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The Thermal Protection System (TPS) is a significant portion of the mass of reentry vehi-
cles, planetary probes, and Martian entry vehicles. Reducing this mass has benefits in terms
of decreased fuel requirements and increased payload; however, due to the high risk and un-
certainty, the TPS or heat shields are designed conservatively by assuming fully turbulent flow.
Laminar flow results in reduced heat flux, and improved transition prediction has the potential
to reduce TPS mass and uncertainty in aerothermodynamic predictions. Limited previous
research exists examining the problem of transition prediction for Martian atmospheric entry,
with studies available on transition on the Mars Science Laboratory TPS. Although transition
was demonstrated in wind-tunnel tests, uncertainty in the transition location resulted in a TPS
designed for fully turbulent flow, and therefore greater mass than required for a partially-
laminar condition. In this work, we extend the boundary layer stability code LASTRAC,
recently modified to include chemical and thermal nonequilibrium capabilities, to a model of
the Martian atmosphere. LASTRAC provides Parabolized Stability Equations (PSE) as well
as Linear Stability Theory (LST) to predict the stability of a boundary layer and transition
with semi-empirical eN methods. Results included in this work compare disturbance growth
characteristics between air and Martian atmosphere at similar nondimensional freestream
conditions on a simple flat plate geometry. Both chemical nonequilibrium and thermochemical
nonequilibrium, as well as both PSE and LST, are used.

I. Nomenclature

ρ = density [kg m−3]
p = pressure [Pa]
T = temperature [K]
e = energy per unit mass [J kg−1]
h = enthalpy per unit mass [J kg−1]
Cs = mass fraction for species s
k = thermal conductivity [J m−1s−1K−1]
µ = viscosity [N s m−2]
ν = dynamic viscosity [kg s−1 m−1]
λ = 2nd viscous coefficient [N s m−2]
t = time [s]
f = frequency [Hz]
` = boundary layer length scale [m]
x, y, z = body-fitted coordinates
h1, h3 = curvature terms
~V = velocity vector [m/s]
Ms = molar mass for species s [g]
ms = particle mass for species s [g]
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γs = molar concentration for species s
αs,r , βs,r = stoichiometric coefficients
Rf ,r , Rb,r = forward and backward reaction rates
τs = vibrational-translational relaxation time [s]
ω̇s = species production rate [kg m−3 s−1]
Dsr = diffusion coefficient of species s with respect to species r [m2s−1]
Ds = diffusion coefficient of species s with respect to the mixture [m2s−1]
Cp , Cv = constant pressure and constant volume specific heats [J mol−1K−1]
Cp,s,Cv,s = constant pressure and constant volume specific heats for species s [J mol−1K−1]
Cs
v,V = constant volume specific heat for vibrational energy for species s [J mol−1K−1]

γ = ratio of specific heats
S = entropy [J mol−1K−1]
πΩ̄(1,1)

i j ,πΩ̄(2,2)
i j = collision integrals between species i and j [m2]

∆
(1)
i j ,∆

(2)
i j = modified collision integrals between species i and j [m s]

kB = Boltzmann’s constant [J K−1]
Av = Avogadro’s number [mol−1]
Ru = universal gas constant [J mol−1K−1]
Re = Reynolds number
Reu = unit Reynolds number [m−1]
Le = Lewis number
Pr = Prandtl number
Ec = Eckert number
M = Mach number
F = nondimensionalized frequency
φ = disturbance vector
αi = imaginary component of complex wave number α
()s = species quantity
()e = edge of boundary layer
()d = dimensional quantity
(̄) = mean value
()′ = disturbance value
()el = electronic value
()V = vibrational-electronic value
()tr = translational-rotational value
FR = Finite-rate chemistry, chemical nonequilibrium and thermal equilibrium
TNE = Thermochemical Nonequilibrium

II. Introduction

Hypersonic boundary layer transition is critically important to hypersonic vehicle design due to its influence on
heat transfer rates. Prediction of heat transfer informs the design of the Thermal Protection System (TPS), which

is a significant portion of the mass of reentry vehicles, planetary probes, and Martian entry vehicles. Reducing this
mass has benefits in terms of decreased fuel requirements and increased payload; however, due to the high risk and
uncertainty, the TPS or heat shield is often designed conservatively assuming fully turbulent flow. Laminar flow results
in reduced heat flux, and so more accurate and reliable prediction of transition should result in more efficient vehicle
design. Limited previous research exists examining the problem of transition prediction for Martian atmospheric entry,
with literature available on transition on the Mars Science Laboratory (MSL). Although transition was demonstrated in
wind-tunnel tests [1], flight data [2], and numerical studies [3, 4], uncertainty in the transition location was held to be
high enough that the TPS should be designed for fully turbulent flow, and therefore, greater mass than would have been
required for a partially-laminar TPS design.

Although Mach number and Reynolds number based on momentum thickness are commonly used for developing
correlations to predict transition points, and have been used in previous studies for Martian entry applications, these
correlations require a significant amount of data in order to be developed, and there is a large degree of uncertainty in
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applying such a correlation to situations outside of the specific wind tunnel or geometry used to gather the data. By
contrast the Linear Stability Theory (LST), linear Parabolized Stability Equations (PSE), and Nonlinear PSE (NPSE)
methods provide a physics-based analysis of the boundary layer stability. These eN methods are semi-empirical due
to requiring knowledge of the critical N-factor for transition onset, and in the case of NPSE the initial disturbance
amplitude is required. Saric et al. [5] reviewed the instability mechanisms that lead to laminar-turbulent transition,
which can be categorized as streamwise (Mack 1st and 2nd modes), crossflow, centrifugal (Görtler), and attachment-line.
In this work, the focus is on the 2nd mode, which is dominant at high Mach numbers in the absence of crossflow.
Predicting the exact point of transition is a difficult task that requires not only detailed analysis of boundary layers
stability, but also detailed knowledge of the disturbances that will be encountered. Under most situations, the exact point
of transition cannot be predicted due to a lack of knowledge about the freestream disturbances. The accepted practice is
to reduce the N-factor of a vehicle design in order to delay transition and improve the performance through a reduction
of the percentage of the surface impacted by turbulent flow, despite not knowing the exact point of transition.

