

# Body of Knowledge (BOK): Gallium Nitride (GaN) Power Electronics for Space Applications

Kristen Boomer, NASA GRC

Leif Scheick, JPL

Ahmad Hammoud, NASA GRC/Vantage Partners, LLC

#### **Acknowledgment:**

This work was sponsored by: NASA Office of Safety & Mission Assurance



# **Abbreviations & Acronyms**

| Acronym  | Definition                                                                            |
|----------|---------------------------------------------------------------------------------------|
| 2DEG     | Two Dimensional Electron Gas                                                          |
| AlGaN    | Aluminum Gallium Nitride                                                              |
| ARPA-E   | Advanced Research Projects Agency - Energy                                            |
| BOK      | Body of Knowledge                                                                     |
| CIRCUITS | Creating Innovative & Reliable Circuits Using Inventive Topologies and Semiconductors |
| CTE      | Coefficient of Thermal Expansion                                                      |
| DOE      | Department of Energy                                                                  |
| EEE      | Electrical, Electronic, and Electromechanical                                         |
| ESA      | European Space Agency                                                                 |
| ETW      | Electronics Technology Workshop                                                       |
| FET      | Field Effect Transistor                                                               |
| GaN      | Gallium Nitride                                                                       |
| GIGA     | GaN Initiative for Grid Applications                                                  |
| GRC      | Glenn Research Center                                                                 |
| GSFC     | Goddard Space Flight Center                                                           |
| HEMT     | High Electron Mobility Transistor                                                     |
| IR       | Infrared                                                                              |
| JPL      | Jet Propulsion Laboratory                                                             |

| Acronym         | Definition                                                                                         |
|-----------------|----------------------------------------------------------------------------------------------------|
| JSC             | Johnson Space Center                                                                               |
| LET             | Linear Energy Transfer                                                                             |
| LBNL            | Lawrence Berkeley National<br>Laboratory                                                           |
| MMIC            | Monolithic Microwave Integrated Circuit                                                            |
| NASA            | National Aeronautics and Space<br>Administration                                                   |
| NEPP            | NASA Electronic Parts and Packaging                                                                |
| R <sub>ON</sub> | On Resistance                                                                                      |
| SEE             | Single Event Effect                                                                                |
| Si              | Silicon                                                                                            |
| SiC             | Silicon Carbide                                                                                    |
| SWITCHES        | Strategies for Wide Bandgap,<br>Inexpensive Transistors for<br>Controlling High-Efficiency Systems |
| TAMU            | Texas A&M University                                                                               |
| TID             | Total Ionizing Dose                                                                                |
| UAV             | Unmanned Aerial Vehicle                                                                            |
| UPS             | Uninterruptible Power Supply                                                                       |
| $V_{TH}$        | Threshold Voltage                                                                                  |
| WBG             | Wide Bandgap                                                                                       |



## **Body of Knowledge Documents**

- Provide a brief guidance to a technology and create a "snapshot" of the current status
  - Technology overview
  - NASA Applications
  - Other current work (government, industry, academia)
  - Challenges
  - Reliability
  - Future direction
- SiC BOK was completed in 2017 by members of NEPP Wide Bandgap (WBG) working group; GaN BOK to be released soon



## Why WBG Devices?

- Majority of today's electronics based on Si technology
- Approaching theoretical limit of Si technology
- New operational environments
- Stringent application requirements
- Evolving technology: WBG semiconductors
- SiC and GaN most promising candidates, especially for power electronics



#### **Benefits of GaN**

- Higher breakdown voltage
- Higher operating temperature
- Minimal (no) reverse recovery
- Reduced switching losses
- Increased efficiency
- Faster switching speeds
- Reduced thermal management
- Improved system reliability
- Reduced system cost



# Relative Comparison of Semiconductors

| Property (relative to Si)     | Si | SiC  | GaN  |
|-------------------------------|----|------|------|
| Thermal Conductivity          | 1  | 3.1  | 0.9  |
| Thermal Expansion Coefficient | 1  | 1.6  | 2.2  |
| Dielectric Constant           | 1  | 0.9  | 0.9  |
| Electron Mobility             | 1  | 0.67 | 0.83 |
| Hole Mobility                 | 1  | 0.08 | 0.42 |
| Breakdown Electric Field      | 1  | 7.34 | 6.67 |
| Saturation Velocity           | 1  | 2    | 2.2  |
| Maximum Working temperature   | 1  | 5.2  | 5.34 |



