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Abstract. We demonstrate a novel single-bounce
ray tracing approach to landmark identification for sur-
face feature-based relative navigation. A priori knowl-
edge of the camera pose and known topographic maps for
each landmark are used to render the potentially visible
landmarks via ray tracing into the image frame. These
templates are registered with a search region around the
predicted location for each landmark in the image, to
locate its observed center. This procedure is applied to
images from the OSIRIS-REx Orbital A and Orbital B
mission phases, and the results are compared with those
obtained via previous landmark identification methods.

Introduction. The use of optical navigation (Op-
Nav) for landmark tracking is critical for successful op-
erations around small bodies. Traditional radiometric
tracking methods via the Deep Space Network (DSN)
are subject to limitations that can have severe impacts
to navigation performance for small body missions. For
periods of the year when the Sun-Earth-probe angle is
small, Doppler measurements can experience phase scin-
tillation, as the signal passes through the solar corona.
The magnitudes of these effects are highly dependent
on solar activity, and can severely degrade the accuracy
of Doppler measurements.1 In addition, while radio-
metric measurements have great precision in the radial
direction (with respect to Earth), the along-track and
cross-track directions do not fare nearly as well. This
means that while the radial position may have an error
of only a few meters, the cross-track and along-track er-
rors can range from tens to thousands of meters. This
is acceptable for many planetary missions; however, the
magnitude of these errors do not depend on the mass of
the body the spacecraft is orbiting.2 Position errors of a
few hundred meters would be catastrophic for a mission
such as OSIRIS-REx, where the Orbital B mission phase
had an altitude of less than 700 meters. Finally, DSN
usage is not continuous and requires scheduling around
other missions.

Due to these challenges, the use of radiometric mea-
surements alone cannot provide the relative accuracy
required to operate in close proximity to small bodies.
In these scenarios, OpNav measurements can be used to
directly relate the spacecraft state to the target surface.
Combining OpNav measurements with DSN measure-

ments, as well as laser altimetry (when available), can
be used to not only estimate the spacecraft pose (atti-
tude and position), but also geophysical parameters of
the central body such as spin axis/rates, shape model
scale, and gravity field coefficients.

The use of landmark-based surface feature naviga-
tion has been used to great success in missions such
as Hayabusa3 and Rosetta,4 which visited the asteroid
Itokawa and the comet 67P/Churyumov Gerasimenko
respectively. The current state-of-the-art approach to
landmark-based relative navigation is the stereophoto-
clinometry (SPC) program developed by Dr. Robert
Gaskell of the Planetary Sciences Institute (PSI). The
performance of SPC has been studied extensively;5 how-
ever, there are some limitations in its methodology
which we will explore.

We propose a novel algorithm as an alternative to
SPC’s landmark identification, which aims to overcome
some of the limitations faced by SPC. In this paper we
will be exploring the details of our new implementa-
tion, and comparing its performance with SPC through
a variety of methods. We will also demonstrate the op-
erational performance of this new methodology using
navigation images from the OSIRIS-REx mission.

Background of SPC Software. SPC has been
used for shape model determination and landmark iden-
tification for multiple small body missions.6 We will be
focusing on SPC’s landmark identification functionality,
as that is the feature for which our new algorithm pro-
vides an alternative.

SPC identifies landmarks via a multi-step process.
First, the expected locations of potentially visible land-
marks are calculated using a priori state knowledge of
the spacecraft. These locations are then used along-
side pre-constructed topographic maps for each land-
mark (called maplets) to generate a predicted image.
Next, the illumination values from the image taken by
the spacecraft are projected onto the maplet surface cre-
ating an extracted image. Finally, image registration is
performed between the predicted and extracted images,
providing the landmark’s precise location in the image.
This process can be repeated for multiple landmarks,
and their pixel locations can then be used (potentially
alongside other measurement types) to perform orbit de-
termination.
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Figure 1. Illustration of a maplet. Recall that a
landmark is a specific point on the surface of the
body whose location can be used as a tie point in
navigation. The maplet is the topography for the
corresponding region around a landmark.