Chemical and thermal nonequilibrium are relevant to reentry applications because under hypersonic conditions the
temperature within the boundary layer and behind strong shocks can rise above the point where molecular dissociation
and chemical reactions will occur. At high enough temperatures, ionization reactions are possible, and in the case of
ablative Thermal Protection Systems (TPS), the ablating material may react with the surrounding atmosphere, with
the reaction mechanism depending on the chemical composition of the material. In order to accurately model the
aerodynamics and boundary layer stability of this system, the chemistry effects must be taken into account. The
presence of transitional flow, and the difficulty of accurately predicting the point of transition, is a major source of
uncertainty, particularly for predicting heating [6] for hypersonic vehicles. A number of analytical studies focusing
on hypersonic boundary layer transition neglecting chemistry effects are available in the literature [3, 7–10], as well
as experimental studies that use sufficiently low temperatures to avoid significant chemical reactions [11]. Relatively
fewer studies exist that include chemistry effects are available [12–15]. Chemical equilibrium, chemical nonequilibrium
or finite-rate chemistry, and thermochemical nonequilibrium have been compared in the past [16–19]. There are a
number of recently-developed options for more advanced chemical models than will be addressed here, for example
Jaffe et al. [20], Armenise et al. [21] and Chaudhry et al.[22]. The code used in this work has been developed with the
intention of being compatible with any user-provided chemical model, and while further investigation on the effects of
the chemical model are outside the scope of this work, it is has been shown that nonequilibrium chemistry is sensitive to
the models used, and that boundary layer stability specifically is sensitive to vibrational energy relaxation as shown by
Bertolotti[23] and touched on briefly in Figure 5 of Kline et al.[19].

Schneider[24] reviewed the available literature on laminar-turbulent transition for blunt body and capsule geometries,
including Martian probe atmospheric entry, and MSL. In [24], Schneider discusses how transition over reentry shields is
critical both for increasing the available payload through decreasing TPS thickness and for predicting and avoiding
high, localized heating from aft-body boundary layer reattachment. Edquist et al.[25] conducted detailed computational
studies of the MSL, focusing on thermal and chemical nonequilibrium with an eight-species gas mixture, using Park [26]
reaction rates and using a critical value of momentum-thickness Reynolds number. The peak turbulent heating rate was
predicted to be 70% higher than the heating rate for laminar flow, with a fully turbulent shield experiencing 38% higher
integrated heat load as compared to the fully laminar case. Kimmel [27] provides a thorough review of hypersonic
transition control techniques, and states that one of the difficulties of hypersonic transition control is that the techniques
applied at lower speeds cannot be extrapolated to the high heating environment and the physical phenomena occurring
within these boundary layers. At the same time, the potential benefits of a greater understanding of hypersonic boundary
layer transition are significant. Analysis of the National AeroSpace Plane (NASP) aerodynamics [28] estimated that the
possible payload of an air-breathing single-stage-to-orbit vehicle would double if it was fully laminar as compared to
fully turbulent. Techniques to control transition include wall cooling, which is effective in stabilizing the first Mack
mode but destabilizing to the 2nd mode [27, 29]. Hollis et al. [1] compared laminar, transitional, and turbulent heating
data on the MSL entry vehicle in an air wind tunnel and a high-enthalpy shock tunnel with CO2 gas, and compared
results to Navier-Stokes solutions. Using laminar CFD solutions, they produced transition location correlations based
on boundary layer momentum thickness, edge Mach number, and Reynolds number based on momentum thickness.
Selected cases from these wind tunnel tests have been analyzed with the Langley Stability and Transition Analysis Code
(LASTRAC) [30] by Chang et al.[3] with air only and PSE-Chem by Johnson et al.[4] using LST with a CO2 − N2
mixture and PSE analysis for air. Although not applied to Martian entry applications, experimental and computational
work has been done investigating a stabilizing effect of CO2 injection into high enthalpy boundary layers for delay of
transition[31–33], due to the characteristic of CO2 to absorb energy at frequencies close to the 2nd Mack mode.

In this work, we extend boundary layer instability with chemical and thermochemical nonequilibrium to a model of
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the Martian atmosphere using LASTRAC [30] which is a boundary-layer stability analysis code that provides PSE as
well as LST to predict the stability of a boundary layer and transition with semi-empirical eN methods. The capability to
address finite-rate chemistry as well as thermochemical nonequilibrium has recently been implemented for LASTRAC
by Kline et al. [19]. The current work focuses on application of these methods to Martian atmospheric conditions on
simple geometry, and results are compared to boundary layer stability in air.

III. Methodology
The Langley Stability and Transition Analysis Code (LASTRAC) has recently been modified to allow finite-rate (FR)

chemistry in thermal equilibrium, chemical equilibrium, and thermochemical nonequilibrium (TNE) air gas chemistry.
These capabilities are required for hypersonic boundary layer transition prediction since at the high temperatures
experienced by hypersonic vehicles air can no longer be assumed a perfect gas, and the chemical and thermochemical
nonequilibrium effects should be taken into account. In this work, we further extend this capability toMartian atmosphere
gas chemistry. Section A will describe the Parabolized Stability Equations (PSE), followed by a description of the
chemical model in Section B and mean flow solutions in Section C. In this work, “Martian” refers to an 8-species gas
mixture of CO2, N2, O2, NO, CO, C, O, and N with freestream conditions of 97% CO2 and 3% N2 by mass. “Earth”
or “air” refers to a 5-species gas mixture of O2, N2, NO, N , and O, with freestream conditions of 21% O2 and 79% N2
by mass.

A. Boundary Layer Stability Analysis
LASTRAC includes capabilities to analyze boundary layer stability with LST and PSE. These methods assume a

disturbance vector solution that is a discrete sum of a Fourier series. The LST method assumes that the boundary layer
is nearly parallel, with negligible growth of the thickness of the boundary layer, and uses a mode shape for the Fourier
series that has a shape function and wave number that are locally constant in the streamwise direction. For the PSE, the
assumed mode shape uses a shape function and wave number that vary slowly in the streamwise direction. While an
eigenvalue problem is formed in the LST approach, the PSE method numerically solves an approximate form of the
governing partial differential equations for the slow-varying shape function with an actively updated wave number along
the streamwise direction. The nonlinear PSE uses a mode shape similar to the PSE, but retains nonlinear terms from the
Navier-Stokes equations, and requires a known finite disturbance while both LST and linear PSE are independent of
the input disturbance amplitude but only valid for sufficiently small disturbances. LASTRAC was recently modified
to include further capabilities for high-enthalpy hypersonic applications by Kline et al.[19]. Further details on the
capabilities previously available in LASTRAC are available in the LASTRAC manual [30]. The methodology will be
summarized here, with particular attention to various aspects that were modified to accommodate gas chemistry effects.

Stability equations are derived starting from the nondimensionalized Navier-Stokes equations,

∂ρ

∂t
+ ∇ ·

(
ρ~V

)
= 0

ρ



∂~V
∂t
+

(
~V · ∇

)
~V

= −∇p +

1
Re

(
∇[λ(∇ · ~V )] + ∇ · [µ(∇~V + ∇~VT )]

)
ρCp

[
∂T
∂t
+ (~V · ∇)T

]
=

1
RePr

∇ · (k∇T ) + Ec
(
∂p
∂t
+ (~V · ∇)p

)
+ Ec

Φ

Re
.

