

Space Exploration, Space Resource Utilization, & Terrestrial Applications

Presented at the Space Travel: Adaptive Research and Technologies Conference

Nov. 18, 2019

Gerald (Jerry) Sanders Lead for In Situ Resource Utilization (ISRU) System Capability Leadership Team (SCLT) NASA, Space Technology Mission Directorate

The STAR Tech conference is focused on:

- Bringing in non-traditional technologies from biological and chemical engineering including materials science, that apply to space travel technology and capability needs
- \triangleright Accelerating the development of commercial and non-commercial space exploration and increase the intersection between terrestrial and space applications

The four major tracks this conference will highlight are:

- **1. Brewing** This topic area will focus on how to develop fermentation for the production of useful molecules to support a sustainable presence on Earth and in space.
- **2. Nourishing** This topic area will focus on sustainable strategies of producing nutritious and palatable foods with the dual purpose of supporting food security on Earth and optimal crew health in space.
- **3. Building** This topic area will focus on developing new chemical, biological, and material science approaches to building components and techniques, for feasible survival in space and sustainable survival on Earth.
- **4. Reclaiming** This topic area will focus on chemical, biological, and material technologies that optimize resource utilization through reuse and reprocessing of existing "waste" streams.

Why We Explore Space Has Evolved Over Time

- **Why Explore: It's What Humans Do!**
- **National Pride, International Prestige**
- **Scientific Advancement, New Insights**
- **Encourage International Cooperation, Global Partnerships**
- **Security, Long-term Survival of the Human Species**
- **Stimulate Economic Development & Expansion**
- **Make Life Better on Earth > Make Life Better on Earth**

How We Explore Space Has Evolved Over Time

Satellite Servicing

Government-Led and Funded

Commercial-Led Cargo

Commercial Partners – Products & Services to Low Earth Orbit

Crew Habitats

Orbital Tourism & Research

Commercial Partners – Products & Services Beyond Earth Orbit

Suborbital Tourism & Research

Cargo Crew Crew Mining

Space Resource Utilization: Make it Don't Take it!

Construction of Landing Pads, Berms, Roads, and Habitats

Finding & Mining Lunar Water & Volatiles Excavation & Regolith Processing for Oxygen & Metal Production

In Space Manufacturing Trash Recycling, Trash

Synthetic Biology for Consumables & Manufacturing

Conversion & Processing

Why Use Space Resources?

-
- **Using Space Resources can reduce mission and architecture mass and costs**
	- − **Launch mass savings**
	- − **Reduce launch numbers**
	- − **Supports reuse of mission transportation assets**
	- − **Supports terrestrial industry/Enables space commercialization**
- **Using Space Resources can increase safety for crew and mission success**
	- − **Ensure and enhance crew safety**
	- − **Provide critical solutions for mission assurance**
	- − **Minimizes impact of shortfalls in other system performance**
	- **Enhance crew psychological health**
- **Using Space Resources can enhance or enable new mission capabilities**
	- − **Mission life extensions and enhancements**
	- − **Increased surface mobility and access**
	- − **Increased science**
- **Learning to use Space Resources can help us on Earth**

Space Resource Utilization Is Synergistic with Terrestrial Needs

Promote *Reduction, Reuse, Recycle, Repair, Reclamation …***for benefit of Earth, and living in Space.**

Artemis: Human Lunar Exploration

IS FOR MARS

2029

- **Pre-2024 CLPS, Robotic Science** and Resource Prospecting
	- − Robotic Science
	- − Resource Prospecting
- 2024 (-2025) Human Lunar Surface Return
	- − Unpressurized Mobility
	- − EVA
	- − Robotically Pre-deployed science tools and experiments
	- − Non-Crewed surface mission robotic operations
		- Science, maintenance and inspection, site survey
- 2026+ Lunar Mars Mission Analogs and Long-Term Human Lunar Surface Presence
	- − Pressurized Mobility
	- − Offloading and deployment
	- − Pilot scale ISRU
		- Demonstrate use of ISRU
	- − Surface Power System
	- − Habitat