Generating the Predicted Image. In order to generate
a predicted image, the intensity of the light reflected
off of the maplet surface and into the camera must be
precisely modeled. The intensity of the reflected light
depends on the intensity of the incoming light, as well
as the directions of both the incident and reflected light,
and the surface albedo at the point of reflection. The
phase angle (the angle between the incident light rays
and reflected light rays) is also used in some models, in-
cluding the one presented here. Functions that model re-
flections like this are known as Bidirectional Reflectance
Distribution Functions (BRDFs).

While many BRDFs exist, many are not physically ac-
curate enough for our purposes (such as the Lambertian
BRDF, which models a perfectly matte surface); the way
in which these values relate is highly dependent on the
specific material, surface roughness, and microstructure.

McEwen proposed a BRDF based on lunar surface
data that is well suited for many planetary applica-
tions.7 SPC utilizes a simple combination of the Lam-
bertian and Lommel-Seeliger reflectance models, as they
approximate McEwen’s BRDF well.6 This illumination
model is shown in Eq. (1)

Ik = ak

(
(1 − β) cos (ik) + β

cos (ik)
cos (ik) + cos (rk)

)
(1)

where for every point k, I is the illumination, a is the
albedo, i is the incident angle, r is the reflected an-
gle, and β = exp (−α/α0) is a weighting term between
the Lambertian and Lommel-Seeliger reflectance models
(where α is the phase angle in degrees, and α0 = 60).
If we let r̂m be the vector from the reflection point to
the spacecraft sensor, ŝm be the vector from the reflec-
tion point to the Sun, and n̂ be the unit normal at the
reflection point, then we can easily calculate the values

required to evaluate Eq. (1).

cos (ik) = n̂T
k ŝm

cos (rk) = n̂T
k r̂m

α = cos−1 (ŝT
mr̂m

)

Figure 2. The geometry used in computing illu-
mination from a BRDF.

Using this method along with a known maplet topog-
raphy (which must be previously constructed via some
other method), the surface illumination can be calcu-
lated giving a predicted image. It is important to note
that the predicted image corresponds directly to the
maplet itself. The calculated intensities for each point
on the maplet are not projected back into the camera
frame, but rather remain locked to the maplet surface
where later correlation with the extracted image will
take place.

Finally, once all of the illumination values are calcu-
lated, the entire predicted image is scaled such that the
average illumination of the predicted image equals the
average illumination of the extracted image. This aids
in the accuracy of the correlation step.

Figure 3. An example of the illuminated maplet
topography (left) and corresponding predicted
image (right). (mx, my, and mz correspond to
the basis axes of the maplet frame.)
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Generating the Extracted Image. Generating the ex-
tracted image is a far more complicated process than
producing the predicted image. Because of this, we will
not be fully describing every step used to generate an
extracted image as implemented by SPC, but will rather
focus on the conceptual steps, so as to clearly indicate
how our proposed methodology differs.

The image extraction procedure can be broken down
into two fundamental steps: projection onto the maplet
topography, and applying the “extraction filter”. The
fundamental goal of the extracted image is to represent
the illumination data captured by the spacecraft cam-
era on the maplet topography itself so that it can be
correlated with the predicted image.

Projection onto Maplet Topography. The first step
in image extraction is to project the illumination data
onto the maplet topography. To do this, the correspon-
dences between the expected location of the landmark
in the image frame and the location of the landmark in
the asteroid-fixed frame are determined. Because the
asteroid-fixed locations of all the landmarks are known
(since we are using a pre-constructed shape model), we
only need to calculate the expected image frame location
of each landmark. This is done by using an a priori es-
timate of the spacecraft pose and mapping the asteroid-
fixed locations through the Owen camera model.8 This
is done not just for the landmark locations, but for all
the points contained in the landmark’s corresponding
maplet topography.

