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Introduction

« All spacecraft, aircraft and

Note : limitations shown here are valid for F-GZCP in the accident conditions (ISA+10,
weight of 205 t, 28.7 % balance, engine and wing anti-ice ON) and MAX CLIMB thrust

other complex systems

40000

can only operate safely /H
within a given operational =~
envelope i

30000

. Developers must answer

. Isthe system behaving ==

“‘well™?

MACH

« Does it stay away from
“bad” areas?

. What are good
parameter settings?

Verification and Validation (V&V) is trying to
answer these questions



Analysis of a Complex System

Fos Outputs e Safety-critical
e.g.

. Pit sreg complex system
guidance . . o
' /\—— ¢ Non-linear, non-trivial
software system
A 1/ M
] * Hybrid: continuous +
Parameters (can be in d |SC rete
100s)
. Pesion parmeters. e Hardware + Software
(eg., gains) . .
simulation

MARGINS uses statistical emulation to quantify
uncertainties in models of complex systems



Analysis Tasks for V&V

In general: unknown mapping . M

from parameters to outputs o w o om ow o m
Tasks: learn and build models for

— Prediction of the whole function N
of time series

— Prediction of events, e.g., time
to failure "

— Detection and characterization ,
of safety regions and boundaries

Important for design, analysis,
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and V&V
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parameter 2

MARGINS helps to perform these
analysis and V&YV tasks

unsafe region

parameter 1



Overview

* Applications of MARGINS



PA-1: Test of Orion Launch Abort System

Traditional Testing

\ * Low number of tests
I * No automatic analysis

MARGInS

* Exploration of parameter
space — many test cases

e Automatic analysis

* I|dentification of risk
classes




Orion EFT-1 — Critical Factor Tool

“Treatment” learning:
X axis: initial pitch at entry interface success/failure prone inte
altitude

X ]
ch offset

& =

Zog If Independent

* I|dentifies critical factors for different
objectives and goals

* Generate visualization for domain expert

 Generate documentation and tables



IFCS — Time Series Prediction and
Safety Boundary Analysis

 Damaged AC with adaptive control

(Pilot Input = pi | Fully Coupled — Will it become unstable? When?
Controller p Dynamic Inverse _ P red | Ct th e trajectory
Online Neural Actuator
Network Model T_fail
Controller
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Control System
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* High dimensional, variable length
‘ time series
wa WP * Failure events
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ACAS X — Prediction of time to NMAC

Resolution Advisories NMAC: Near Mid-Air Collision

AT : s e Predict whether NMAC occurs from data at times [t1-9,t1]
Gl Cre iy il 5 Lt Training Data: 80_libcas098small
i radial_svm_all_vars: F1 (solid blue), Recall (solid green), Precision (solid red)
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* High dimensional time series




ACAS X — Safety Boundaries
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e MARGINS Architecture

—Tool Interfaces
—Boundary detection and characterization



MARGINS

Model-based Analysis of Realizable Goals in System

 Framework and tool set for
generating test cases for V&V
of complex systems
e Algorithms for
— Testcase generation
Time Series — Clustering
Analysis .
Fen — Treatment Learning
— Critical Factors
— Property Checking

— Safety Boundary
detection/characterization
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MARGINS is mplemented in Matlab, C/C++, and R



BEGIN with an initial,
small test suite that
covers the range of

the possible input

space

Algorithm Overview

N

EXECUTE
experiments on the
inputs, mark which

values lead to safe or
unsafe behaviors

D

A

Vs

POINTS

concentrated near the

likely boundaries

~N

CHOOSE NEW TEST

LEARN a boundary in
the inputs that
separates safe and
unsafe points in the

system

ESTIMATE
UNCERTAINTY that

this is the true
boundary using

statistical techniques
\ J




How to use MARGINS

MARGINS is given:

e System under Test. System is implemented in
Matlab, Simulink, Java, C,... or a combination

* Analysis tasks and safety properties
e Scenarios of interest
e System information and variables