(1)

For a calorically perfect gas,

Φ = λ(∇ · ~V )2 +
µ

2
[
∇~V + ∇~VT

]2

µ = f (T ), λ =
2
3

(s − 1)µ

p = ρRT,

Cp = const, R = const,

(2)

where s is the Stokes parameter, µ is the viscosity, λ is the 2nd coefficient of viscosity, R is the gas constant, Cp is the
specific heat at constant pressure, p is the pressure, ρ is the density, ~V = {u, v,w} is the velocity, and T is the temperature.

4



Nondimensional numbers that appear in the equations are: the Reynolds number, Lewis number, Prandtl number, Eckert
number, and Mach number:

Re = ue`
νe
, Le = ρeDeCp,e

ke
, Pr = µeCp,e

ke
,

Ec = u2
e

Cp,eTe
= (γe − 1)M2

e , Me =
|~Ve |√
γeReTe

,
(3)

where all normalizing values are taken at the edge of the boundary layer. Equation 1 has been nondimensionalized with:

T = Td/Te ρ = ρd/ρe ~V = ~Vd/ue
p = pd/(ρeu2e ) ` =

√
νe xd/ue µ = µd/µe

x = xd/` k = kd/ke Cp = Cp,d/Cp,e ,

(4)

where the subscript e indicates the dimensional value at the edge of the boundary layer along the normal to the
surface, and the subscript d indicates the local dimensional quantity. The quantity ` is the dimensional boundary layer
length scale, and xd is the dimensional coordinate in the streamwise direction. Quantities that have no subscript are
nondimensional unless otherwise stated. We take the solution to be composed of the mean flow and a fluctuation,

u = ū + u′ v = v̄ + v′ w = w̄ + w′

p = p̄ + p′ ρ = ρ̄ + ρ′ T = T̄ + T ′

µ = µ̄ + µ′ λ = λ̄ + λ ′ k = k̄ + k ′,
(5)

which is substituted into Equation 1. A body-fitted coordinate system will be used where x, y, and z are defined
as streamwise, wall-normal, and spanwise, respectively. Element lengths are h1dx, dy, and h3dz, accounting for
streamwise and transverse curvature in the x and z directions. Subtracting Equation 1 for the mean flow and stating the
result in terms of Jacobians and the disturbance vector φ = {p′, u′, v′,w′,T ′}T ,

Γ
∂φ

∂t
+

A
h1

∂φ

∂x
+ B

∂φ

∂y
+ C

∂φ

∂z
+ Dφ =

1
Re0

*
,

Vxx

h21

∂2φ

∂x2
+

Vxy

h1

∂2φ

∂x∂y
+ Vyy

∂2φ

∂y2

+
Vxz

h3

∂2φ

∂x∂z
+

Vyz

h3

∂2φ

∂y∂x
+

Vzz

h23

∂2φ

∂z2
+
-
,

(6)

where Γ, A, B, C, D, Vxx , Vxy , Vxz , Vyz , and Vzz are the Jacobians for this system, representing the dependence of
the mass, momentum, and energy on the disturbances φ. Re is the Reynolds number, and Re0 =

ue`0
νe

, where `0 is the
reference length scale, ue is the boundary layer edge velocity, and νe is the kinematic viscosity at the boundary layer
edge.

Since the Jacobians at this point depend on perturbed quantities, there are 2nd-order perturbations included in
Equation 6. The linearized form is found by separating each Jacobian into two parts that respectively contain only mean
flow quantities or only perturbation quantities, e.g., A = Ā + A′. Because φ is a vector of perturbed quantities, the
linearized form of these equations retains only the mean flow portion of the Jacobians,

Γ̄
∂φ

∂t
+

Ā
h1

∂φ

∂x
+ B̄

∂φ

∂y
+ C̄

∂φ

∂z
+ D̄φ =

1
Re0

*
,

V̄xx

h21

∂2φ

∂x2
+

V̄xy

h1

∂2φ

∂x∂y
+ V̄yy

∂2φ

∂y2

+
V̄xz

h3

∂2φ

∂x∂z
+

V̄yz

h3

∂2φ

∂y∂x
+

V̄zz

h23

∂2φ

∂z2
+
-
.

(7)

The disturbance field φ is assumed to be periodic in space and time, and so the disturbance vector can be expressed
as a Fourier series,

φ(x, y, z, t) =
M∑

m=−M

N∑
n=−N

χmn (x, y)ei (nβz−mωt ) , (8)

where M and N represent the numerical resolution in time and space, respectively. The fundamental temporal wave
number is a nondimensionalized form of the physical frequency f , ω = 2π`

ue
f .

Substituting a single disturbance mode defined by the wave number ω = 2π`
ue

f and spanwise wave number β = 2π
λz

in Equation 7 results in the Linearized Navier-Stokes (LNS) equation,
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(
Ā
h1
−

i βV̄xz

h3Re0

)
∂ χ

∂x
+

(
B̄ +

i βV̄yz

h3Re0

)
∂ χ

∂y
+ *
,
D̄ − iωΓ̄ +

i βC̄
h3
+
β2V̄zz

h23Re0
+
-
χ =

1
Re0

*
,

V̄xx

h21

∂2 χ

∂x2
+

V̄xy

h1

∂2 χ

∂x∂y
+ V̄yy

∂2 χ

∂y2
+
-
.

(9)

This equation can be solved as an eigenvalue problem, and simplifications lead to approximate solutions that
are obtained at a lower computational cost for engineering applications. One such simplification is the quasiparallel
assumption that neglects velocity normal to the wall and all mean flow variation in the x direction. The quasiparallel
assumption leads to the Linear Stability Theory (LST) solutions. The linear Parabolized Stability Equations (PSE)
decompose the mode shape into two parts: a complex wave number α that varies only in x and a shape function that
varies in x and y,

χ = ˆχ(x, y)ei
∫ x

x0
α(ξ)dξ

. (10)

Equation Set 1 applies to a calorically perfect gas. The results included in this work use either a mixture of thermally
perfect gases using a finite-rate chemical kinetic model, and thermochemical nonequilibrium. In order to address these
models, the equations are rederived to include updated relationships for transport and thermodynamic properties. The
resulting equations remain in the same form shown in Equation 9, with the contents and dimensions of φ, χ, and the
Jacobian matrices updated.