Once all of the points from the maplet topography
have been mapped into the image frame, the correspond-
ing illumination values from the image can be projected
onto the maplet grid. In the case where each cell of the
maplet grid is smaller than the pixels of the image, then
bi-linear interpolation is used to calculate the intensity
at a particular cell. If, however, each cell of the maplet
grid is larger than the pixels of the image, then each
pixel contained inside a particular cell are averaged to
obtain the illumination for that particular cell.

Extraction Filter. The use of interpolation in the pre-
vious step may have assigned illumination values to
maplet grid cells that could not possibly be illuminated
based on topography of the maplet. For example, points
of the maplet on the inside lip of a crater may not be
able to see the Sun, or points over the horizon may not
be in sight of the camera. However, these points may
have illumination values assigned to them in the previ-
ous projection step due to sensor noise or misalignment
errors prior to the interpolation. Such points must have
their illumination values zeroed out in order to perform
correlation with the predicted image.

The extraction filter uses both the incidence vector
and the reflection vector (shown previously in Fig. 2)
in order to calculate which maplet points should be il-
luminated. If the angle between the local unit normal
and either of these vectors is greater than 90◦, then that
point cannot possibly be both illuminated and seen by

our camera. In addition, a cursory check analogous to
ray tracing is performed to identify whether any other
part of the maplet’s topography occludes the current
point. For this, steps are taken along the reflection vec-
tor, and each cell crossed by the vector is tested to see
if that cell’s height is greater than the vector’s current
height. If it is, then that cell occludes the point of re-
flection and so it must be in shadow. If either of the
criteria here are met, then the cell of interest on the
maplet is zeroed. These points are then ignored in the
final correlation.

Image Registration. The previous steps would have
likely resulted in many identified maplets. Stricter con-
straints can be enforced to remove maplets that are at
undesirable orientations or maplets where large amounts
of the topography are in shadow. Once this is done,
correlation-based registration is performed to align the
extracted and predicted images. The expression for cor-
relation is given in Eq. (2).

C =
1
N

∑k
i=1
∑k

j=1(Ip(i, j)Ie(i, j)) − µpµe

(µp2 − µ2
p)(µe2 − µ2

e) (2)

where N is the number of pixels, i and j are pixel co-
ordinates of the image, Ip and Ie are the intensities of
the predicted and extracted images respectively, µp and
µe are the mean intensity values for the predicted and
extracted images respectively, and µp2 and µe2 are the
means of the squared intensity values for the predicted
and extracted images respectively.

The projected illumination values in the extracted im-
age are shifted around and this correlation process re-
peated. This produces a correlation surface, the peak of
which represents the best sub-pixel estimate of the land-
mark location. Because the camera pose is based on a
priori state knowledge, any errors in the pose would
lead to errors in the predicted and extracted images,
that would lead to reduced correlation scores and poten-
tially some landmarks failing to be identified. Because
of this, once all the predicted landmarks are found, a
Perspective-n-Point (PnP) solver is run to adjust the
camera pose used for generating the predicted and ex-
tracted image. This enables the entire process to be
repeated with improved accuracy.2

Potential Weaknesses. There are several weaknesses
associated with this method, however. First, only the
slope of the terrain is considered for illuminating the
maplet in the predicted image. This does not capture
shadows in the scene, which are valuable pieces of infor-
mation. (The lack of shadows is clear in the predicted
image in Fig. 4.) Further, the extracted image specifi-
cally attempts to have shadows ignored from correlation.

In addition, because the image brightness data is ex-
tracted onto the surface, additional information about
the maplet is artificially injected into the correlation
that was not present in the original image. This makes it
possible to overfit the data, particularly when the land-
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Figure 4. An extracted image (left) is compared
with the corresponding predicted image (right).
Shadows are far more pronounced in the ex-
tracted image.

marks are low resolution, which means that the differ-
ence in ground sample distance between the maplet and
image is large.

