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Summary 

The values of the key atmospheric turbulence parameters 
(structure constants) for temperature and water vapor, that is,  

2
TC , and 2

QC , are highly dependent upon the vertical height 
within the atmosphere thus making it necessary to specify 
profiles of these values along the atmospheric propagation path. 
The remote sensing method suggested and described in this work 
makes use of a rapidly integrating microwave profiling 
radiometer to capture profiles of temperature and humidity 
through the atmosphere. The integration times of currently 
available profiling radiometers are such that they are approaching 
the temporal intervals over which one can possibly make 
meaningful assessments of these key atmospheric parameters. 
These integration times, coupled with the boundary effects of the 
Earth’s surface are, however, unconventional for turbulence 
characterization; the classical Kolmogorov turbulence theory and 
related 2/3 law for structure functions prevalent in the inertial 
subrange are no longer appropriate. An alternative to this 
classical approach is derived from first principles to account for 
the nuances of turbulent mechanics met with using radiometer 
sensing, that is, the large-scale turbulence driven by the various 
possible boundary conditions within the buoyancy subrange. 
Analytical expressions connecting the measured structure 
functions to the corresponding structure parameters are obtained. 
The theory is then applied to an experimental scenario involving 
radiometric profile measurements of temperature and shows very 
good results.  

1.0 Introduction 

The atmospheric turbulence metrics inherent in the 
definitions of the structure constants of passive additives such 
as temperature, 2

TC , and water vapor (humidity), 2
QC , are not 

only important in the assessment of the tropospheric turbulence 
field but also in the assessment of the radio and optical 
refractive index field in the consideration of the propagation of 
electromagnetic waves. Temperature and water vapor are the 
major components that determine the prevailing refractive 

index field (characterized by the refractive index structure 
constant, 2

nC ) and their statistical evaluation is a prerequisite 
for the performance of image and communications systems that 
must rely on electromagnetic wave transmission through the 
atmosphere. Values of these structure parameters are functions 
of height above the Earth’s surface and a comprehensive 
description of their behavior must include such variation of 
their values along a vertical path profile through the 
atmosphere. 

Within the confines of classical Kolmogorov turbulence 
theory, the value of 2

TC  can be determined through the 
operational definition provided by the 2/3 law, that is, 

2 2/3( ) /TTC D d d= where DT(d) = 〈(T(r + d) – T(r))2〉 is the 
temperature structure function, the value of which is easily 
determined through measurement of the temperature difference 
across the spatial separation d and the subsequent temporal 
average of its difference is squared. Similarly, the same 
consideration holds for water vapor. The subject of the present 
work is the exploratory analysis of a measurement technique that 
can capture vertical profile values of temperature and water vapor 
in the atmosphere. In particular, the remote sensing method 
suggested and described in this work makes use of a rapidly 
integrating microwave profiling radiometer (Radiometrics Corp. 
MP–3000A) to capture these profiles. The essence of the method 
is to capture two such profiles consecutively measured over a 
time interval of ∆t, the integration time of the radiometer. Then, 
via the application of the Taylor frozen-flow hypothesis, one 
forms a single realization of the structure function across the 
induced spatial separation U t∆ , where U  is a vertical profile of 
the average wind velocity. Upon ensemble averaging of such 
measurements, a value of the corresponding structure parameter 
can be obtained along the vertical profile. The integration time of 
this particular radiometer is on the order of 30 to 40 s and is such 
that it approaches the temporal intervals over which one can 
possibly make meaningful measurements of some key 
atmospheric parameters. This query, of course, implicitly 
assumes many things. The major ones are as follows: (1) a 
relationship similar to the 2/3 law, but applicable to the large-
scale turbulence phenomena involved, can be identified and used 
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to do the actual calculation of the structure function values,  
(2) applicability of the frozen-flow hypothesis over the 
integration period ∆t, and (3) the resolution requirements placed 
upon the radiometer to discern the difference values of 
temperature and water vapor typical of atmospheric scenarios. 
The most important aspect of these assumptions is the 
determination of the relationship that replaces the 2/3 law that 
only holds under idealistic conditions. That is, one must establish 
a general function F(d) such that, in the case of temperature, for 
example, 2

TC  = DT(d)/F(d) where d U t= ∆ . The form of this 
function will be strongly dependent on boundary conditions such 
as shear flow, buoyancy, stability, ∆t, etc., and of course, should 
reduce to F(d) ≈ d 2/3 in the Kolmogorov case. The determination 
of this function will dominate this work as it is key to the entire 
calculation process that results in the structure parameter values. 
Also, the frozen-flow hypothesis will be extended to prevail over 
the relatively large values of ∆t, which too will enter into the 
determination of F(d) if it is deemed a significant factor. 

Section 2.0 begins with a brief review of the theory of the 
large-scale atmospheric turbulence spatial spectrum near the 
surface of the Earth. Here, “large-scale” refers to characteristic 
turbulence sizes on the order of l U t∆ ; for a nominal 
horizontal average wind speed of U ≈ 5 m/s and radiometer 
integration time of ∆t ≈ 40 s, l ≥ 200 m. Since the radiometer 
measurements are made at the Earth’s surface, it is required to 
take into account the surface or boundary layer effects on the 
formation of such large-scale turbulent fluctuations in the 
presence of the vertical gradients of velocity, temperature, and 
water vapor within the atmosphere; the well-known Kolmogorov 
spectrum for the inertial subrange of isotropic turbulent 
fluctuations cannot be directly applied. Hence, the Kolmogorov 
theory must be transcended to account for these effects in a 
generally stratified atmosphere within the buoyancy subrange. 
Although such phenomena have been considered earlier (Ref. 1), 
a self-contained theory is given in Section 2.0 that is general 
enough to quantitatively apply to many turbulence scenarios. 
Here, stable as well as unstable cases in an atmosphere with 
vertical gradients of temperature and velocity (shear) are 
considered. A composite spatial spectrum for both the inertial and 
buoyancy subranges is then given as a function of atmospheric 
conditions and the corresponding structure functions for 
temperature and humidity are derived. The form of the model 
connecting the structure functions to those determined from the 
radiometric measurements is then finally derived in Section 3.0, 
thus determining the function ( )F U t∆ . Due to the relatively 
large value for ∆t, a Fourier-Stieltjes treatment is employed, 
shown in Appendix A, that transcends the usual use of the Taylor  
 