#### **GaN Issues**

- Lower thermal conductivity
  - Layout
  - Packaging
- Higher frequency operation
  - Layout
  - Parasitics
- Gate-source voltage limit
  - Gate drive circuit
  - Voltage regulation
- Enhancement-mode devices
  - Cascode structure
  - New processes



#### **NEPP GaN Work**

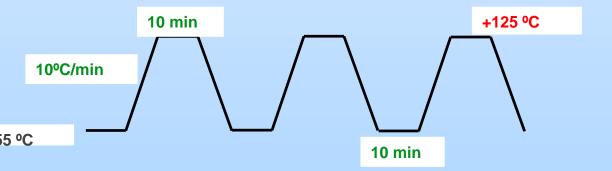
- NEPP Task: Wide Bandgap Reliability and Applications Guidelines
- Task
  - NASA Working Group on Wide Bandgap Semiconductors
- Objective
  - Address reliability of and issue guidelines on GaN & SiC power electronics
- Members
  - GRC, GSFC, JPL, JSC
- Activities
  - Collaboration on test activities
  - Parts performance and reliability determination under radiation and extreme temperature exposure
  - Disseminate information and publish on NEPP website

**Radiation and Thermal Cycling Effects** 

| Manufacturer | Part #   | Parameters       | # Samples<br>(control/Irradiated) | Radiation | Cycling |
|--------------|----------|------------------|-----------------------------------|-----------|---------|
| EPC          | 2012     | 200V, 3A, 100mΩ  | 15/26                             | <b>✓</b>  | ✓       |
| Call Systems | GS61008P | 100V, 90A, 7.4mΩ | 11/10                             | <b>✓</b>  | ✓       |
| GaN Systems  | GS66508P | 650V, 30A, 52mΩ  | 4/0                               | Planned   | ✓       |

| Radiation Exposure |     |              |                  |            |                 |             |
|--------------------|-----|--------------|------------------|------------|-----------------|-------------|
| Device             | lon | Energy (MeV) | LET (MeV.cm²/mg) | Range (µm) | Incidence Angle | Facility    |
| EPC                | Xe  | 3197         | 41               | 286        | Normal          | TAMU*       |
| Call Systems       | Ag  | 2651         | 42 - 48          | 90         | Normal          | TAMU*/LBNL* |
| GaN Systems        | Au  | 2594         | 87               | 118        | Normal          | TAMU*/LBNL* |

<sup>\*</sup> TAMU: Texas A&M University; LBNL: Lawrence Berkley National Lab


#### **Thermal Cycling:**

> 1000 cycles

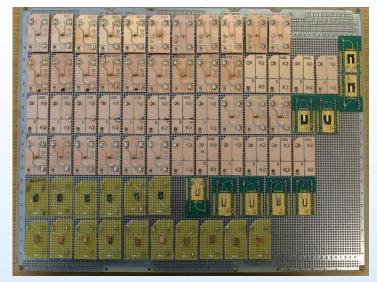
➤ Rate: 10 °C/min

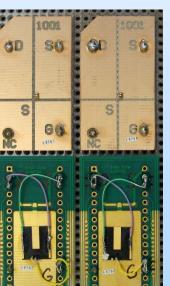
► Range: -55 °C to +125 °C

Soak time: 10 min

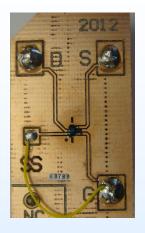




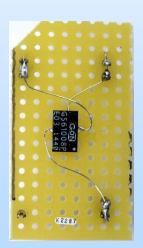

## **Parameters and Setup**


- I-V output characteristics
- Gate threshold voltage, V<sub>TH</sub>
- Gate leakage forward current, I<sub>GLF</sub>
- Gate leakage reverse current, I<sub>GLR</sub>
- Drain leakage current, I<sub>DL</sub>