Finally, because the correlation is performed on the
maplet itself, the maximum shift that can be retrieved
using this method is limited by half the size of the
landmark. This can make it difficult to perform SPC
when the initial error in the a priori state is very large,
and typically requires registering the entire image to the
global shape model first, before attempting surface fea-
ture navigation.

Proposed New Methodology. We propose a novel
algorithm as an alternative to the SPC method de-
scribed above. It aims to overcome some of the lim-
itations discussed for SPC by taking a fundamentally
different approach to registering a predicted landmark
with the image taken by the spacecraft. We do this by
using a single-bounce ray tracer to render the maplet
directly into the image frame, where it is then regis-
tered. The ray tracing algorithm also accurately ren-
ders shadows which can then be used in the registration
step. This algorithm can be broken into several primary
steps, with some being fundamentally the same as the
steps in SPC. The difference of this proposed method is
in how the predicted image (referred to in this section as
the template) is rendered and registered with the image
captured by the spacecraft.

An additional benefit to rendering the template into
the image space (where the correlation is then per-
formed) is that the landmark can be potentially iden-
tified anywhere in the image. This is because during
the registration process, the rendered template can be
shifted to any location in the captured image, and so
the maximum allowable shift is limited only by the size
of the image. When correlation is done on the maplet
(as is done in SPC), one is limited to a maximum shift
that is the size of the maplet. This can cause issues if a
priori knowledge of the spacecraft pose is poor.

It is important to remember that this approach is
purely for the landmark identification step in the over-
all surface feature-relative navigation procedure. This

new approach is not for use in actual shape model
construction or maplet generation, and assumes that
maplets/landmarks have already been created by SPC
or some other method. We will discuss the implications
of this in our conclusions section.

An example of the aligned templates with the image
produced by the steps described in this section is shown
in Fig. 5.

Landmark Prediction. Similar to SPC, potentially
visible features are identified using an a priori estimate
of the camera pose as well as the orientation of the tar-
get object. Once these potentially visible landmarks
have been identified, they are projected into the camera
frame (using a pre-calibrated camera model) to obtain
the predicted centers for each.

Template Rendering using Ray Tracing. The render-
ing of the landmarks into image templates takes place
wholly in the image frame via a ray tracing method.
Ray tracing is a rendering technique which traces light
backwards from the camera to a light source. To do this,
rays for each image pixel are traced through a model of
the camera and into the scene where they are checked
to see if they intersect with any of the topography. In
a single-bounce ray tracer, if the ray strikes a surface,
then a new ray is traced from the intersection point to
the light source (the Sun in our case). If the reflected
ray intersects with any other part of the topography,
then the reflection point is in shadow. If the reflected
ray does not intersect with anything else, then the illu-
mination for that ray (and thus its corresponding pixel
in the image frame) is computed. This process is shown
in Fig. 6.

In our case, the topography data for all identified
features are loaded from a feature catalog. Individual
maplets are loaded, and single-bounce ray tracing is per-
formed, where rays are cast through a pre-calibrated
model of the camera and intersections with the maplet
surface are identified. The rays are traced back to the
Sun, and any additional intersections indicate the point
on the maplet is in shadow. This information is run
through an illumination model to fully render the il-
luminated surface into the image space, as a template.
For the purposes of this paper we are using the McEwen
BRDF to calculate the surface illumination.7

To prevent aliasing, and to improve overall perfor-
mance of this approach, a technique known as super
sampling can be employed. Super sampling is the tech-
nique whereby multiple rays are cast for each pixel, and
the calculated intensities for each ray are averaged to
produce the overall illumination value of the pixel. This
helps to soften edges and capture sub-pixel variations
in a way more representative of the inner workings of
a camera, in exchange for increased computational ex-
pense.

Cropping and Masking. Once a rendered template
has been produced, the actual image captured by the
spacecraft must be appropriately cropped in order to

2nd RPI Space Imaging Workshop. Saratoga Springs, NY.