Lunar Science by 2024

Polar Landers and Rovers

- First direct measurement of polar volatiles, improving understanding of lateral and vertical distribution, physical state, and chemical composition
- Provide geology of the South-Pole Aitken basin, largest impact in the solar system

Non-Polar Landers and Rovers

- Explore scientifically valuable terrains not investigated by Apollo, including landing at a lunar swirl and making first surface magnetic measurement
- Using PI-led instruments to generate Discovery-class science, like establishing a geophysical network and visiting a lunar volcanic region to understand volcanic evolution

Orbital Data

- Deploy multiple CubeSats with Artemis 1
- Potential to acquire new scientifically valuable datasets through CubeSats delivered by CLPS providers or comm/relay spacecraft
- Global mineral mapping, including resource identification, global elemental maps, and improved volatile mapping

In-Situ Resource Initial Research

- Answering questions on composition and ability
	- to use lunar ice for sustainment and fuel

Lunar Science & Resource Prospecting

Orbital Missions

Astrobotics

Intuitive Machines

Surface Missions

Lunar Surface Innovation Initiative (LSII)

- **LSII will develop the technologies required for establishing lunar infrastructure across these six primary capability areas.**
- **LSII will accelerate technology readiness for key components and systems and provide early technology demonstrations which will help to inform relative SMD activities and development of HEO crewed flight systems.**
- **HEOMD will focus on development of crewed flight systems for lunar exploration and operations, such as surface habitats, pressurized rovers for crew mobility, and advanced life support systems.**

ISRU Lunar Development and Demonstration Timeline

Reconnaissance, Prospecting, Sampling

Sub-system Demonstrations: Investigate, sample, and analyze the environment for mining and utilization.

Resource Acquisition & Processing

Follow The Natural Resources: Demonstrations of systems for extraction and processing of raw materials for future mission consumables production and storage.

Pilot Consumable Production

Sustainable Exploration: Scalable Pilot - Systems demonstrating production of consumables from in-situ resources in order to better support sustained human presence.

CLPS Drill Down Select **High-fidelity** Simulant Production

Lunar Simulant Ground Demos Polar Resources Ice

Mining Experiment (Prime-1) on CLPS

Volatiles Investigation Polar Exploration Rover (VIPER)

ISRU Subsystem Consumables Extraction Demos

Scalable Pilot - ISRU **Systems for Consumable** Production

203x

Reaching The Moon And Mars Faster With NASA Technology

Rapid, Safe, and Efficient Space Transportation

Expanded Access to Diverse Surface Destinations

Advanced Propulsion

Sustainable Living and Working Farther from Earth

Transformative Missions and Discoveries

Advanced Communication \mathcal{R}_0

Landing **Heavy Payloads**

Autonomous Operations

Sustainable Power

Dust Mitigation

Precision Landing

In Situ Resource Utilization

Cryogenic Fluid Management

Surface Excavation and Construction

READY AND ARRESTS AND ARRESTS

Extreme Access/Extreme Environments

EXPLORE LAND LIVE GO

Atmospheric ISRU

Advanced Navigation

Commercial Lunar Payload Services

Gateway

In-Space Assembly/Manufacturing

In-Space Refueling

Lets go. The Time is Now.

We have the capability

Carpenter Committee

We have the purpose

We have the charge

We have the responsibility

Backup

Barriers to Commercial Space ISRU Investment Today: There is Neither a Production Capability or Market

Resource Uncertainty

- − Resource Exploration
- − Reserve Estimation

Mining Technology Readiness

- − Demonstrated Scale
- − Demonstrated Operations

Customers

- − Known users/market
-

-
- Market growth potential

- − Reliable/Cheap Transportation
- Logistics and Maintenance
- − Infrastructure

Regulatory

- Legal Framework
- − Product/Property Rights
- Standards
- Taxes

Barriers What Can/Should Be Done?