For finite-rate chemistry, additional equations are necessary to calculate the species mass fractions and their
disturbances. The continuity and momentum equations remain unchanged, using mixture values for ρ, p, and µ.
Equations governing species production and destruction are added, and the energy equation must be updated to include
energy changes from the chemical reactions. Drawing from MacCormack and Candler [34], Chang et al. [18] and
Anderson [35], and nondimensionalizing,

ρ

(
∂Cs

∂t
+ ∇ ·

(
Cs

~V
))
=

Le
RePr

∇ · (ρDs∇Cs ) + ω̇s, s = 1 . . . Ns

ρCp

[
∂T
∂t
+ (~V · ∇)T

]
=

1
RePr

∇ · (k∇T ) + Ec
(
∂p
∂t
+ (~V · ∇)p

)
+ Ec

Φ

Re

+
Le

RePr

Ns∑
s=1

(
∇(hs ) · (ρDs∇Cs )

)
+

Ns∑
s=1

hsω̇s,

(11)

where:

Cp =

Ns∑
s=1

CsCp,s

ρ =

Ns∑
s=1

ρs =
p

Ru
∑ Cs

Ms
T

Cs = ρs/ρ ,
∑

Cs = 1

ω̇s,d = Ms

Nr∑
r=1

(
βs,r − αs,r

) (
Rf ,r − Rb,r

)
ω̇s = ω̇s,d

`

ρeue
.

(12)

Ms is the species molecular mass, Ru the universal gas constant, ρs is the species density, Ns is the number of species
in the gas mixture, ω̇s represents the nondimensionalized species production rate due to chemical reactions, Ds is
the diffusivity of species s with respect to the gas mixture normalized by the value at the boundary-layer edge De ,
and hs is the enthalpy per unit mass of species s nondimensionalized by edge temperature and heat capacity. The
terms βs,r and αs,r are the stoichiometric coefficients for the Nr reactions being considered, and Rf ,r and Rb,r are the
associated reaction rates. Equation Set 11 is nondimensionalized in a manner similar to Equation Set 1. The mean
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flow disturbance vector now includes species mass fractions, Cs = C̄s + C ′s , in addition to the disturbances listed in
Equation 5. The governing equation for the disturbances including species mass fractions can be expressed in the same
form as Equation 6, with the difference that the Jacobians are now of a larger dimension and contain terms from the
species mass fraction equations and new terms in the energy equation that depend on the mass fractions.

In the previous equations, thermal equilibrium was assumed. This means that the vibrational, electron, translational,
and rotational energies had equilibrated and a single temperature is sufficient. In other words, we assume that the
relaxation time between these energy modes is sufficiently shorter than the time scale of the flow phenomena. This is
not necessarily true for hypersonic problems. For thermal nonequilibrium, multiple temperatures are required. In this
work, we will use a two-temperature model for thermochemical equilibrium, where the vibrational-electronic energies
are associated with TV = Tvib = Tel , and the translational-rotational energy is associated with T = Ttrans = Trot . As
compared to thermal equilibrium with chemical nonequilibrium (the finite-rate chemistry model), an additional equation
and variable are added to the system, with the associated disturbance T ′V . In addition, the chemistry model will take into
account different rate controlling temperatures based on T and TV depending on what type of reaction is occurring. The
total energy equation is updated,

ρCp

[
∂T
∂t
+ (~V · ∇)T

]
+ ρCp,V

[
∂TV
∂t
+ (~V · ∇)TV

]
=

1
RePr

∇ · (k∇T + kv∇TV ) + Ec
(
∂p
∂t
+ (~V · ∇)p

)
+ Ec

Φ

Re
+

Le
RePr

Ns∑
s=1

(
∇(hs ) · (ρDs∇Cs )

)
+

Ns∑
s=1

hsω̇s ,

(13)

and a vibrational-electronic energy equation is added:

ρCp,V

[
∂TV
∂t
+ (~V · ∇)TV

]
=

1
RePr

∇ · (kv∇TV ) + Ec
(
∂pel
∂t
+ (~V · ∇)pel

)
+

Le
RePr

Ns∑
s=1

(
∇(hv,s ) · (ρDs∇Cs )

)

+
∑

s=mol

ρs
(e∗v,s − ev,s )
< τs >

+ 2ρel
3
2

R̄(T − TV )
Ns−1∑
s=1

νes
Ms
−

∑
s=ions

ṅe,s Îs +
Ns∑
s=1

ω̇s D̂s ,

(14)

where the TV is normalized by the boundary layer edge value of the translational temperature Te , Cp,V is the constant
pressure specific heat for electron-vibrational energymodes and

∫ TV

0 Cp,V dT = ev , the combined electron and vibrational
energy. Cp,V is normalized by the edge specific heat Cp,e , and the remaining terms are similarly nondimensionalized.
The vibrational thermal conductivity kv , vibrational-translational relaxation time < τs >, species vibrational enthalpy
hv,s , vibrational energy per unit mass of diatomic molecules D̂s have been added, and are provided by the chemistry
model. In this work, electron and ion species are not included, and so ionization and electron related terms such as the
electron pressure pel , collision frequency between electrons and neutral particles νes , rate of ion production ṅe,s and
ionization energy Îs will not be needed. Terms dependent on the chemistry model are discussed further in Section B,
and terms specific to thermochemical nonequilibrium in Equations 23–27.

The included results are presented in terms of a nondimensional frequency F, the complex part of the wavenumber
αi , and the N-factor based on disturbance kinetic energy,

F =
2π`
ue

f

αi = = (α(x))

E =
∫ ye

0
ρ(|u′ |2 + |v′ |2 + |w′ |2)dy

σ(x) = −αi (x) +
1
2E

dE
dx

N (x) =
∫ x

x0

σ(ξ)dξ = log
(

A
A0

)
.

(15)

The N-factor N refers to the logarithm of the amplitude change of a disturbance with initial amplitude A0, calculated
using the integrated growth rate, σ, based on disturbance kinetic energy E, which is evaluated to the edge of the
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boundary layer ye . The integral defining N is evaluated with the neutral point where the imaginary growth rate first
becomes negative as the lower bound. The critical N-factor (Ncr it ) is the value of the N-factor where transition would
be expected to occur based on experimental correlations. When αi is negative the associated eigenmode is unstable.