28-30 October 2019

4



Figure 5. An output from the implementation of
the algorithm described in this paper in the God-
dard Image Analysis and Navigation Tool (GI-
ANT). Left: A cropped portion of a NavCam 1 9

image of Bennu in Orbital A. Right: The ren-
dered template of a feature observed in the im-
age. In the cropped image the pink outline is the
predicted location while the blue outline is the
solved-for location.

Figure 6. The geometry of a single-bounce ray
trace for a simple scene.

effectively perform the correlation. In addition to this
cropping, two masks are produced from both the orig-
inal image as well as the rendered template. First, if
none of the rays for a given pixel intersected the maplet,
then that pixel is removed from the intersection mask.
Additionally, any pixel in the image collected by the
spacecraft containing space is identified and added to
the space mask. These two masks are then combined
with a logical or and used to tell the correlator to in-
clude these pixels in the cross-correlation. This ensures
that only actual surface features and space are being
correlated, not regions around a feature that were not
rendered. An example of this process is shown below
in Fig. 7, for a specific alignment of a template and
cropped image location. Due to the severe overlap of
the maplet and space, it is clear that this is not the
correct alignment. This masking process is repeated for
every alignment in the image registration process, which
is discussed next.

Normalized Cross Correlation. Using the predicted
centers for each landmark, a search region is defined
around where the landmark is expected to be in the im-
age. The previously rendered templates are then regis-
tered with this search region to estimate where the land-
mark is in the region, and thus its location in the image
as a whole. The registration is done using the standard
normalized cross-correlation, with various alignments of
the template in the search region which creates a cor-
relation surface. A least-squares algorithm is then used
to fit a paraboloid to the correlation surface. This al-
lows for sub-pixel accuracy in estimating the peak of the
correlation surface, which corresponds to the estimated
center of the landmark in the search region.

PnP and Measurement Refinement. Because the
camera pose is based on a priori state knowledge, any
errors in the pose would lead to errors in rendering the
templates, which would thus decrease correlation scores
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Figure 7. A diagram showing the generation
of the correlation mask by determining a space
mask from the cropped image and an intersec-
tion mask from the rendered template. The two
masks are combined with a logical or to deter-
mine which pixels to include in the computation
of the correlation score for this template.

and potentially lead to some landmarks failing to be
identified. Therefore, once all landmark locations have
been identified in the image, a PnP solver can be run
to adjust the camera pose. The templates are then re-
rendered, and the image registration process is repeated
with the new templates, allowing for more precise land-
mark locations to be estimated.

Comparison with SPC. While the landmark loca-
tion prediction and PnP steps between both methods are
mostly the same, there are some substantial differences
as we previously discussed. These have been organized
into Table 1 to provide an easy comparison between the
two methods.

Implementation into GIANT. The Goddard Im-
age Analysis and Navigation Tool (GIANT) provides
a suite of python tools which enable easy camera cal-
ibration as well as processing of images for both stel-
lar OpNav and relative OpNav. The structure and ba-
sic functionality of GIANT is explored by A. Liounis
(2019).10 The method proposed here was implemented
as the SFN module in the relnav package, and now
provides surface feature navigation capabilities to GI-
ANT.

k-d tree for ray tracing optimization. Ray tracing re-
quires testing for intersections between a ray and the
given topography. In many implementations of ray trac-
ing, the topography is first tesselated into a triangu-
lar mesh, as there are many fast algorithms for test-
ing triangle-ray intersections.11 As the topography in-
creases in detail (and thus complexity), the number of
triangles increases. Checking if a ray intersects with
every triangle can therefore be prohibitively expensive.
Because of this, it is desirable to reduce the number of
triangles that must be checked for each ray.

We accomplished this by implementing a k-

dimensional search tree (k-d tree), which is a space-
partitioning data structure. The space containing our
topography is recursively divided in half (each split pro-
ducing a new node in a binary search tree). Each split
is then defined by an axis-aligned bounding box. This
process continues until a hand-tuned number of trian-
gles remain in each bounding box. These final bounding
boxes are known as the leaves of the search tree.