frozen-flow hypothesis in the event that it no longer holds in this 
temporal region. It is established, however, that the hypothesis 
does hold well for the large turbulent inhomogeneity sizes for 
which this sensing technique depends. The demands placed on 
the resolution requirements for temperature and water vapor of 
the radiometer are then found. Finally, in Section 4.0, 
experimental demonstration of the remote sensing method will 
be given. 

A preliminary study of this problem was undertaken in 
Reference 2 where a composite spectrum for the inertial and 
buoyancy subranges was advanced and used. However, it 
provided a poor approximation for the desired model of the 
turbulence scenario. This circumstance is rectified in the present 
work. Much of the detail of its derivation from first principles is 
retained here for completeness. It must be noted that many ranges 
of atmospheric turbulent spectra can be obtained and 
quantitatively connected to atmospheric parameters from this 
analysis. This development was necessary to obtain a firm 
theoretical basis for this type of remote sensing technique. 

2.0 The Spatial Spectrum of Turbulent 
Fluctuations in Thermally Stratified 
Atmosphere With Shear Flow 

In this section, expressions for the spatial spectrum of the 
combined small- and large-scale turbulent flows will be 
developed and analyzed. 

2.1 Development of Spectral Model for 
Atmospheric Turbulence for Large Scales 

The incompressible turbulent flow within the atmosphere that 
governs the spatial and temporal evolution of the velocity field 
V


 is given by the Navier-Stokes equation; employing the 
Boussinesq approximation and assuming a constant dynamic 
viscosity, µ, one has (Ref. 3): 

 
 

30

1 2 3 0,     

i i i
j

j i j j

i

i

V V P VV g
t x x x x

V V V x V y V z
x

   ∂ ∂ ∂ ∂ ∂
+ = − −ρ + µρ    ∂ ∂ ∂ ∂ ∂   
∂

= = + +
∂





  (1) 

where , ,ix x y x=     for i = 1,2,3, ρ0 and ρ are the mean and 
instantaneous density, respectively, P is the pressure and g3 is 
the gravitational acceleration along the vertical 3( )x z≡   axis. 
Additionally, the atmospheric temperature field T, which is the 
source of density fluctuations, is given by (Ref. 3)  
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 0 P i T
i i i

T T Tc V
t x x x

   ∂ ∂ ∂ ∂
ρ + = µ   ∂ ∂ ∂ ∂   

  (2) 

where cP is the heat capacity at constant pressure and µT is the 
thermal conductivity of air. A similar equation holds for the 
water vapor field Q. In this report, only the temperature field 
will be considered with the proviso that the final results will 
hold for Q (so long as T and Q act as passive additives). 

Following the detailed procedure given in Reference 4, 
Equations (1) and (2) are statistically analyzed to give equations 
involving the Fourier spectra of the velocity and temperature 
fluctuations: 

 ( ) ( ) ( ) ( )2
13 3 2 0T

dUF k k k vk k
dz

− φ +βφ − φ =   (3) 

 ( ) ( ) ( )2
3 2 0TT T T TT

dTF k k v k k
dz

− φ − φ =   (4) 

Here, k is the wavenumber, F(k) and FTT(k) are the energy transfer 
spectra due to the distortion of fluctuation gradients of, 
respectively, velocity fluctuations and temperature fluctuations, 
φ13(k) is the spectrum of the energy due to the work of velocity 
fluctuations from Reynolds stresses against the mean shear, 
φ3T(k) is the spectrum of the energy due to the work of 
temperature fluctuations transferred by vertical heat flux against 
the temperature gradient, and φ(k) and φTT(k) are the spectra of, 
respectively, turbulent energy fluctuations and temperature 
fluctuations. The mean atmospheric temperature T  and velocity 
U  are, in general, both functions of the height coordinate z 
within the atmosphere, that is, the atmosphere is stratified. 
Finally, v ≡ µ/ρ0 is the kinematic viscosity, vT ≡ µΤ /(ρ0cP) is the 
thermal diffusivity, and /g Tβ ≡  is the buoyancy parameter and 
g is the gravitational acceleration. Equations (3) and (4) can be 
integrated to give the more familiar form:  

 

( ) ( )

( ) ( )

2
13

0

3

2
k

k

T
k k

dUv k k dk k dk
dz

F k dk k dk

∞

∞ ∞

′ ′ ′ ′ ′ε = φ − φ

′ ′ ′ ′+ +β φ

∫ ∫

∫ ∫
  (5) 

 

( )

( ) ( )

2

0

3

2
k

T TT

T TT
k k

N v k k dk

dT k dk F k dk
dz

∞ ∞

′ ′ ′= φ

′ ′ ′ ′− φ +

∫

∫ ∫
  (6) 

where the total dissipation of turbulent energy by viscosity is  

 ( )2

0

k k dk
∞

ε ≡ φ∫   (7) 

and the total dissipation of temperature fluctuations by thermal 
conductivity is 

 ( )2

0

2 T TTN v k k dk
∞

≡ φ∫   (8) 

The point of this development is to obtain from Equations (5) and 
(6) functions for the turbulent velocity spectrum φ(k) and, most 
importantly, the temperature fluctuation spectrum φTT(k) and 
associate them to well-defined parameters that characterize the 
various atmospheric conditions, which can prevail during a 
radiometer measurement. Once the spectrum φTT(k) is obtained, 
it is a simple matter to calculate the associated temperature (or 
humidity) structure function and apply it to the radiometer 
profiles to determine the related parameter, 2

TC . However, at this 
point, the classical problem well known in turbulence theory is 
met, namely, due to the nonlinearity of the equations obtained 
(the source of which is the basic nonlinearity of the Navier-
Stokes equations), the number of unknowns is larger than the 
number of equations, that is, a closure problem prevails. Within 
the spectral approach considered here (as opposed to the 
statistical correlation approach), further statistical assumptions 
involving the turbulent energy spectral transfer functions need to 
be employed, which allow connections of them to φ(k) and φTT(k). 
This is thoroughly discussed in Reference 4. See also  
Reference 5 (Sec. 17) for a comprehensive treatment.  