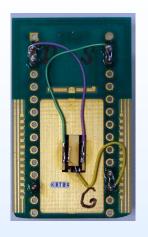




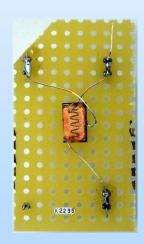

#### **Device-Mounted Boards**









**EPC 2012** 



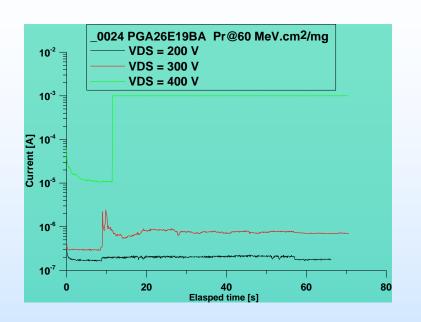
**GaN GS61008P** 

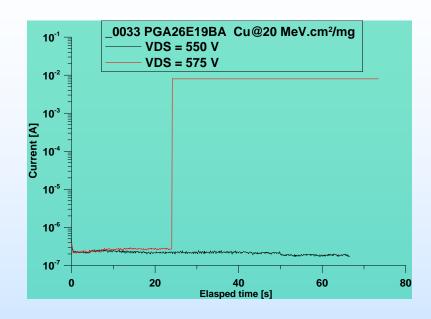


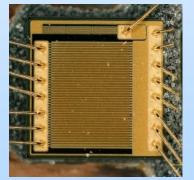
**GaN GS66508P** 

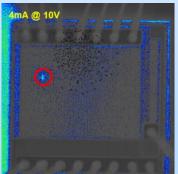


GaN GS61008P (Un-capped/irradiated)

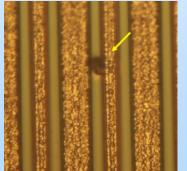


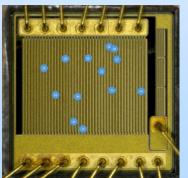


## **Testing Results Summary**


- SEE susceptibility has been a concern in devices tested
- Radiation exposure caused changes to several parameters, most notably drain leakage current
- Significant part-to-part variation in failure levels
- Both control & irradiated parts remained functional after exposure to thermal cycling
- Part-to-part variation in output characteristics
- Negligible effects of cycling on measured properties
- No alteration in device packaging or terminations due to cycling




# **GaN HEMT Devices (Courtesy of JPL)**














Post SEE failure analysis: IR, photoemission & optical images of bare die & failure sites



## **Potential NASA GaN Applications**

#### **NASA Technology Roadmap**

| Technology<br>Area             | Capability Needed                               | Challenges                                 | Mission                                                   | Launch<br>Date |
|--------------------------------|-------------------------------------------------|--------------------------------------------|-----------------------------------------------------------|----------------|
| Communications,                | Advancing power                                 | Small form factor,                         | Earth Systematic Missions:                                | 2004           |
| Navigation, and Orbital Debris | efficiency, higher frequency                    | reliability, radiation hardness, and other | Precision and All-Weather Temperature and Humidity (PATH) | 2024           |
| Tracking and                   | communication, and                              | extreme space                              | Climate Absolute Radiance and                             | 2021           |
| Characterization               | reduced system mass                             | environment                                | Refractivity Observatory (CLARREO)                        |                |
| Systems                        | by utilizing GaN HEMT                           |                                            | Hyperspectral Infrared Imager (HyspIRI)                   | 2023           |
|                                | and MMIC                                        |                                            |                                                           |                |
| Science                        | Highly integrated                               | Reliable, wide-                            | Earth Systematic Missions                                 |                |
| Instruments,                   | instrument electronics                          | temperature electronics                    | Strategic Missions                                        |                |
| Observatories,                 | capable of operation                            | and electronics                            | Discovery                                                 |                |
| and Sensor                     | over a wide                                     | packaging capable of                       | New Frontiers                                             |                |
| Systems                        | temperature range and                           | operating between -230°                    |                                                           |                |
|                                | cycling                                         | C and 480° C.                              |                                                           |                |
| Aeronautics                    | Alternative propulsion system (hybrid/electric) | High power, high density motors, and wide  | Ultra-efficient, environment-friendly vehicles            |                |
|                                |                                                 | temperature range electronics and          |                                                           |                |
|                                |                                                 | controllers                                |                                                           |                |
|                                |                                                 |                                            |                                                           |                |