This method of organizing the topography means that
we no longer need to test the ray for intersection with
every triangle in the scene. The ray is first tested against
the first two bounding boxes (which each represent half
of our scene). If the ray does not intersect either of
them, no further checks are needed. If the ray does in-
tersect one of them (or both of them), further checks
are done on the sub-bounding boxes for each. This pro-
cess is repeatedly recursively until either no intersec-
tion is found, or until a leaf is reached, at which point
the ray is tested against only a small number of trian-
gles. Because the intersection check between a ray and
an axis-aligned bounding box is extremely computation-
ally efficient, and because the number of bounding boxes
that need to be checked is much smaller than the total
number of triangles in the shape model, this technique
allows for dramatic improvement in the computational
efficiency of the ray trace. While constructing the tree
is somewhat expensive, it only needs to be done once for
every model and is then stored for future use.

Processing of OSIRIS-REx Images. The
OSIRIS-REx asteroid sample return mission began
proximity operations around near-Earth asteroid
Bennu in late 2018. In January and February of 2019,
OSIRIS-REx was in the Orbital A mission phase, where
it operated in a frozen terminator orbit around Bennu
at altitudes roughly between 1.35 km and 1.85 km.
It was during this period that the navigation team
transitioned from centroid-based relative navigation to
landmark-based navigation using SPC.

On June 12, 2019, OSIRIS-REx performed a maneu-
ver that decreased its altitude to 680 m above Bennu’s
surface and entered the Orbital B mission phase. The
decreased altitude allowed the OSIRIS-REx Laser Al-
timeter (OLA)12 to produce a full terrain map, and
PolyCam13 to generate a high-resolution global image
mosaic. The Orbital B mission phase lasted until Au-
gust 2019, at which point the spacecraft ascended to a
slightly higher altitude for further science observations.

The navigation images taken by NavCam 19 from
both of these mission phases were processed using the
GIANT SFN implementation, as well as SPC. These
results were then used along with radiometric measure-
ments from the DSN in the GEODYN II precision orbit
determination and geodetic parameter estimation pro-
gram, to perform orbit determination. The solutions
obtained via this process were then compared with the
trajectory solutions obtained by KinetX, the prime nav-
igation team.
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Table 1. A condensed comparison between SPC and the present methodology.

SPC Present Methodology
Pr

ed
ic

tio
n

A predicted image is created by using the
McEwen BRDF to calculate illumination values
for every point on the maplet surface.

A template image is rendered into the camera
frame via ray tracing. The McEwen BRDF is
then used to calculate illumination values for each
pixel in the template. If the ray does not intersect
the maplet, then that pixel is removed from the
intersection mask.

Ex
tr

ac
tio

n An extracted image is created by projecting the
illumination values from the collected image on
the maplet surface. A simple method is then used
to identify shadows and obstructed regions.

All of the pixels in the collected image that are
of space included in the space mask. The image
is then cropped to only contain the region where
the landmark is expected to be for each potential
alignment, creating the cropped image.

R
eg

ist
ra

tio
n Cross-correlation between the predicted image

and the extracted image takes place on the
maplet surface. Regions where shadows are ex-
pected to be, or pixels in the image detected to be
in shadow (due to being below a certain thresh-
old), are ignored in the correlation.

Cross-correlation between the template and
cropped image takes place in the image frame.
The intersection mask and space mask are com-
bined so that only relevant portions of both the
template and image are correlated. Importantly,
shadows are included in the computation of the
correlation surface.

R
eg

ist
ra

tio
n

Lo
ca

tio
n Because the cross-correlation takes place on the

maplet surface, the amount that the predicted
image can be shifted by is limited by the size of
the template.

Because the cross-correlation takes place in the
image frame, the only limit on shifting the tem-
plate is the size of the image itself. This can be
beneficial if a priori knowledge in the spacecraft
pose is poor.

In each of the following sections (for both Orbital A
and B) we show a comparison of the trajectories (both
the position and velocity over time) in the Bennu cen-
tered RIC frame. We then show the post-fit residuals for
both the SFN and SPC solutions. These results demon-
strate that the current implementation of SFN in GI-
ANT performs similarly to SPC.