B. Chemical Rates and Thermodynamic Properties
A number of the quantities needed for boundary layer stability are dependent on the gas composition, including

species production rates ω̇s , transport properties viscosity and thermal conductivity, and thermodynamic quantities of
specific heats and enthalpy. The chemistry model used in this work is similar to that developed by Thompson et al.[36]
for the calculation of thermodynamic and transport properties, with modifications to the curve fits used and additional
data introduced to accommodate Martian atmospheric composition. The chemistry model used in this work uses the
Chemical Equilibrium with Applications (CEA) format for thermodynamic curve fit coefficients, with the equations for
specific heat, enthalpy, and entropy for each species from McBride et al.[37]:

Cp,s (T )/R = a1T−2 + a2T−1 + a3 + a4T + a5T2 + a6T3 + a7T4

hs (T )/RT = −a1T−2 + a2 lnT/T + a3 + a4T/2 + a5T2/3 + a6T3/4 + a7T4/5 + b1/T

Ss (T )/R = −a1T−2/2 − a2T−1 + a3 lnT + a4T + a5T2/2 + a6T3/3 + a7T4/4 + b2 ,

(16)

where the equations for enthalpy and entropy use the same coefficients as the equation for specific heat and are found by
integrating Cp,s and Cp,s/T with respect to T . The Gibbs free energy can then be determined from the enthalpy and
entropy for use in calculating the equilibrium state through minimization of the free energy. The constants for this curve
fit are available from [38].

In addition to the thermodynamic quantities, transport quantities of viscosity, thermal conductivity, and diffusion
coefficients are required. These quantities are calculated as functions of collision integrals between all pairs of chemical
species included in the model. The collision integrals or collision cross-sections πΩ̄(l,s)

i, j for momentum transfer are
defined as integrated functions of the differential cross section for the pair of species, the relative velocity and reduced
velocities of the colliding particles, and the scattering angle. This equation can be found in Yos[39], and rather than
evaluate the detailed expression for the collision cross-section at each temperature, curve fits based on cross-section
values evaluated at a range of temperatures are used commonly in literature [40, 41]. A curve fit for air is available from
Gupta et al.[40].

The curve fits for collision integrals between species of air are given in Thompson et al.[36] in the following form:

πΩ̄(1,1)
i j = exp(D(1,1)

i j )T [A(1,1)
i j lnT 2+B(1,1)

i j lnT+C (1,1)
i j ]

πΩ̄(2,2)
i j = exp(D(2,2)

i j )T [A(2,2)
i j lnT 2+B(2,2)

i j lnT+C (2,2)
i j ] .

(17)

Modified collision integrals are required for transport properties,

∆
(1)
i j (T ) =

8
3

[
2Mi Mj

πRuT (Mi + Mj )

]1/2
πΩ̄(1,1)

i j

∆
(2)
i j (T ) =

16
5

[
2Mi Mj

πRuT (Mi + Mj )

]1/2
πΩ̄(2,2)

i j ,

(18)

where Ru is the universal gas constant and Mi is the molecular mass of species i.
Coefficients for curve fits for a Martian atmosphere were calculated using tabulated values from Wright et al.[42],

using minimization of the mean square difference with the tabulated values. Viscosities calculated using this curve
fit compared well with polynomial curve fits for viscosity provided by Chemical Equilibrium with Applications [38].
According to collision integral data tabulated in by Wright[42], the uncertainty in the values of the collision integrals
ranges anywhere from ±5% to ±50%, and so although a curve fit can match the data closely, it should not be expected to
be any more accurate than the data used.

The temperature used in these equations varies depending on the participants in the collision if a multitemperature
model is used. For example, collisions involving electrons should use the electron temperature in a three-temperature
model, or the vibration-electron temperature in a two-temperature model. The viscosity (µ), translational thermal
conductivity (k), and molecular diffusion coefficients (Di) are expressed as approximate functions of the modified
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collision integrals,

µ =

Ns∑
i

miγi∑Ns

j γ j∆
(2)
i j (T )

k =
15
4

kB
Ns∑
i

γi∑Ns

j,e αi jγ j∆
(2)
i j (T ) + 3.54γe∆(2)

ie (Tel )

Di j =
kbT

p∆(1)
i j (T )

Di =
(
∑

k γk )Mi (1 − Miγi )∑
j,i (γ j/Di j )

,

(19)

where in a two-temperature model as used in this work Tel = Tv = TV , and the subscript el indicates the electron species.
For a one-temperature model Tel = Tv = Ttr = T . The coefficient αi j , not to be confused with the imaginary component
of the complex wave number, is defined as:

αi j = 1 +
(1 − (mi/m j ))(0.45 − 2.54(mi/m j ))

(1 + (mi/m j ))2
, (20)

and mi is the particle mass, or the molecular mass divided by Avogadro’s number and γi = ρi
ρMi

is the molar concentration.
Di is the molecular diffusion coefficient of species i with respect to the gas mixture, whereas Di j is the diffusion
coefficient of species i with respect to species j or vice versa. For a multitemperature model, rotational/vibrational
and/or electron thermal conductivity would also be required, and the electron temperature should be used for each
term in the summation involving an electron collision. In a two-temperature model as used in this work, the electron
temperature is equal to the vibrational temperature.

The species production rate ω̇s is a function of chemical reaction rates (Rf ,r (T ), Rb,r (T )) and the stoichiometric
coefficients (αi,r , βi,r ) for the relevant chemical reactions included in the model with species s, reaction r ,

Ns∑
s

Xsαs,r 

Ns∑
s

Xs βs,r

ω̇s = Mi

Nr∑
r=1

(
βs,r − αs,r

) (
Rf ,r − Rb,r

)
Rf ,r = 103


k f ,r (T )

Ns∏
s=1

(
10−3Cs ρ

Ms

)αs,r NJ∏
k=Ns+1

*
,
10−3

Ns∑
s=1

Zk,s
Cs ρ

Ms

+
-

αk,r 
,

(21)

where scaling factors are used to account for terms traditionally expressed in cm and g, and ρ is the mixture density. Ns

is the number of species and NJ is the total number of reactants including catalytic third bodies accounted for using the
third body efficiencies Zk,s . The rate constant k f ,r is expressed in the modified Arrhenius form, with coefficients based
on empirical results:

k f ,r (Tc ) = ATB
c exp(Td/Tc ) , (22)

where A, B, and Td are the modified Arrhenius coefficients. Td is the ratio of the activation energy and the gas constant,
Ea/R. Tc is the rate-controlling temperature, and is a function of the vibrational and translational temperatures. In
single-temperature models, Tc = T = TV . In multitemperature models, the rate-controlling temperature is determined
by the type of reaction, where Tc =

√
TTV as used by Park [26, 43] for dissociation reactions and Tc = T for heavy

molecule collision reactions. A similar form is used for the backwards reaction rate Rb,r either using backwards rate
Arrhenius coefficients with the Dunn & Kang model or with a rate constant determined using the equilibrium constant;
kb,r = k f ,r/Keq with Keq computed through minimization of Gibbs free energy.

