

EXPLORESPACE TECHNOLOGY DRIVES EXPLORATION

NASA Power Development for Artemis

Randall Furnas, NASA Glenn Research Center EnergyTech 2019

Artemis Phase 1: To The Lunar Surface by 2024

Artemis II: First humans to orbit the Moon in the 21st century

Artemis I: First human spacecraft to the Moon in the 21st century Artemis Support Mission: First high-power Solar Electric Propulsion (SEP) system Artemis Support Mission: First pressurized module delivered to Gateway

Artemis Support Mission: Human Landing System delivered to Gateway

Artemis III: Crewed mission to Gateway and Iunar surface

Commercial Lunar Payload Services - CLPS-delivered science and technology payloads

Early South Pole Mission(s)

- First robotic landing on eventual human lunar return and In-Situ Resource Utilization (ISRU) site

- First ground truth of polar crater volatiles

Large-Scale Cargo Lander - Increased capabilities for science and technology payloads

Humans on the Moon - 21st Century First crew leverages infrastructure left behind by previous missions

LUNAR SOUTH POLE TARGET SITE

Artemis Phase 2: Building Capabilities For Mars Missions

Reusable human lander elements refueled

Artemis V

Artemis VI

Artemis VII

TECHNOLOGY AND OPERATIONS DEMONSTRATIONS FOR MARS

2029

Artemis Support Mission

Lunar surface asset deployment for longer surface expeditions

CLPS opportunities

Artemis IV

SUSTAINABLE LUNAR ORBIT STAGING CAPABILITY AND SURFACE EXPLORATION

MULTIPLE SCIENCE AND CARGO PAYLOADS

TERNATIONAL PARTNERSHIP OPPORTUNITES

2025

Lunar Surface Power

STMD is developing technologies which can provide the capability for continuous power throughout day and night for lunar and Mars Surface missions.

Technology Developments Underway:

- Power Generation
 - Fission Surface Power: Flight reactor demonstration (2027)
 - Adaptable Lunar Lander Solar Array Systems: Requirements definition and concept evaluation leading to a 10kW-class solar array
 - Chemical Heat Integrated Power Source: Develop 100 W-class, 350 hour lunar night power source
- Energy Storage: Develop a sub-kW class, integrated Regenerative Fuel Cell (RFC) and conduct lunar relevant ground testing to demonstrate long-duration energy storage & night power generation (~350 hr)

Additional Investments:

- Conducting a phased, system level assessment of power architecture for lunar surface missions
- Primary Fuel Cell Technology Tipping Point (September 2019): Demonstrate fuel cell element on early lander using propellant-grade hydrogen and oxygen reactants to extend the lander surface mission duration
- Technology development efforts initiated for surface-to-surface power beaming, advanced rover energy storage technology and power distribution architectures.