The method is essentially as follows. Following Heisenberg’s 
approach (Ref. 6), the φ(k) given in the third term of Equation (5) 
is written  

 ( ) ( )2

0

 ( ) 2
k

k

F k dk k k k dk
∞

′ ′ ′ ′ ′= η φ∫ ∫   (9) 

in which η(k) is the kinematic eddy viscosity. For purposes of 
this development, the expression used for η(k) will not be that 
given in Reference 7 but one that is more appropriate for the 
large Prandtl numbers (i.e., viscous diffusion exceeding that of 
thermal diffusion) typical of atmospheric turbulence (Ref. 7):  

 ( ) ( )
1

2

2

k

k k k dk−
∞ 
 ′ ′ ′η = γ φ
  
∫   (10) 
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where γ is a numerical constant on the order of unity. The idea 
behind the model of Equations (9) and (10) is that the transfer 
of energy from fluctuations of wavenumbers less than k to 
fluctuations of wavenumbers larger than k can be taken as 
occurring through the viscosity that exists between the 
fluctuation eddies working on the turbulent vorticity formed in 
the interval 0 to k. This viscosity can be modeled as the integral 
effect of fluctuation eddies with wavenumbers larger than k 
acting on eddies with wavenumbers less than k. The functional 
form of Equation (10) over that of the one originally 
recommended by Heisenberg is more appropriate in the case 
where momentum diffusivity dominates (Ref. 8). Thus, one has 
from Equations (9) and (10): 

 ( ) ( ) ( )
1

2

2 2

0

2
k

k k

F k dk k k dk k k dk−
∞ ∞ 

 ′ ′ ′ ′ ′ ′ ′ ′= γ φ φ
  

∫ ∫ ∫   (11) 

A similar argument can be applied to the last term of  
Equation (6) allowing one to write (Ref. 4) 

 

( )

( ) ( )
1

2

2 2

0

2

TT
k

k

TT
k

F k dk

b k k dk k k dk−

∞

∞

′ ′

 
 ′ ′ ′ ′ ′ ′= γ φ φ
  

∫

∫ ∫
  (12) 

where b is the ratio of vT to v of the fluctuation eddies; it too is 
on the order of unity.  

The same methodology can be applied to connect the spectra 
φ13(k) and φ3T(k) to φ(k) and φTT(k). To do this, one must account 
for the interactions between the gradients of the U  and T  with 
the overall turbulent field (Ref. 4). One must also consider the 
level of interaction that the velocity field has on the temperature 
gradients within the stratified atmosphere; such interaction 
concepts were first put forward by Tchen (Ref. 1) (using the 
term “resonance”) who considered the similar problem of 
deriving a turbulence spectrum perturbed by boundary effects. 
Here, the case of the strong interaction is considered. For the 
model of η(k) given by Equation (10) and based on these 
considerations as well as those of the dimensionality of the 
quantities involved, one has (see Ref. 4 for details) 

( ) ( ) ( )
1 1

2 2

2 2'
13

0

2
k

k k

k dk k k dk k k dk−
∞ ∞   

   ′ ′ ′ ′ ′ ′ ′φ = γ φ φ
      

∫ ∫ ∫   (13) 

and 

 

( )

( ) ( )
1 1

2 2

2 2

3

0

2

T
k

k

TT
k

k dk

b k k dk k k dk−

∞

∞

′ ′φ

   
   ′ ′ ′ ′ ′ ′= γ φ φ
      

∫

∫ ∫
  (14) 

Substituting Equations (11) to (14) into Equations (5) and (6) 
yields 

( ) ( )

( ) ( )

1
2

2 2

1
2

2 2

0 0

0 0

2 ( ) 2

2 2

k k

k k

TT

dUv k k dk k k k dk
dz

k k dk b k k dk

    ′ ′ ′ ′ ′ ′ε = φ + η φ
   

   ′ ′ ′ ′ ′ ′+ φ + β φ 
    

∫ ∫

∫ ∫



  (15) 

 

( )

( )

( )

2

1
2

2

2

0

0

0

2

( ) 2

2

k

T TT

k

TT

k

TT

N v k k dk

dTb k k k dk
dz

k k dk

′ ′ ′= φ

    ′ ′ ′+ η φ
   

′ ′ ′+ φ 


∫

∫

∫

   (16) 

where the upper sign on Equation (15) is for the case 
/ 0dU dz >  and the lower sign for / 0dU dz < . Similarly, the 

upper sign in Equation (16) is for / 0dT dz >  (which defines 
the case of stable stratification of the atmosphere) and the lower 
sign for / 0dT dz <  (which defines the case of unstable 
stratification of the atmosphere). Equations (10), (15), and (16) 
concatenate everything that goes into the determination of the 
φTT(k) spectrum, within the bounds of the assumptions that enter 
into the closure approximations that allow Equations (11) to 
(14) to be written. The method of solution for φTT(k) using the 
general model afforded by these relations will be the subject of 
a future publication. A special case of these equations will be 
used here to find analytical solutions for φTT(k) appropriate for 
the establishment of analytical connections between the 
measured temperature (or humidity) structure functions derived 
from the radiometer output and the structure parameter 