How to connect MARGINS
Application Example: UxXAS

* UxAS: Unmanned Systems Autonomy Services
* Net-centric system to automate mission-level decision making for
multiple UASs
* Task assignment
* Cooperative control
e UXxAS system with simulator (AMASE)




How to connect MARGINS

MARGINS
Advanced statistical

modeling
Safety Boundary
Analysis

e Automatic variation of selected variables and parameters
e Automatic checking of properties



2. Select relevant variables
3. Run Margin$
4. Visualization of results

Property Checking with MARGINS

. Formalize properties to return
SAFE/UNSAFE

Example:
“never enter the KeepOutZone”




Results
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Application Example:
Deep Neural Networks in Aerospace

« Deep Neural Networks (DNNs) have become very
popular in many areas

« DNN are increasingly used in the Aerospace
domain for mission- and safety-critical
applications

 Verification and Validation (V&V) is extremely
important

 Traditional software testing is not suitable for
DNN

« MarginS supports effective testcase generation
for DNNs in Aerospace systems



Our Application: physics-based DR-RNN

* Given: physics-based Deep
Residual Recurrent Neural
Network

* Modeling the aircraft dynamics
* For 747-100 aircraft

* |s the DR-RNN a suitable approximation for the
real aircraft dynamics?

* |s the deviation between the DR-RNN and the
real system acceptable?



Our Application: physics-based
DR-RNN for 747-100 Aircraft

Deep Residual Recurrent Neural Networks |+ — ..
(DR-RNN) for modeling of aircraft dynamics
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Dynamics Deviations
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MARGINS Testing Framework

Hierarchical Bayesian statistical modeling with
Active Learning in Computer Experiment Design

active learnin . Generate test cases to find
g : -
Computer new test case regions of deviation
Experimental between the DR-RNN and
Design system the ground truth (obtained
‘ PR-ANN| |dynamics | by high-fidelity simulator)

1 « Threshold given in system
[ statistica ]+4[ deviatons? )  requirements

model

' T « Active learning selects new
[ boundary ] [ System J test cases close to the
shape estimation Requirement estimated boundaries for
higher efficiency

feedback to designer



Algorithm Overview
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Results
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Application Example:
Terminal TSAFE — Safety Boundary Analysis

0

DynaTree
Terminal — Tactical Separation
Assured Flight Environment ~ te® 5| o )
(T-TSAFE) ;. g ‘
Active Learning
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Terminal TSAFE — Boundary Detection
and Characterization
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Overview of our Method

D0
[ DynaTree ] » Active Learning to
* detect points near
\ new boundaries X,
Active Learning po
Computer = Lo » Estimation of shapes
Experimental Design |« - "t

and shape parameters

©

Xo

- - -

8 /24



DynaTree-Background

> Likelihood: p(y*|x", T,0) =I1, ¢, p(y"|x",6y)
» Split Rule: psie(T,n) = a(1+ D,))~P with a, 3 > 0
» Joint Prior:

w(T) o< [ popiie( Tom)w(T) oc [ ] (2 = popie( T, 1))

nEIT T]GLT

» Likelihood after marginalization:

oy Text) = TT py"x = ] / p(y"|xX", 0,)d(0,)

nelLr, nelLr,

p([T, Slellx ¥I') Z/P([ﬂ SIel[T, Sle-1)dP([T, Sle-1llx, 1)

x / p([T. SIeI[T. Slet. [x. ¥1e) / p(1%, Y1e|LT. Sle—1)dP([T. Sle1

solved with resampling and propagation

69 / 106



Output Class Model

Model class(x) using classification TGP model (CTGP)
CTGP is an extension of TGP that handles categorical outputs

Suppose M possible output classes m=1,... . M
M

m=1

exp(—Zm(x))
> =1 &XP(—Zur (%))
» CTGP uses M independent TGP models for the mappings
X—Zn, m=1....M
> class(x) ~ multinomial(1, p(x)) where p(x) = (pm(x))V_,

vV v v Vv

Introduce latent continuous variables {Z,(x) to model

pm(x) = P(class(x) = m) =

» Actually only M — 1 latent variables Z,,,(x) are needed

21/106



Selection of Next Data Points

» General goal: candidate points should be near boundaries
» Maximum entropy Y = — Zceq,“’q’ pc log pc is too greedy
» Active Learning McKay (ALM): select maximum variance

» Active Learning Cohn (ALC): maximize reduction in predictive
variance

» Expected Improvement (El): maximize posterior expectation
of improvement statistic

Limitation: ALM, ALC, El do not take boundaries into account.