- **Increase global resolution of resource information**
- Campaign of resource exploration missions (Gov. & Industry)
- Agreement/standards for reserve estimation (ex JORC/NI43-101)
- Government/industry partnerships & space mining institute
- Spin-in/Spin-off Technologies into Terrestrial Applications
	- − Incentives for insertion; greener/safer innovations
- Demonstrate technologies, production rate, and product quality
- **F** Terrestrial market use of technology/capability
- Demonstrate product usage
- Develop space transportation & infrastructure growth around ISRU
- Gov. as anchor tenant once demand has been established
- **Enable bootstrapping through stepwise incentives**
- Utilize additive manufacturing for high wear parts
- Governments help establish initial transportation, power, communication, and surface infrastructure
- **Establish common interfacing standards**
- **Establish international agreements**
- **Establish stable legal and regulatory framework**
- **Establish tax incentives/flow-through shares**
- **Enable ownership enforcement**

Main *Natural* **Space Resources of Interest for Human Exploration**

Oxygen

Icy Regolith in Permanently Shadowed Regions (PSR)

Solar wind hydrogen with Oxygen

Minerals in Lunar Regolith: Ilmenite, Pyroxene, Olivine, Anorthite

Carbon

Metals

(Gases) CO, CO₂, and HC's in PSR Solar Wind from Sun (~50 ppm)

Minerals in Lunar Regolith

Silicon: Pyroxene, Olivine, Anorthite

Magnesium: Mg-rich Silicates Al: Anorthitic Plagioclase

Iron/Ti: Ilmenite

Carbon Dioxide in the atmosphere (~96%) Hydrocarbons and Tars

Hydrated Soils/Minerals: Gypsum, Jarosite,

Phylosilicates, Polyhdrated Sulfates

Minerals in Mars Soils/Rocks

- **IFFOUR: Ilmenite, Hematite, Magnetite,** Jarosite, Smectite
- Silicon: Silica, Phyllosilicates
- **Aluminum: Laterites, Aluminosilicates,** Plagioclase
- Magnesium: Mg-sulfates, Carbonates, & Smectites, Mg-rich Olivine

Subsurface Regolith on C-type Carbonaceous **Chondrites**

Carbon Dioxide in the atmosphere (~96%) Minerals in Regolith on S-type Ordinary and Enstatite Chondrites

> (PAHs) in Regolith on C-type Carbonaceous **Chondrites**

Minerals in Regolith/Rocks on Stype Stony Iron and Mtype Metal Asteroids

- Drinking, radiation shielding, plant growth, cleaning & washing
- Making Oxygen and Subsurface Icy Soils in Mid-latitudes to Poles **Exercise 20 and Subsurface Icy Soils in Mid-latitudes to Poles**

Breathing • Oxidizer for Propulsion

and Power

- **Fuel Production for**
- Propulsion and Power
- Plastic and Petrochemical Production
- *In situ* fabrication of parts
- **Electical power** generation and transmission

Note: Rare Earth Elements (REE) and Platinum Group Metals (PGM) are not driving Resources of interest for Human Exploration

Lunar Resources Regolith, Solar Wind Volatiles, Polar Water/Volatiles

Lunar Regolith

- **>40% Oxygen by mass**; numerous metals (Si, Fe, Al, Ti)
- Mare Basalt
	- − 15-20% Plagioclase, 15-24% Pyroxene, 3-4% Olivine, 2-10% Ilmenite, 45-53% Agglutinate glass
- **Highland/Polar area**
	- − >75% Anorthite, Pyroxene, 7% Olivine
- Pyroclastic Glass
- KREEP (Potassium, Rare Earth Elements, Phosphorous)
- **Solar Wind Implanted Volatiles**

Polar Water/Volatiles

- LCROSS Impact estimated **5.5 wt%** water in plume
	- − Solar wind & cometary volatiles (H₂, NH₃, C₂H₄, CO₂, CH_3OH , CH_4): 0.1 to 1.5 wt%
- **Green and blue dots** show positive results for surface water ice using M^3 and LOLA data for the North pole, and M^3 , LOLA, and LAMP data for the South pole.
- Data points also have maximum annual temperatures of <110 K from Diviner data.
- Spectral modeling shows that some ice-bearing pixels may contain ∼**30 wt % ice** (mixed with dry regolith)
- Ice detections in the south are clustered near the craters Haworth, Shoemaker, Sverdrup, and Shackleton, while those in the north are more isolated.