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Research Objectives
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• Support wind-induced oscillation (WIO) 
testing of launch vehicles

• Supported objectives: 
• Quantify the impact of atmospheric 

boundary layer (ABL) upon WIO for 
launch vehicles

• Quantify significance of aeroelastic
scaling and Reynolds number 

• Compare wind-tunnel results to full-
scale events

• Determine best test practices for WIO 
testing

Image courtesy of NASA TM X 50548 1



Research Objectives
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• Current research objective is to establish ABL testing capability

• Why does an ABL matter?
• Believed to explain some discrepancies observed in simulation
• Identified as an important contributor to dynamic response
• Impact of turbulence to resonant WIO response is unknown, especially at 

flight-representative Reynolds number

• Define ABL characteristics:
• Velocity Profile
• Turbulence intensity
• Turbulence frequency content
• Uniformity of ABL throughout test volume



Test Facility, NASA Transonic Dynamics Tunnel
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• Unique aeroelastic test facility
• Large, variable pressure, R-134a or air test medium
• Unparalleled ability to manipulate fluid-structure scaling parameters
• Dynamically-scaled models at high Reynolds number

• Floor turntable for ground-wind 
loads (GWL) testing

• Used extensively during previous 
NASA GWL programs

• Previous attempts at ABL simulation 
(circa 1960s) unsuccessful

• ABL facilities since developed for 
civil engineering structures



ABL Target Profiles
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• Simulations desired for 3 launch sites to replicate full-scale events of interest
• Space launch complex 40 (SLC-40) at Kennedy Space Center (KSC)
• SLC-39 at KSC
• Launch site in Texas (SLC-TX)

• Each site at different elevation above the ground plane
• Sparse wind data exists at each site
• Define target velocity profiles:

• ‘Representative’ α = 0.14 established from launch site data, but varies

𝑉𝑉 = 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟
𝑍𝑍
𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟

𝛼𝛼



ABL Target Profiles
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• Two design methodologies considered:
1. Scale pad height and nearby structures above surrounding ground plane 

immersed in ABL 
• one ABL development in tunnel
• multiple launch site capability
• small models have poor scalability/instrumentation

2. Alter boundary layer in the vicinity of vehicle model and neglect height 
above ground plane 
• larger models,
• flight Re
• need multiple ABLs in tunnel



ABL Target Profiles
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• Method 2 target profiles



Design of ABL hardware
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• Leverage knowledge of ABL for civil engineering structures
• Irwin spires and floor roughness elements
• Spire design:

Values
Symbol Description Spire A Spire B Spire C

HF Full isosceles triangle height 29.83 ft 30.13 ft 29.12 ft

H Truncated height 16.0 ft 16.0 ft 16.0 ft
b Base width of front plate 1.34 ft 0.85 ft 2.41 ft
S Lateral spacing of spires 5.0 ft 5.0 ft 5.0 ft
θF Base angle of front plate 88.71° 89.20° 87.63°

Symbol Description Value
L Transverse splitter plate length 7.0 ft
θS Trailing base angle of splitter plate 76.0°
H Splitter plate height 16.0 ft

Design values for parameterized spires

Design values for common splitter plate



Design of ABL hardware
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• Roughness elements:
• Edge-length to spacing ratio, affects profile
• Size, affects turbulence

Symbol Description Case Values
E Roughness element edge length (= height) 3.0 in. (= “Roughness A”)

6.0 in. (= “Roughness B”)
W Lateral spacing between centers of neighboring

elements
12 in. (Roughness A)
24 in. (Roughness B)

Roughness element sizing parameters



Design of ABL hardware
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• Installation in tunnel
• Removable, hand-carried
• Lightweight, flexible
• Required support bars



Instrumentation
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• Instrumentation rake, mounted on sting
• Vertical translation and rotation
• Complementary instruments can be 

rotated to same position

Instrumented 
rake

Roughness A (small 
blocks, tight spacing)

• Steady pressure
• Unsteady pressure
• Unsteady 5-hole probes



Test Results
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• Quantified by:
• Velocity profile
• Lateral uniformity
• Turbulence intensity and spectra
• Degree of anisotropy



Test Results - Profile
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• Velocity profiles, measured on tunnel centerline
Calculated from total pressure measurements and test-section static pressure 

SLC-TX SLC-40 SLC-39
CeilingCeiling



Test Results - Lateral Uniformity
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• Lateral uniformity
Acquired with various instruments at various sting roll angles

Axonometric view Side view

Flow



Test Results - Turbulence Intensity, Spectra 
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• Turbulence intensity and spectral content
What should it be?

• Cannot determine from existing pad data
• Reference civil engineering measurements19

• Terrestrial environment criteria, guideline for aerospace vehicles, gives model for 
spectral content of velocity16, 17

• Spectral content of turbulence is published
• Turbulence intensity (standard deviation normalized by mean) can be derived
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• Spectral content shows close match, except low frequency quasisteady values
• Intensity can vary significantly based upon time-scale selections
• Determined 8 to 20% intensity as representative target
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Test Results - Turbulence Intensity, Spectra 
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• Turbulence intensity
Standard deviation of velocity, normalized by mean reference velocity

SLC-TX SLC-40 SLC-39

Test Results - Turbulence Intensity, Spectra 



Test Results - Degree of Anisotropy
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• Adequate simulation should show similar intensity in varying axes
• Can determine velocity turbulence intensity in x, y, z, from unsteady 5-hole probes
• Data acquired at the centerline

x-direction (u’) y-direction (v’) z-direction (w’)



Concluding Remarks
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• ABL test capability was developed in the NASA Langley TDT
• Successful replication of: 

• Velocity profile
• Lateral uniformity of profile
• Turbulence intensity
• Spectral content of turbulence
• Establishment of isotropic turbulence 

• Enables dynamic aeroelastically-scaled launch vehicle models to be tested at 
flight Reynolds numbers in representative ABL profiles



Questions?
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thomas.g.ivanco@nasa.gov
757-864-5092

mailto:Thomas.g.ivanco@nasa.gov
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