Durability of YSZ Coated Ti₂AIC in 1300°C Mach 0.3 Burner Rig Tests

J. Smialek,¹ M. Cuy,² B. Harder,³ A. Garg,⁴ R. Rogers³

¹ Distinguished Research Associates, NASA Glenn Research Center

- ² Vantage Partners, LLC
- ³NASA Glenn Research Center

⁴ University of Toledo

MST, Portland, OR Oct 1-4, 2019

Recognition: Dr. Dongming Zhu, 1962-2018

Initial acquisition of PS-PVD rig YSZ/MAX thermal gradient calculations (Decades of intense YSZ TBC research) **Problem: failure times for TBC on turbine alloys** (7YSZ/Pt-Al/superalloy cyclic furnace oxidation, 2015) *"rumpling, ratcheting, wrinkling"; critical TGO thickness*

Exposed MDC 150L Pt-aluminide, 1150°C, 2000 h FCT

°C	h	μm
1100	2100	7
1150	700	7
1200	220	7
1250	80	7
1300	30	7

Linear Weight Loss of SiC in High Pressure Burner Rig

6 atm, 20 m/s (Robinson, Smialek 1999)

Recession Rank of EBC/Oxides in High Temperature H₂O (2005)

EBC	 HfO₂, ZrO₂ 2(RE₂O₃)-3ZrO₂ 3(RE₂O₃)-5Al₂O₃ RE₂O₃-SiO₂ RE₂O₃-2SiO₂ TiAl₂O₅ Ba(Sr)O-Al₂O₃-3SiO₂ 	7YSZ Lu, Y zirconates Yb. Y aluminates, YAG Lu, Yb, Y monosilicates Lu, Yb, Y disilicates titanium aluminate BSAS	best ↓
Scales	• Al_2O_3 • $3Al_2O_3-2SiO_2$ • TiO_2 • SiO_2 • Cr_2O_3	alumina mullite rutile silica chromia	↓ worst

Opila, Jacobson, Lee, Ueno, Ohji, Nakayama, Harada, Yuri, Klemm,.....

Why this?

- M_{n+1}(Al,Si)(C,N)_n MAX Phases
 - Stable to ~1400°C
 - > Thermal shock resistant
 - Machineable, damage tolerant, basal 'kinking'
 - > Adherent Al₂O₃ scales (e.g., 211 Ti₂AlC, Cr₂A/C)
- 7YSZ
 - > T/EBC
 - > No volatility
 - > CTE match
- Mach 0.3 BRT
 - > 100 m/s, 10% H₂O
 - > 1500°C capable
 - > Automated, cyclic, 100's of hours
 - > Available

YSZ TBC Enabled by MAX Phases CTE Matching

CTE (10⁻⁶/°C)

VS

7

PS-PVD YSZ TBC Survived 2500 hr on Ti₂AlC Furnace Oxidation; 35 μm TGO (2016)

Ti₂AlC Performed Well in High Pressure Burner Rig 6 atm, 25 m/s, 50 h (2016)

Related Cr₂AlC MAX Phase Work: Jesus Gonzalez-Julian, et al., *Frztm. Jülich*

- 1200°C Cr₂AlC, Burner Shock Test: survived 29 h (500 cycles) J. Am. Ceram. Soc., 101 (2018)
- 1300°C YSZ-Cr₂AlC, Furnace Cyclic Test: failed 268 h, 40 μm Al₂O₃
 Surf. Coat. Techn., 340 (2018), 17-24
- 1400°C YSZ-Cr₂AlC-IN738, Burner Shock: failed 62 h, (745 cycles)
 J. Am. Ceram. Soc., (in press)

Experimental

- Kanthal (MAXTHAL 211[®]) Ti₂AlC bar
- EDM slabs, 2400 grit
- PS-PVD 160 µm 7YSZ coating (face side only)
- face-on, atmospheric Mach 0.3 jet fuel burner, 5-h cycles
- 1300°C surface, (~1244°C interface, 1216°C back)
- 2-color pyrometer, weight change, deflection
- SEM, XRD, (FIB-STEM)

NASA GRC Mach 0.3 Burner Rig

Face-on Burner Oxidation of YSZ-Ti₂AlC Strip Survived Preliminary 1200°C Mach 0.3 Test

Survived 1300°C Mach 0.3 Test (Fe₂O₃ staining from metal grips)