2 2 (or )T QC C . To this end, since large-scale turbulence is being 
considered, one can ignore the contribution of molecular 
diffusion effects in the evolution of the spectra thus allowing 
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the first terms on the right sides of Equations (15) and (16) to 
be dropped. Doing so yields 

 

( ) ( )

( ) ( )

1
2

2

1
2

2 2

0

0 0

2

2 2

k

k k

TT

dUk k k dk
dz

k k dk b k k dk

    ′ ′ ′ε ≈ η φ
   

   ′ ′ ′ ′ ′ ′+ φ + β φ 
    

∫

∫ ∫



  (17) 

  

( ) ( )

( )

1
2

2

2

0

0

2

2

k

TT

k

TT

dTN b k k k dk
dz

k k dk

    ′ ′ ′≈ η φ
   

′ ′ ′+ φ 


∫

∫



 (18) 

Finally, converting to dimensionless variables defined by 

 
0 0 ,0

,      = ,      TT
TT

TT

kx
k

φ φ
= Φ Φ =

φ φ
  (19) 

 
( )

( )

1 12 22

1

U

T

dU bN
dz

dT N
dz

−

−

Γ = β ε

Γ = β ε

  

(20) 

 

3 51
2 4 4

3 5 11
2 4 4

3 9 5 71
2 4 4 2 4

2
0

2
0

,0

( )  

( )

TT

k bN

bN

b N

−

− −

− − − −

= γ β ε

φ = γ β ε

φ = γ β ε

  

(21) 

Equations (17) and (18) become 

 ( )1 1
2 2 1UK L L MΓ + + =   (22) 

 ( )1
2 1TK M MΓ + =   (23) 

where 

 ( ) ( )2

0

2
x

L L x x x dx′ ′ ′= ≡ Φ∫   (24) 

 ( ) ( )2

0

2
x

TTM M x x x dx′ ′ ′= ≡ Φ∫   (25) 

 ( ) ( )
1

2

2

x

K K x x x dx−
∞ 
 ′ ′ ′= ≡ Φ
  
∫   (26) 

These equations are written in such a way that allows the use of 
a solution technique originally suggested by Monin (Ref. 8)—
developed further by him in Reference 5 (pp. 225–230 and  
417–421)—to obtain analytical approximations to the spectra 
involved. In particular, from the definitions of Equations (24) 
and (25), one has 

 ( ) ( )2 2
1 1,      

2 2TT
dL dMx x

x dx x dx
Φ = Φ =   (27) 

Equations (22) and (23) can be considered simply as 
simultaneous algebraic equations to be solved for L and M, both 
as functions of K(x). Then using Equation (27) with these 
solutions will yield a set of parametric equations involving the 
spectra as well as the function K(x) along with, of course, the 
parameters ΓU and ΓT that characterize the atmospheric 
conditions. Within various combinations of limits of ΓU and ΓT, 
these parametric equations can be first solved for K(x) and then 
for Φ and ΦTT using the additional relation from Equation (26), 
that is:  

 
( )

( ) ( )2
1

2
dK x

x
dx K x x

= − Φ   (28) 

2.2 Solutions of Equations of Spectral Model 
Solving Equations (22) and (23) for L and M yield 

 
1

2
2 2

2
1 1 1,      

2T TT TM F F F
K K

 = ± − ≡ + Γ 
 

  (29) 

 

1
2

1
2

2

2

1  
4

1
4

1

UU

U

L G G

G F

F M
K

= + Γ ± Γ

≡ + Γ

≡ +

  (30) 

Differentiating the first relation of Equation (29) with respect 
to x and using Equation (27) gives, after a bit of manipulation: 

 ( ) ( ) ( )2
3 2
12 1

4TT Tx x H x
K x

Φ = + Φ   (31) 
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where 

 

1
2

1
2

2
21 ( ) 1

4
T

T T
K

H K
−

 Γ
≡ ± Γ +  

 
  (32) 

Similarly, differentiating the first relation of Equation (30) with 
respect to x gives, again after some algebraic manipulation: 

 

1
2

1
12

21
2

2 2
4

3

( )
4 1 1

2 4

1 1
2

U U

T

K K
x

MKM H
K

− −

 Γ Γ
= ± +  

 + +      

  (33) 

Using these relationships, several combinations and 
permutations of atmospheric scenarios can be considered. This 
will form the subject of a future publication. For purposes of 
this exposition, these equations will now be used to derive 
analytical expressions for the spectra in two extreme cases:  

(i) 2 2Γ << 1, Γ << 1T UK K ; no atmospheric stratification 
or shear 

Within this approximation, HT ≈ 1 and M ≈ K–1 and  
Equation (33) significantly reduces to 

 ( ) ( )
1

3
4

3
1
4 TK x x K x− ≈ ≡ 

 
  (34) 

Using this result in Equation (28) yields the velocity fluctuation 
spectrum: 

 ( ) ( )
2

3
5

3
8 1
3 4 Tx x x−  Φ ≈ ≡ Φ  

  
  (35) 

which is the result for the inertial subrange that defines this 
case. Putting this result into Equation (31) then gives for the 
attendant temperature spectrum: 

 ( ) ( )
1

3
5

3
2 1
3 4 TTT TTx x x

−
−  Φ ≈ ≡ Φ  

  
  (36) 

(ii)  2 2Γ >> 1,  Γ >> 1T UK K ; significant atmospheric 
stratification and shear 

Here, taking the limits of the relevant expressions becomes a 
bit more involved but results in 2[4/( )] 1T TH K≈ Γ −  and, once 
again, M ≈ K–1. Equation (33) then becomes 

 ( )
1

4
1

2
1 ( )

2 U
U

K x x K x−
 

≈ ≡  Γ 
  (37) 

and 

 
( ) ( )

( ) ( )

1
2

1
2

1
2

1
2 2

12 ,   
2

1 1
2 U

U
U

TT TT
U T

x x x

x x x

−

−
−

 
Φ ≈ ≡ Φ  Γ 

   
Φ ≈ ≡ Φ     Γ Γ  

  (38) 

which defines the buoyancy subrange for a stratified 
atmosphere. 