In this work, the coefficients for Equation 22 are drawn from Park [26] for the Martian atmosphere model and from
the Dunn & Kang model[44] as reviewed by Gupta et al.[40] for the air gas model. Noncatalytic boundary conditions
are used at the surface in both mean flow and disturbance equations. Although ionization and radiation effects are
expected to be significant for reentry applications, these effects are neglected in the current work due to the increased
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complexity and computational cost. These effects may be included in the future. Effects of ablation and chemical
reactions with ablation products are also neglected. Results presented in this work include one- and two- temperature
models. Ionization, ablation, and three-temperature models are outside the scope of this work, where the next reasonable
step to increase complexity and accuracy would be the addition of ionization effects. Although more modern chemical
models are available, these well established chemical models allow comparison to results in the literature without
introducing differences due to reaction rates, and Armenise et al. [21] found that the multitemperature approach by Park
et al. [26] compares well with the higher-fidelity state-to-state method. The modifications to LASTRAC have been
implemented such that it will be straightforward to replace this model with an arbitrary user-defined chemical model in
the future.

A number of additional terms are required for thermochemical nonequilibrium flow. As the gas mixture used in this
work contains only neutral atomic and diatomic species, terms such as the the electron pressure pel , collision frequency
between electrons and neutral particles νes , rate of ion production ṅe,s and ionization energy Îs will not be discussed in
detail. These terms can be found in reference [41].

Continuing to follow Gnoffo [41], for a two-temperature model, the vibrational-electronic heat capacity for diatomic
molecules is calculated as:

Cs
v,V (TV ) = Cs

v (TV ) −
5
2

Ru

Ms
, (23)

where Cs
v,V is the vibrational-electronic heat capacity for species s, Cs

v (TV ) is the heat capacity for species s produced
from curve fits for Cv = Cp −

Ru

Ms
at the vibrational-electronic temperature TV , and the final term is the subtraction of

the heat capacity of the translational and rotational energy modes. The heat capacity for the translational-rotational
modes is:

Cs
p, tr = Cs

v,rot + Cs
v, trans +

Ru

Ms
=

Ru

Ms
+
3
2

Ru

Ms
+

Ru

Ms
=

7
2

Ru

Ms

Cs
v, tr = Cs

v,rot + Cs
v, trans =

5
2

Ru

Ms
,

(24)

where these equations are independent of temperature because the translational and rotational energy modes are assumed
to be fully excited. In these equations the molecules are assumed to be linear molecules, where nonlinear molecules
would have an additional rotational degree of freedom. At very low temperatures, the difference between homonuclear
(O2, N2) and heteronuclear (NO) molecules would also need to be considered, however, we assume fully excited
rotational modes in this work. This model will need to be updated in the future to account for nonlinear polyatomic
molecules, and greater accuracy especially at high and low temperatures, where traditional curve fits are less accurate,
may be possible through explicitly evaluating the vibrational partition function. For monoatomic species other than
the electron species, Cs

v,V = 0 and the curve fit for specific heat is used directly. Similarly, the vibrational-electronic
enthalpy per species hv,s is only nonzero for molecules. For these molecules, the translational-rotational enthalpy is
also adjusted,

htr,s = hs (T ) + Cp,s (T − TV )
hv,s = hs (TV ) − Cp,s (TV − Tre f ) + hre f ,

(25)

where hs (T ) is the evaluation of the curve fit for enthalpy used for the single-equation model shown in Equation Set 16,
with Tre f and hre f being the reference conditions of those curve fits. These equations are similar to those found in [41],
using curve fits in the CEA format [38].

The term involving (e∗v,s − ev,s ) ≈
(
Cs
v,V (T )T − Cs

v,V (TV )TV
)
represents the relaxation between vibrational-

electronic and translational-rotational energy modes, where e∗v,s is the vibrational-electronic energy evaluated at
the translational temperature T , and ev,s is the vibrational-electronic energy evaluated at the vibrational-electronic
temperature TV . The vibrational-translational energy relaxation time for diatomic molecules is found using the
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Millikan-White correlation [45] and a collision cross-section correction by Park [46]:

< τs > = τ
MW
s +




τPs T > 8000 K
0 T < 8000 K

τMW
s =

1
patm

∑Ns

i=1,,e− nie
As

(
T 1/3−0.015µ1/4

si

)
−18.42∑Ns

i=1,,e− ni

τPs = (σs c̄sns )−1

c̄s =
√

(8kBT/π(Ms/Av)) ,

(26)

where τMW
s is the Millikan and White [45] semi-empirical correlation, and τPs is the Park [46] correction, using

σs = 10−16 cm2 as used by Gnoffo [41], Av is Avogadro’s number such that Ms/Av is the mass per particle of species s
in kg, and ns = Cs/Ms is the number density per species. Unlike [41], we use τs directly rather than an averaged term.
For thermochemical nonequilibrium flow, the state equation should also be updated in the presence of electrons:

p =
Ns∑

s=1,s,e−

(
ρs

Ru

Ms
T
)
+ ρel

Ru

Mel
TV , (27)

where in this work electron species are not included, and this reduces to the previously-used state equation. The final
term of Equation 14 represents the production of vibrational energy due to the creation and destruction of diatomic
molecules with the vibrational energy per unit mass of the molecules represented by D̂s . The approximation suggested
by Park [47], D̂s = D̃s − kBT , is used with the dissociation energy D̃s taken from tabulated values. This makes the
assumptions that there is preferential dissociation and recombination of the molecules in the higher vibrational states,
and that the vibrational energy removed by dissociation differs by the average translational energy.

C. Mean Flow Solutions
Two legacy boundary layer codes were used to generate the mean flow solutions for the simple geometries used

for verification. Blottner’s chemical nonequilibrium boundary layer code [48] and the BOLAY 11 [49] code are both
Fortran codes capable of generating similarity-based flow solutions for simple geometries. The former is capable of
generating boundary layers with finite-rate chemistry, while the latter can generate boundary layers with either calorically
perfect gas or chemical equilibrium. Small modifications to these codes were required to output in the LASTRAC input
format, and for compatibility with modern Fortran compilers. Mean flow solutions for results comparing between the
two atmospheres use VULCAN[50, 51] with a Martian atmosphere model and an air model that use the same species
compositions and Arrhenius coefficients as described in Section B. Both finite-rate chemistry and thermochemical
nonequilibrium with a two-temperature model were used to generate VULCAN solutions. In order to more closely
match boundary layer solution results and eliminate leading edge effects as much as possible, the CFD mesh begins at
the leading edge, with freestream conditions imposed immediately ahead of the flat plate. CFD solutions were converged
to a residual reduction of at least 4 orders of magnitude. Grid dimensions were 993x497 points with approximately
200-300 points clustered in the boundary layer, and points clustered towards the leading edge. A finer grid with doubled
dimensions of 1985x993 was also tested. Comparison of stability results between the finer and coarser grids were
closely aligned, and so the coarser grid was used for the majority of simulations. CFD meshes were generated using
Pointwise®. Past investigations using LASTRAC have indicated that around 100 points inside the boundary layer give
accurate stability results. High grid counts are used here to ensure grid-converged solutions and may not be necessary.