1300°C, 500 h Mach 0.3 BRT Oxidation of YSZ-Ti₂AlC

High Pressure Burner Rig $H_2O \approx 10\%$

Relative Severity of H_2O Testing $v^{1/2} * p_{H2O}^n/p_{tot}$

Parametric ranking of Si(OH)₄ flux and SiC mass recession in water vapor (n=2)

laboratory	rig	gas	P _{total}	%H ₂ O	P(H ₂ O)	V	J(Si(OH	$)_4$) factor	dia.	mass loss
			atm		atm	m/s		relative	mm	relative
UVa (Opila)	steam jet	steam	1	1.00	1	175	13.23	1.00	1	1
NASA	NG-O ₂	CH_4	1	0.58	0.58	110	3.51	0.27	25	172
Fraunhofer (Klemm)	HPBR	CH_4	5	0.18	0.9	50	2.56	0.19	25	125
NASA	CE9	jet fuel	30	0.05	1.5	30	2.25	0.17	25	110
EPRI-Yokosuka (Yuri)	HPBR	CH_4	4	0.11	0.44	150	1.19	0.09	25	58
NASA	HPBR	jet fuel	6	0.10	0.6	30	0.80	0.06	25	39
Jülich (Vassen)	BRT	CH_4	1	0.5	0.5	5	0.56	0.04	25	5
NASA	M0.3	jet fuel	1	0.10	0.1	100	0.10	0.01	25	27

YSZ-Ti₂AlC deflection

Deflection from face-on, Mach 0.3 flame impingement (Lower ~1.5 cm gripped).

Fast Fracture Due to Tensile Creep, MAXTHAL® 211 Courtesy of Lew Schmidt: NAVAIR SBIR N68335-10-C-0197

Entire Cross-Section at Hot Zone YSZ Face/Al₂O₃/Ti₂AlC /Al₂O₃/Uncoated Backside

Uncoated backside

YSZ-coated face

Intact 23 μ m Al₂O₃ Scale YSZ/Ti₂AlC Face, 1300°C, 500 h Mach 0.3 BRT

YSZ Surface (500 h, Mach 0.3, 1300°C BRT) Craze cracking and smooth grain surfaces. Hot zone.

No $ZrO(OH)_2$?

XRD Summary

Backside Ti_2AIC α -Al₂O₃ (TiO₂ rutile, trace) YSZ TBC face t, t', cubic (monoclinic, trace. Also Raman, TEM)

Oriented PS-PVD growth columns as-deposited:

YSZ $(111)_{C}$ pole figure

Attacked 15 μ m Al₂O₃ Scale Bare Ti₂AlC Backside, 1216°C, 500 h Mach 0.3 BRT

Open Scale Structure, Uncoated Backside hot zone cool grip end

1200°C HPBR Exposures: TiO₂ Removed from Al_2O_3

6 atm, HPBR, 25 m/s, 50 h

TGA, 100 h

Relative Severity of H_2O Testing $v^{1/2} * p_{H2O}^n/p_{tot}$

Parametric ranking of Si(OH)₄ flux **and SiC mass recession in water vapor** (n=2)

laboratory	rig	J(Si(OH) ₄)	dia.	mass loss	
		relative	mm	relative	
UVa (Opila)	steam jet	1.00	1	1	
NASA	NG-O ₂	0.27	25	172	-
Fraunhofer (Klemm)	HPBR	0.19	25	125	
NASA	CE9	0.17	25	110	
EPRI-Yokosuka (Yuri)	HPBR	0.09	25	58	
NASA	HPBR	0.06	25	39	
Jülich (Vassen)	BRT	0.04	25	5	
NASA	M0.3	0.01	25	27	

Highlights

Mach 0.3 Burner Rig Test of YSZ Coated Ti₂AIC MAX Phase

- TBC survived 500 h at 1300°C (Possible record)
- YSZ untouched by water vapor
- Well-behaved, cubic, +2.4 mg/cm² weight gain (Al₂O₃ TGO: 23 μm face; 15 μm back)
- Intact Al₂O₃/Ti₂AlC interface, again
- Slight TiO₂/Al₂O₃ scale volatility (backside)
- Ti₂AlC creep, but no fracture

Consult and Support

Nate Jacobson Dan Scheiman Wayne Jennings J. Gonzalez-Julian Dennis Fox Joy Buehler Craig Robinson J. Cormier