2.3 Height-Dependent Spectrum for Both 
Buoyancy and Inertial Subranges 

Thus, the temperature spectrum in the case of no stratification 
or shear, that is, one which is expected to prevail in the 
atmosphere away from the surface layer, is, returning to 
dimensional variables using Equations (19) to (21): 

 ( ) 5 1 2 1
3 3 3 312,      4

3TTT k Bk B b N− − −− Φ = ≡ γ ε 
 

  (39) 

and in the opposite case of shear and stratification, that is, one 
which is expected to prevail in the atmosphere close to the 
boundary surface:  

( ) 1
2

2
1 1 2 2 1,      2

UTT
dU dTk Ak A b N
dz dz

−
− − − −Φ = ≡ γ ε   (40) 

In the general case intermediate to these, one would expect the 
temperature spectrum to transition from that given by  
Equation (40) to that given by Equation (39) as one proceeds 
vertically up through the atmosphere from the Earth’s surface 
to above the boundary layer. Also, Equation (40) will prevail 
over the large spatial separations between two temperature 
profiles that are involved with the present radiometer remote 
sensing technique, that is, over small k; Equation (39) governs 
the spectrum over small spatial separations, that is, large k. A 
composite expression for the temperature spectrum that 
approaches Equation (39) as k → ∞ and approaches Equation 
(40) as k → 0 is desired. Unlike the method adopted in 
Reference 2, the attempted combination of the two turbulence 
regions considered here begins with the virtual viscosity  
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functions KT (x) and KU (x). Such a combination that reflects the 
limiting behavior in both the x and ΓU domains defining these 
particular regions is given by 

 

( )
( ) ( )

4
3

1
4

1
3

2

1
1 1

1
2

1
4

T U

U

K x
x x

K x K x

αβ
= =

α +β+

 
α ≡   Γ 

 β ≡  
 

  
(41) 

(It can be noted that it may be considered too far of a transition 
to subtend the ranges characterizing no shear to large shear as 
was done in (i) and (ii) in Section 2.2; intermediate cases may 
indeed need to be considered in future treatments. The present 
exposition is only an attempt to find this remote sensing method 
plausible.) Using this expression in Equation (28) and this 
intermediate result in Equation (31) yields the composite 
spectrum of temperature fluctuations: 

 ( ) ( )
1

3

2

4
1 31

4TT T

x
x H

x

α +β 
Φ = + αβ 

  (42) 

This becomes a complicated expression when considering all 
the ranges of values that HT can assume for both dT/dz < 0 and 
dT/dz > 0, etc. A straightforward but detailed analysis of 
Equation (42), which will not be reproduced here, yields for 
cases (i) and (ii): 

 ( )
1

3

2
2

4
1 3

2
2

TT
T

x
x

x x

α +β 
Φ ≈   αΓαβ  +

  (43) 

where the condition 2 2
U TΓ > Γ  must prevail in the limit as  

ΓT → ∞. Using Equations (19) to (21) and simplifying, 
Equation (43) finally becomes 

 

( )

11 33
( )

 as 

U
TT

T

U T T

k kBk
k k k

k k k

+ Φ ≈   + 
> →∞

  (44) 

where two characteristic spatial frequencies appear defined by 

 
3

 and 
2 2U T
C Ck k
B A

 ≡ ≡ 
 

  (45) 

with 

 

1
2

1 2 1
3 3 3

1
2

1 1 1
4 2 2

2
1 2 2 1

1

1

2

2 4
3

2

dU dTA b N
dz dz

B b N

dUC b N
dz

−
− − −

− −−

− −−

≡ γ ε

 ≡ γ ε 
 

≡ γ ε

  (46) 

2.4 Evaluation of Characteristic Spatial 
Frequency Coefficients for In Situ 
Applications via Similarity Theory 

Similarity theory can be applied to obtain numerical 
expressions for the vertical profiles of the coefficient B as well as 
the prevailing values of kU and kT using their relations to the 
fundamental atmospheric parameters given by Equations (45) 
and (46). These profile estimates are very helpful (but not 
required) to use with the corresponding profiles of temperature 
and water vapor from the radiometer. The basic idea is this: in 
order to apply the master equation of this remote sensing method, 
which will be derived below directly from Equation (44), for the 
specific atmospheric scenarios, the gradient Richardson number 
Rig can be established from easily measured values of the 
gradients of temperature /T z∂ ∂  and wind velocity /U z∂ ∂  
occurring at the surface from which the Monin-Obukhov stability 
parameter L can be estimated (Ref. 9). Once this has been 
secured, modified Businger similarity functions and the profile 
method of Berkowicz and Prahm (Ref. 10) can be employed that 
yield path profiles for N, ε, etc. For example, for 

/ 0.04 K/mT z∂ ∂ =  and / 0.09 (m/s)/m,U z∂ ∂ =  Ri 0.16g =  
(Pasquill Stability Class F) and L = 2.96. Figure 1 displays φTT(k) 
versus k at a height of 200 m.  

Similarly, for / 0.03 K /mT z∂ ∂ = −  and / 0.1 (m/s)/m,U z∂ ∂ =  
Ri 0.098g = −  (Pasquill Stability Class D) and L = –25.2,  
Figure 2 shows φTT(k) versus k at 200 m. 