Despite attempts to ensure that the CFD simulation was as close as possible to boundary layer similarity solutions, a
weak shock was encountered in the flow solution that slightly modified the edge conditions of the boundary layer. This
shock forms due to the growth of the boundary layer at the leading edge, which displaces the streamlines close to the
wall. Although this shock is weak, and grows weaker with distance from the leading edge, it is strong enough to have a
slight effect on the stability results within the 1 meter length of the flat plate used in the results.

IV. Results
This section first reproduces a selected verification result for a Mach 10 adiabatic flat plate in air. Further verification

results in air for the same capabilities can be found in related work[19]. Verification of PSE for Martian atmosphere was
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not conducted due to a lack of similar results to compare against. Section B compares results using a CO2 − N2 Martian
atmosphere model under the same nondimensional conditions, including PSE computations of supersonic modes under
the Martian atmosphere.

A. Verification
Verification of LASTRAC with newly-implemented support for equilibrium and finite-rate chemistry was presented

by Kline et al. [19]. Here we repeat one of the verification cases, a Mach 10 adiabatic flat plate. The flat plate case
will then be repeated with the Martian atmosphere chemistry to investigate the effect of changing gas composition on
the stability of the boundary layer. The case of Mach 10 flow over an adiabatic flat plate with a boundary layer edge
temperature of 350 K, edge velocity of 3751 m/s, and edge pressure of 3.55 kPa has been investigated repeatedly in
literature [18, 52–54] under assumptions of perfect, equilibrium, and finite-rate chemistry. Results in literature provide
both a number of options to compare against as well as providing an idea of the expected discrepancy between solutions
that would be considered reasonable. Using Sutherland’s law for viscosity and the stated edge conditions from literature
produce Reu ≈ 6.5 × 106/m. In this work, the static edge conditions are matched, resulting in Reu ≈ 6.5 × 106/m
where the inclusion of chemical and thermal effects results in different viscosity and density values. An adiabatic and
noncatalytic wall boundary condition is used.

The comparison between growth rates for for gas models over a range of frequencies can be seen in Figure 1. This
figure includes selected results from the literature [18, 54, 55]. Results from the literature are plotted using digitized
scanned images from published results, which were then smoothed using Tecplot® data smoothing tools. From this plot,
we can conclude that the current implementation is matching previously published results within the variability seen
between different sources. Values are plotted at a local Reynolds number based on length scale (

√
Rex = ue`/νe) of

2000, where the length scale is defined as ` =
√
νe x/ue .
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(b) Comparison using VULCAN CFD results at
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Rex=2000.

Fig. 1 Mach 10 adiabatic flat plate disturbance growth rates compared against Chang et al. [18], Stuckert &
Reed [54], and Johnson et al. [55].

Further verification cases of a two-dimensional wedge and an axisymmetric cone in air are included in related
work[19].
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B. Comparison of Earth and Mars Boundary Layer Stability at Nondimensionally Similar Conditions
In this section the effects of switching from five-species air to eight-species Martian atmosphere gas chemistry

are examined through variations on the Mach-10 flat plate. VULCAN[50, 51] was used to generate finite-rate and
thermochemical nonequilibrium flow solutions for both air and Martian atmospheres. Flow conditions are Mach 10,
freestream unit Reynolds number Reu ≈ 6.5× 106 per meter, and freestream static temperature 350 K. This corresponds
to the flat plate case used in Figure 1, with conditions of the Mars atmosphere case set to share the nondimensional
parameters M and Reu and the same freestream temperature. Although not an accurate reflection of Martian atmospheric
entry conditions, this provides an example with nonequilibrium effects, and attempts to isolate the effect of changing the
gas composition.
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(a) Nondimensionalized frequency as defined in Equa-
tion 15.
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(b) Dimensional frequency, with freestream Reu = 6.5 ×
106/m.

Fig. 2 Disturbance growth rates for a Mach 10 adiabatic flat plate at
√

Rex=2000 with finite-rate or thermo-
chemical nonequilibrium assumptions, with two gas compositions.

From Figure 2, we can see that at a constant Reynolds number the effect of changing from air (O2-N2) to a Martian
atmosphere (CO2-N2) has a destabilizing effect on the most-amplified peak with finite-rate chemistry, and stabilizing
with thermochemical nonequilibrium. From Figure 2a we can see that the nondimensionalized peak frequency has
shifted only slightly, while the dimensional peak frequency for the Martian atmosphere is shifted further. The case of
thermochemical nonequilibrium at freestream unit Reynolds number of 6.5 × 106 per meter was not able to find an
unstable solution, however, results at a higher freestream unit Reynolds number are included in this plot to illustrate
the stabilizing effect of thermochemical nonequilibrium on the Martian atmosphere case. This alternate case is also
included in later plots where noted.

Figure 3 plots the N-factor versus the nondimensional term for the distance,
√

Rex , at a selection of frequencies,
for both Air and Martian atmosphere with finite-rate chemistry in Figure 3a. Figure 3b illustrates the same scenario
with thermochemical nonequilibrium, where due to LASTRAC not finding unstable modes for the same unit Reynolds
number, the higher unit Reynolds number case is used. Figure 3b uses a different range of nondimensional frequencies
due to the shifted unstable frequency range shown in Figure 2. Under finite rate chemistry assumptions, the Martian
atmosphere case is more unstable, and would be predicted to transition earlier than in air. However, when thermochemical
nonequilibrium effects are included it is clear that the Martian boundary layer is more stable, and would transition at a
later point. The overall N-factors appear to be small for the flat plate configuration investigated. At larger Reynolds
number or higher temperature during reentry, more instability and higher N-factors should be expected, although the
trends in comparing between the different gas models should be similar.