## **Commercial Applications**

- Motor drives
- Uninterruptible power supplies (UPS)
- Photovoltaic inverters
- Power utilities, energy conversion, power distribution
- Automotive industry (hybrid/electric vehicle)
- Industrial equipment
- Consumer electronics, data & communication networks
- Down-hole drilling
- Cellular base stations



### **Military Applications**

- High-energy laser
- Advanced armament
- All-electric planes & boats
- Unmanned aerial vehicles (UAVs)
- Next generation warships
- Armored robotic vehicles
- Communication and strategic satellites



## **Aerospace Applications**

- High altitude aircraft
- Low earth orbit aircraft
- Sensors & imaging systems onboard satellites
- Data communication & networking



# **Major Providers of GaN Parts**

| Manufacturer           | Part/Product                                       |
|------------------------|----------------------------------------------------|
| EPC                    | eFET, half-bridge modules, development boards      |
| GaN Systems            | HEMT, half-bridge boards, buck converter           |
| Transphorm             | FET cascode, half-bridge                           |
| Infineon               | FET HEMT, cascode                                  |
| Panasonic              | Transistor, evaluation boards, chopper with driver |
| VisIC Tech             | Power switch, evaluation boards                    |
| Freebird               | Rad-hard eFETs                                     |
| Sanken Electric        | HEMT with integrated driver                        |
| Exagan                 | FETs                                               |
| Dialogue Semiconductor | Integrated FET, half-bridge with driver            |
| Navitas                | Integrated FET, half-bridge with driver            |



# **Major Providers of GaN Parts**

| Manufacturer        | Part/Product                         |
|---------------------|--------------------------------------|
| MicroGaN            | FET cascode                          |
| Texas Instruments   | Power stage, half-bridge with driver |
| Wolfspeed           | HEMT                                 |
| Toshiba             | HEMT                                 |
| Oorvo               | HEMT                                 |
| Macom               | HEMT                                 |
| Mitsubishi Electric | HEMT                                 |
| Microsemi           | HEMT                                 |
| NXP Semiconductor   | HEMT, GaN on SiC                     |
| Sumitomo Electric   | HEMT                                 |
| United Monolithic   | HEMT                                 |



## **Ongoing GaN R&D Programs**

- U.S. DOE joint academia/industry/government SWITCHES program (Strategies for Wide-Bandgap, Inexpensive Transistors for Controlling High-Efficiency Systems)
- U.S. ARPA-E CIRCUITS program (Creating Innovative & Reliable Circuits using Inventive Topologies & Semiconductors)
- U.S. Naval, Army, & Air Force Research Labs projects on materials processes, device structure and power systems development
- U.S. Department of Energy/PowerAmerica, (a partnership of academia and industry to develop WBG advanced manufacturing methods)
- NASA development of cryogenically-cooled megawatt inverter
- U.S. DoE GIGA project (GaN Initiative for Grid Applications)
- ESA, JAXA pursuing similar programs (diodes and power transistors for space)
- Industry-led programs (higher generation, high voltage, vertical structure)



## **GaN Technology Limitations**

#### Lattice Mismatch

 High strain due to lattice & CTE mismatch between GaN & Si results in high-density dislocations

#### Cost

Cost-effective growth of high-quality nucleation layers needed

#### Packaging

 New material & packaging methods needed to accommodate robust high power, high temperature applications

#### Layout

High frequency operation requires careful design

#### Supporting Electronics

 Fast switching requires optimized gate driver to prevent gate overstress, shoot through, & switching transients

#### Vertical Devices

Vertical design yields reduced die size & cost, higher voltage & power rating, & improved reliability



#### **Acknowledgements**

 This work was performed in support of the NASA Electronic Parts and Packaging (NEPP) Program.
 Part of this effort was performed at the NASA Glenn Research Center under GESS-3 Contract Number NNC12BA01B.