Thus, Equation (44) seems to capture two diverse regions that 
can prevail in atmospheric turbulence scenarios. It is now 
finally possible to derive the form of the function F(d) 
mentioned in the Introduction. 
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Figure 1.—One-dimensional spatial spectrum φTT(k) displaying 

both buoyancy and inertial subranges for a stable 
atmosphere at a height of z = 200 m where the Monin-
Obukhov stability parameter L = 2.96 and kT /kU = 1.02.  
kT = characteristic spatial frequency temperature. kU = 
characteristic spatial frequency humidity. 

 
 
 
 

 
Figure 2.—One-dimensional spatial spectrum φTT(k) displaying 

both buoyancy and inertial subranges for an unstable 
atmosphere at a height of z = 200 m where the Monin-
Obukhov stability parameter L = –25.2 and kT /kU = 5.90.  
kT = characteristic spatial frequency temperature. kU = 
characteristic spatial frequency humidity. 
 
 
 

3.0 Frozen-Flow Hypothesis and 
Relating Structure Parameters to 
Measured Structure Functions—
Transcending 2/3 Law 

With the spatial spectrum now established that attempts to 
cover the regions of turbulent activity met within the 
atmospheric boundary layer in the application of the remote 
sensing method considered here, it now seems to be a 
straightforward matter to form the expression for the 
corresponding structure function (Refs. 5 (Sec. 13) and 11). In 
the case of a spatial separation d between two spatial points, one 
has for the temperature structure function: 

 ( ) [ ]( ) ( )2 1 expT TTD d ikd k dk
∞

−∞

= − − φ∫   (47) 

However, in the case of establishing the structure function using 
measurements separated in time employing the Taylor frozen-
flow hypothesis, one usually can write d U t= ∆ where U  is 
the average atmospheric velocity along the line of length d and 
obtain 

 ( ) ( ) ( )2 1 expT TTD t ikU t k dk
∞

−∞

 ∆ = − − ∆ φ ∫   (48) 

so long as ∆t is small enough to assure that the evolution of the 
turbulent field does not occur. Using the profiling radiometer 
employs ∆t ~ 30 to 40 s so the hypothesis of frozen flow may 
be in question. Appendix A presents a first-principles derivation 
of the modifications that are induced in the use of Equation (48) 
over large ∆t with the result that 

 

( ) ( ) ( )

( )2 2 2

2 1 exp

exp

T TT

TT

D t ikU t k dk

t k ikU t k dk

∞

−∞
∞

−∞

 ∆ = − − ∆ φ 

 + υ ∆ − ∆ φ 

∫

∫
  (49) 

where 2 2Uυ <<  is the variance of the wind speed 

fluctuations about U . In most of the atmospheric applications, 
2 0.1.Uυ ≤ Equation (49) relates the temperature structure 

function to the finite time interval over which the samples are 
formed.  
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Substituting the spectrum of Equation (44) into Equation (49) 
and performing the required integrations yield analytical 
expressions involving combinations of incomplete Γ functions 
and complex exponentials. Converting these functional 
combinations into corresponding confluent hypergeometric 
functions Ψ(a;b;z) for ease of numerical evaluation, one has 

( ){ }(
( ))

2
3

1
3

4
3

1
3

2 2

1 1Re ; ;
3 32 1( ) 4 3 1

23
3

Re 1;1;

0.577 log

1 7 7 7Re ; ;
2 3 3 3

Re 1;1;

t

T
t

U
t

t

t

tt

tU

ik U t
D t B

k

k
ik U t

k

k U t

t k ik U t

k k ik

    ψ − ∆           ∆ = π −       Γ       
 
 + ψ − ∆
 
 

+ + ∆

     + υ ∆ Γ ψ − ∆          

− ψ −( ){ }tU t


 
 ∆
 
 


  (50) 

To be sure, in the limit: 

 

( ) { }

( )

2
3

2
3

2
3

2
3

0
0

4 3
lim ( ) Re ( )

2
3

8.04

U

T t
t

k t

B U t
D t ik

k

B U t

∆ →
→

π ∆
∆ = −

 Γ 
 

= ∆

  (51) 

which recovers the 2/3 law as well as establishes that the 
temperature structure parameter 2

TC  is identified with 
2 8.04TC B≡  which corresponds to the definition of B in  

Equation (46). However, the second member of Equation (50) 
that corrects for possible deviations from the frozen-flow 
hypothesis can be found to be negligible for spatial frequencies 
kt < 1/(υ∆t); for 0.1Uυ   with 5 m/sU   and ∆t = 40 s, 
kt < 0.05 m–1. This is the point of demarcation shown in Figure 1 
where the spectrum becomes dominated by the effects of the 
large turbulent inhomogeneity sizes to which this sensing method 
applies. Hence, one finally establishes the master equation of this 
proposed remote sensing method: 

 ( ) ( )2
T TD U t C F U t∆ = ∆   (52) 

where 

( )

( ){ }(

( ))

2
3

1
3

1 1Re ; ;
3 31 1 2 3 1

22 3
3

Re 1;1;

0.577 log

t

t

U
t

t

t

ik U t
F U t

k

k ik U t
k

k U t

    ψ − ∆           ∆ = π −       Γ       

 
+ ψ − ∆ 
 



+ + ∆



  (53) 

Note that in the case of the expression for F(d) mentioned in 
the Introduction, d U t= ∆  since frozen flow approximately 
holds in this case.  