Orbital A. The trajectories from the SFN and SPC
processing match both each other and the KinetX solu-
tion quite closely over the period of time when observa-
tions were collected, as seen in Figs. 8 and 9. The oscil-
lations seen at the end of the arcs are due to the data
cutoff, at which point no further data are included in the
solution and the spacecraft state is based purely on dy-
namics integration. This was done to evaluate the pre-
diction performance of each technique. The SFN data
produces a very similar orbit to that estimated using
the SPC data, indicating that the method is working at
least as well as SPC.

OpNav Post-fit Residuals: Fig. 10 shows the
post-fit residuals of the GIANT SFN observation in the
GEODYN OD solution, and Fig. 11 shows the same
but for the SPC Residuals. The post-fit residuals are
similar as should be expected since the fit trajectories

are similar.
Orbital B. As with Orbital A, the trajectories from

the SFN and SPC processing match both each other and
the KinetX solution quite closely over the period of time
when observations were collected, as seen in Figs. 12 and
13. The oscillations seen at the end of the arcs are again
due to the “data cutoff”, at which point no further data
are included in the solution and the spacecraft state is
base purely on dynamics integration. This was done to
evaluate the prediction performance of each technique.
The SFN data produce a very similar orbit to that es-
timated using the SPC data, again indicating that the
method is working at least as well as SPC even in a
different Orbital regime.

OpNav Post-fit Residuals: Fig. 14 shows the post-
fit residuals of the GIANT SFN observation in the GEO-
DYN OD solution, and Fig. 15 shows the same but for
the SPC Residuals. The post-fit residuals are once again
similar as should be expected since the fit trajectories
are similar.

Conclusions and Future Work. The results from
the Orbital A and Orbital B processing using SFN
show extremely similar performance to SPC, the current
state-of-the-art approach. The final estimated trajecto-
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Figure 8. Trajectory position differences in the
Bennu radial, in-track, cross-track (RIC) frame
during Orbital A. The comparison is between an
orbit determination solution which uses SFN as
the source of surface feature observations and
the official orbit determination solution produced
by KinetX which uses SPC as the source of sur-
face feature observations.

Figure 9. Trajectory velocity differences in the
Bennu radial, in-track, cross-track (RIC) frame
during Orbital A. The comparison is between an
orbit determination solution which uses SFN as
the source of surface feature observations and
the official orbit determination solution produced
by KinetX which uses SPC as the source of sur-
face feature observations.

ries differed by less than a meter throughout the entire
observation period used. This is a promising indication
that continued development could yield valuable capa-
bilities for future small body exploration missions. De-
velopment and analysis will continue for this method,
using navigation images from the OSIRIS-REx mission.

As discussed earlier, this method is only used for
landmark identification using pre-constructed maplet
topographies. Due to this fact, we needed to use maplet
topography generated by SPC. SPC does not make full
use of shadow information in the generation of maplets
which leads to SPC underestimating heights/depths of
boulders/craters, causing the entire maplet to be flat-
tened. This means that using our new method to predict
shadows with these maplets can result in physically in-
accurate shadows, degrading the SFN solutions, leading
to more favorable conditions for SPC. Despite this the
performance between the two techniques is very similar,

Figure 10. Post fit surface feature navigation
residuals from GEODYN using GIANT SFN as
the source of surface feature observation in Or-
bital A.

Figure 11. Post fit surface feature naviga-
tion residuals from GEODYN using SPC as the
source of surface feature observation in Orbital
A.

and in the future, we hope to take the principals of the
SPC shape modeling techniques and combine them with
new techniques to obtain structure from shadow to bet-
ter estimate the terrain for predicting shadows, which
should allow for more effective application of the SFN
technique, and hopefully even better performance.
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Figure 15. Post fit surface feature naviga-
tion residuals from GEODYN using SPC as the
source of surface feature observation in Orbital
B.
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