Plotting the N-factor versus distance such as in Figure 3 gives an estimate of where along the plate transition is likely
to occur, often taken as the point where the N-factor exceeds a critical value. The specific critical N-factor depends on
the conditions of the flight or wind tunnel test, and must be experimentally determined. Since the overall N-factor in
these plots is much lower than usual critical values closer to ≈ 8, a small N-factor of 1.5 is highlighted to illustrate the
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Fig. 3 N-factor versus
√

Rex for a Mach 10 flat plate using LST. Labels indicate the disturbance frequency,
with unlabeled lines in increments of 25 kHz. Thick black lines illustrate an estimate of the change in transition
Reynolds at a low critical N-Factor.

an estimated change in transition Reynolds number. Under assumptions of finite-rate chemistry the boundary layer
reaches this value at a lower

√
Rex , while with thermochemical nonequilibrium effects taken into account transition

would be expected at a later
√

Rex .
Figure 4 illustrates the results of evaluating PSE using thermochemical nonequilibrium gas in a Martian atmosphere

mixture at a selection of disturbance frequencies, compared against LST results at the same frequencies. These results
show the 2nd Mack mode, and in the PSE a supersonic mode is also encountered. The oscillations in the N-factor plot
are often seen in the neighborhood of supersonic modes, and the phase speed plot in Figure 4b confirms the presence of
supersonic modes by showing that the phase speed dips below the limiting value of 1 − 1/Me . The supersonic mode is
associated with acoustic-wave like radiation of disturbances outside the boundary layer region, and in order to capture
this mode accurately nonreflecting boundary conditions should be used at the freestream boundary of the PSE analysis,
as was done in this case. The supersonic mode increases the N-factor and delays the decay of the N-factor downstream
of the 2nd mode. The increase in N-factor of 1-2 in Figure 4a indicates that there is a strong nonparallel effect due to
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Fig. 4 PSE and LST results with CO2-N2 mixture and thermochemical nonequilibrium gas at freestream
Reu = 2 × 107/m.

boundary layer growth. Since the N-factor is a logarithmic quantity as defined in Equation 15, this translates to 1-2
orders of magnitude increase in the growth of the disturbance magnitude.

The differences between the Martian and Earth stability results may be greater under higher-temperature conditions,
such as those encountered under atmospheric entry, due to the greater degree of nonequilibrium phenomena.

V. Conclusions
The tools implemented in this work allow analysis of the boundary layer stability in a Martian atmosphere, building

on the capability to address both chemical and thermochemical nonequilibrium implemented in previous work[19].
In this work, these tools were applied to comparisons of boundary layer stability for Martian atmosphere modeled as
an 8-species mixture with 97% CO2 and 3% N2 and under air modeled as a 5-species mixture of 21% O2 and 79%
N2, using nondimensionally similar freestream conditions and a simple flat plate geometry. Transport properties in
the reacting Martian atmosphere were calculated using curve fits to collision integral data available in literature. The
Mach 10 adiabatic flat-plate case considered has been studied thoroughly in air, and this work compares the same case
in Martian atmosphere, with a higher-Reynolds number variation included due to the absence of unstable modes at
the baseline conditions for thermochemical nonequilibrium in the Martian atmosphere model. Ablation, radiation,
and ionization, although relevant to Martian atmospheric entry, have been neglected in this work due to the increased
complexity and computational cost, and may be included in the future. The flat plate is adiabatic with a noncatalytic
assumption applied at the wall.

The included results illustrate the differences between boundary layer stability results in terms of N-factors and
growth rates. Figure 2 showed that the inclusion of thermochemical nonequilibrium has more significant stabilizing
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effect on the growth rate in the Martian atmosphere results relative to the inclusion of these effects in air. The frequencies
at which the largest growth rate occurs was also shown in these results. The peak nondimensional frequency is lower
for the Martian case when including nonequilibrium thermodynamics, while the peak frequency does not shift as
significantly for air. Although the disturbance environment is often uncertain, the difference in peak frequency has
implications for the design of transition control, for example surface roughness. As illustrated in Figure 3, under
assumptions of thermochemical nonequilibrium the boundary layer in the Martian atmosphere was more stable, and
would likely transition later, as compared to air under the same freestream Reynolds number and Mach number on
a flat plate under conditions where the 2nd Mack mode is dominant. This stabilizing effect was significant enough
to require an alternate higher Reynolds number case in order to display meaningful stability results for the Martian
atmosphere with thermochemical nonequilibrium. Under assumptions of finite-rate chemistry and neglecting thermal
nonequilibrium, the opposite conclusion would be made. The reduced growth rates and N-factors encountered under
thermochemical nonequilibrium in Martian atmosphere is corroborated by the stabilizing effect of CO2 injection
discussed in literature[31–33].

The destabilizing effect of finite-rate chemistry under these conditions is consistent with previous observations that
endothermic chemical reactions and wall cooling are destabilizing to the 2nd Mack mode at hypersonic conditions, and
the stabilizing effect of translational-vibrational relaxation is also consistent with literature. In the case investigated in
this work, the latter effect appears to be dominant. This is likely to be sensitive to the model of vibrational-translational
energy relaxation, and it may be possible that under other conditions - for example, including ablation products - the
destabilizing effect of the endothermic chemical reactions would be more significant. These effects cannot be generalized
to other flow conditions and other instability modes - systematic investigation of a range of instability modes and varied
flow conditions is required to fully understand the effects of thermochemical nonequilibrium on boundary layers in either
air or Martian atmosphere. The overall N-factors appear to be small for the flat plate configuration investigated. At a
larger Reynolds number or higher temperature during reentry, more instability and higher N-factors should be expected.

Further application of these tools could be used to analyze boundary layer stability at conditions more closely related
to planetary entry, and after development of a fully 3-dimensional version, it will also be possible to address a reentry
geometry at an angle of attack. LASTRAC is already able to address 3-dimensional simulations for perfect gases only.
The scenario included in this work is expected to be sensitive to the inclusion of ionic species, and comparisons between
different chemical model assumptions. In order to account for the effects of ablation, the chemical composition of the
ablation products, the mass flux of ablative products into the surrounding flow field, and the recession of the vehicle
mold line would ideally be included, although the inclusion of all of these effects is beyond the capabilities of current
tools. The recently-developed capabilities in LASTRAC are compatible with the addition of further chemical species,
and initial steps have been taken toward accounting for the effects of ionization, however, these tools have not yet been
applied. The critical N-factor is found empirically, and varies between flight and wind tunnel experiments due to the
high disturbance amplitude usually found in wind tunnels. In order to determine a reasonable critical N-factor, quiet
tunnel tests will be needed with CO2 working gas. It may be possible to compare the transition locations found in
previous Martian lander missions. It may also be possible to use N-factor predictions to either increase or decrease the
chance of boundary layer transition through shape design coupled with N-factor predictions. This work focused on a
case where the 2nd Mack mode was dominant. Blunt reentry vehicles are likely to encounter the 1st Mack mode as well
as crossflow instabilities when at an angle of attack. These instability modes should be systematically investigated in the
future, along with variations in the flow conditions.
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