Unlike the situation met with in the earlier version of this 
theory (Ref. 2), the relative values of the product tk U t∆  do not 
allow the use of an asymptotic expansion of Equation (52). 
However, the functional relationships that enter Equation (52) 
are easily evaluated along the estimated profiles for kt and kU. 
The calculation of the structure function ( )TD U t∆  using 
consecutive temperature profiles obtained from the radiometer 
over the period ∆t can then be transformed to corresponding 
profiles of 2

TC  using Equation (52). Of course, similar 
considerations and relationships prevail for the case of water 
vapor and the determination of 2

QC . 
The characteristic behavior of ( )TD U t∆  as a function of ∆t 

can be obtained from Equation (52). This will now be shown 
along with simultaneously determining the resolution 
requirements of the radiometer needed to discern the differences 
in the temperature structure functions. Consider the case where 

5 m/sU =  and take for the numerical value of 2
TC  the minimum 

value observed in atmospheric experiments (Ref. 12), 

min
2 2
T TC C= = 0.003 K2/m2/3. Using the same stable atmosphere 

case employed with the spectrum of Figure 1, the temperature 
structure function as a function of ∆t is displayed in Figure 3.  

Since this corresponds to a minimum value of 2
TC , one can 

estimate the corresponding minimum value of radiometer 
temperature resolution through the relation 

( )minmin TT D U t∆ ∆ . Thus, at ∆t = 40 s, ∆Tmin ~ 0.11 K. 

Correspondingly for 2 ,QC  
min

2
QC  = 0.1 (g/m3)2/m2/3 giving 

( )minmin QQ D U t∆ ∆ ~ 0.68 g/m3. These required resolutions 

are well above those of most available profiling radiometers.  
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Figure 3.—Temperature structure function as a function of 

integration time for a stable atmosphere with minimum 
expected value of temperature structure constant 2

TC  at a 
height of z = 200 m using Equation (52). 2 2 2 30.003 K /m .TC =  
Wind speed fluctuation 5.0 m/s.U =  Monin-Obukhov stability 
parameter L = 2.96. 
 
The unstable atmosphere case gives the less stringent 

resolutions of ∆Tmin ~ 0.3 K and ∆Qmin ~ 1.8 g/m3.  

4.0 Experimental Verification of 
Remote Sensing Technique 

A preliminary experimental demonstration of the method 
advanced in this report is provided by the use of a profiling 
radiometer (Radiometrics Corp. MP–3000A) having 35 
calibrated channels with a 1.1 s integration time per channel 
giving ∆t ≈ 40 s. The bandwidth per channel is 300 MHz in the 
22.0 to 30.0 GHz and 51.0 to 59.0 GHz (K and V) bands. The 
temperature resolution was 0.1 K. The measurements were taken 
in January 2013 at the NASA Tracking and Data Relay Satellite 
System (TDRSS) ground terminal site located at White Sands, 
New Mexico, with the radiometer pointed to zenith. The dataset 
comprised 2,100 temperature profiles taken over a 24-h period. 
The vertical heights of the profiles were discretized over 50 m 
intervals up to a maximum height of 10 km. Only temperature 
profiles were considered here. Unfortunately, specific 
atmospheric conditions during the radiometric data compilation 
were not available during the time the dataset was obtained. 
Specific considerations and details of the discretization 
procedures required as well as application of moving averages to 
the raw data appear in an earlier publication (Ref. 2). Two major 
considerations must be noted. First, the need for discrete wind 
velocity profiles that capture local prevailing conditions can be  
 

 
Figure 4.—Calculated vertical profile of temperature structure 

constant 2
TC  from temperature measurements using a 

Radiometrics Corp. MP–3000A microwave profiling 
radiometer. 
 

obtained using available methods (Ref. 13). Second, the required 
finite integration time of the radiometer restricts the method to 
apply beginning at a minimum height above the surface. The 
larger the value of ∆t, the larger the minimum height hmin is above 
the surface below, which the calculated structure parameters 
cannot be resolved. Assuming isotropic behavior of the turbulent 
inhomogenieties that the method can discern, one can simply 
place this minimum height at the value minh U t= ∆ . Of course, 
contributions of the atmosphere below this height that determine 
the value of the structure parameters is significant. The 
experimental derivation of the gradient Richardson number at the 
radiometer site, as discussed earlier, concurrent with the profile 
measurements, will secure the surface values and profiles of the 
structure parameters up to hmin. 

Figure 4 displays the result of obtaining 143 values of 
( )TD U t∆  from

 
the temperature profile dataset and using these 

derived values in Equation (52) to find 143 corresponding 
profiles of 2

TC . The averaging required to form the structure 
function values were obtained from 10-min moving averages of 
the raw differences of adjacent temperature profiles. Since 
atmospheric measurements were not taken to secure the 
prevailing values of kt and kU, nominal constant magnitudes of 
kt = 0.9 m–1 and kU/kt = 1.0 m–1 typical of a stable atmosphere 
were selected. Wind profiles were created using the method 
described in Reference 13 in conjunction with historical high-
resolution radiosonde data compiled over 3 years at the 
measurement location. A principle component analysis was 
then applied to the wind data to obtain a statistical model for U  
as a function of height. (Such a statistical wind profile model 
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can be obtained using Ref. 13 for any location with a long-term 
wind profile database.) 

Figure 4 shows the minimum height limitation along the 
abscissa as well as instances where values smaller  
than 

min
2 2 2 30.003 K mTC =  are obtained. Unfortunately, no 

concurrent, independent atmospheric measurements were being 
made to secure the 2

TC  profiles for comparison. However, the 
morphological behavior of those shown in Figure 4 are the same 
as those obtained by other methods.  

5.0 Discussion 
The results obtained and displayed in Figure 4 are certainly 

encouraging enough to provide motivation for a controlled 
experimental verification of the remote sensing method. To this 
end, profiling radiometer data for both temperature and water 
vapor (which was ignored in this report) must be captured.  In 
addition, corresponding simple atmospheric measurements are 
made to characterize the gradient Richardson number, from 
which similarity theory can be used, as described in this report, 
to provide estimates of the profile values of kU and kT needed to 
aid in the use of the master Equation (52) from which 

2 2 and T QC C  profiles can be obtained from the radiometer derived 
measurements that determine ( )TD U t∆  and ( )QD U t∆ . These 
atmospheric measurements can also augment other methods used 
to obtain 2 2 and T QC C  profile data to provide quasi-independent 
verification. Also, the use of in situ radiosonde measurements 
concurrent with the formation of the radiometer data to provide 
yet another independent verification would be invaluable. Work 
is now progressing toward these goals. 

