber breaks redistribute load to pillar

• Fiber reloading through sliding



AE Event Energy May Correlate with Source Damage Mechanism 
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LFC System HFC System

Failure

Failure

Correlation between high-energy AE and proximity to failure location

• High-energy AE activity from dominant damage mechanisms (matrix cracking / 
fiber breakage)

• Ultra-high-energy AE activity from large crack formation

• Low-energy AE activity from nondominant damage mechanisms



Structural features and local 
phenomena drive damage response

Damage characterization in 
two minicomposite systems

Correlation of spatially-resolved 
AE to microscale surface damage
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