6.0 Conclusions  
A remote sensing method using a profiling microwave 

radiometer to assess vertical path profiles of temperature and 
water vapor structure parameters has been proposed and 
experimentally shown to be promising. The ability to 

accomplish this task relied on two issues: (1) the integration 
time of profiling radiometers have become small enough for 
potential consideration of atmospheric turbulent field 
assessment through the actual measurement of the associated 
structure functions for the passive additives and (2) the 
development of a theoretical basis to provide the turbulent 
fluctuation spectra that is encountered using such 
unconventionally large measurement times, that is, large-scale 
turbulence driven by the various possible boundary conditions; 
one cannot expect Kolmogorov theory to hold that applies only 
in the inertial subrange. The resulting spectral theory that was 
obtained seems to have the flexibility to treat many 
combinations of atmospheric turbulence conditions. Since 
large-scale phenomena are considered, effects of molecular 
viscosity are ignored. For purposes of providing a basis for the 
radiometer remote sensing technique, two disparate regions of 
atmospheric turbulence activity were chosen, namely, no 
atmospheric stratification or shear and significant stratification 
and shear. A composite turbulence spectrum was then obtained 
from which a general scaling law was derived to replace the 
specialized 2/3 law. Thus, the structure parameter profiles of 

2 2 and T QC C  (respectively, the constants for temperature and 
water vapor) can be obtained by forming the structure functions 
of the respective quantities from the radiometer measurements. 
The turbulent dynamics theory that was developed also was 
coupled to similarity theory to provide that capability to 
perform simple in situ temperature and water vapor gradient 
measurements to capture the relative magnitudes of the 
coefficients that appear in the spectrum. 

Although the rather quick experimental verification of this 
technique is promising, more comprehensive verification must 
be done. Additionally, the use of a composite spectral 
representation from the theory developed here that employs 
other atmospheric turbulent conditions intermediate to those 
used here should also be considered. The issues of just what 
spectral form to use will be settled through careful atmospheric 
characterization concurrent with the radiometer measurements. 
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Appendix A.— Structure Function Corresponding to  
Spatial Spectrum Without Use of Frozen-Flow Hypothesis 

Consider the atmospheric temperature field T(t) along a 
vertical path measured by the radiometer at time t. After an 
integration time ∆t, the radiometer measures another temperature 
field T(t + ∆t). From these two temporally separated profiles, a 
temporal temperature structure function can be formed: 

 ( ) ( ) ( )( )2TD t T t t T t∆ = + ∆ −   (A1) 

where 〈---〉 is the ensemble average which, through ergodicity, 
is the time average of the indicated function. Hence, several 
such differential samples must be formed and used to calculate 
Equation (A1). In terms of the related correlation functions, one 
can write 

 ( ) ( ) ( )TB t T t T t t∆ ≡ + ∆   (A2) 

and form (Refs. 5 (Sec. 13) and 11) another version of the 
structure function: 

 ( ) ( ) ( )2 0T T TD t B B t ∆ = − ∆    (A3) 

Now consider the atmosphere containing this temperature field 
to be translated (convected) by the velocity, V, during the 
radiometer integration period ∆t, and using the slight variation 
on the very well known prescription by employing the Fourier-
Stieltjes transform (Refs. 5 (Sec. 13) and 11) (connecting the 
temporal statistics of T(t) to the spatial spectrum φTT(k) of the 
spatial statistics governing the temperature field through the 
spatial coordinate given by Vt): 

 
( ) [ ] ( )

( ) ( ) ( ) ( )*

exp ,T

T T TT

T t ikVt dZ k

dZ k dZ k k k k dkdk

∞

−∞

=

′ ′ ′= δ − φ

∫   (A4) 

in Equation (A2) and substituting this intermediate result into 
Equation (A3) gives  

 ( ) [ ]( ) ( )2 1 expT TTD t ikV t k dk
∞

−∞

∆ = − − ∆ φ∫   (A5) 

Unlike the traditional development connecting the structure 
function to its corresponding spatial spectrum, this more 
general formulation involves the characteristic function  
〈exp[–ikV ∆t]〉 of the velocity field. Following Reference 14, the 
convective velocity is written as V U= + υ  where U  is the 
average wind speed perpendicular to the vertical coordinate 
along which the radiometer forms the temperature profile, and 
υ is its random (fluctuation) component. One then has 

 [ ] [ ]exp exp expikV t ikU t ik t − ∆ = − ∆ − υ∆    (A6) 

Taking this fluctuating component to be small relative to U , 
one can series expand the characteristic function for υ to give 

[ ] 2 2 21exp exp 1
2

ikV t ikU t k t  − ∆ = − ∆ − υ ∆    
  (A7) 

thus allowing Equation (A5) to be written 

( ) ( ) ( )

( )2 2 2

2 1 exp

exp

T TT

TT

D t ikU t k dk

t k ikU t k dk

∞

−∞
∞

−∞

 ∆ = − − ∆ φ 

 + υ ∆ − ∆ φ 

∫

∫
  (A8) 

Equation (A8) gives the relation that is needed to obtain the 
temperature structure function, measured from the radiometer 
data, from the combined spectrum of Equation (44). The 
derivation of this relation transcends the use of the Taylor 
frozen-flow hypothesis, the use of which may be problematic 
over the range to time delays ∆t that prevail for the radiometer 
integration period. For typical atmospheric situations, one has 

2 0.1Uυ ≤  over the temporal intervals used here. 
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