11 /24



Boundary-aware metric
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Selection of New Test Points
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Overview of our Method

Active Learning
Computer
Experimental Design &

» Active Learning to
detect points near
boundaries X,

» Estimation of
shapes and shape
parameters O

13 /24



Characterizing Boundaries

» A common metric to describe a boundary uses the entropy
Y(X) = =2 ceq...cc P(x =¢)logp(x = ¢). Y(x) becomes
maximal for x on a boundary

» The metric advantage
adv(x) = |p(x = success) — p(x = failure)| becomes minimal
on the boundary.

» A classification method that can produce posterior
probabilities can directly be used to select points which are
close to a boundary

» In general, a k-nearest neighbor approach can be used to
determine points close to the boundary. This approach is slow

O(n?)

73 /106



Statistical Modeling

» Posterior P(S|X,) o< P(X,|S)P(S)
» Likelihood P(X,|S) models completeness (next)

» Prior P(S) models minimality of complete shape sets
. . —2
» encourage intershape distance Dg to be large
Pl A2
> S~ N(DS '07 Oshapesim)

. —2
> Bayesian Loss models summary: loss(S, Xi) = Asummary D x,

Step 1 Minimize the expected loss
g(l) = Elloss(S, X,)], [S] =1

over the shape set size / to obtain the number of shapes /*
Step 2 Compute the MAP shape set S*'" for shape sets of size [*

55 /106



Likelihood

95 /106



Likelihood

n

= Co " H exp(—0.50_2rj2) = Co "exp(—0.50"7 Z sz)
J=1 j=1

P(X|Z,S8) = Co "exp( 050_22 m|n HXJ SJH%)
j=1 7%

Likelihood is maximized by choosing shape set S such that all

points in X are close to some shape in § (completeness)
96 / 106



Likelihood

» Model (z1,...,2,)|S to encourage each of /| = |S| shapes to
generate n// points

n
Ci = E 1y =i
J=1

C =(c,...,¢) ~ multinomial(n, (1//,1/1,...,1/1))
P(X|S) = / P(X|Z,S5)P(Z|S)dZ
Z

» Implies we expect to see points around each shape

97 / 106
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Demo |

* Find safety boundary for an example Simulink
Model

 The Simulink model —a “complex” system



Demo |l

* Connection of a realistic system, the Ground
Collision Avoidance System (GCAS)

— Control system to stabilize F16 without ground
collision

— Challenging problem for V&V
— Matlab system based on AeroBenchVV

Simulation Time: ( 0:15) sec

.......

((((((

sssss

(((((((




Demo Il Results

Xcg
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500 3400 °%
Vtg 3200 altg

Estimated shape for safety envelope in 3D projection
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Summary

« MARGINS is a flexible framework and
can be applied for complex system’s:

. Safety and Performance Analysis
« V&V of Deep Neural Networks

. V&V of Autonomous Systems

« Prognostics

« Runtime verification/Monitoring



Scalability

* Tool can handle large and complex systems

— The system is seen as a black box and is simulated.
So resources, runtime depends on that.

— Easy and flexible interface to the system

* Tool can handle systems with large number of
parameters (high dimensionality)

— Algorithms are for analysis of high-dimensional
spaces

— Tool contains functionality for an explainable
reduction of dimensionality



Use of Tool during SW process

Model analysis during early design stages
— Provide feedback to designer

Supports unit testing of complex components,
e.g., DNN

Analysis of complex system as a black box during
system integration

Should be useful for Processor-in-the-loop and
HW-in-the-loop as it provides informative and
valuable test cases

During deployment for diagnosis, prognostics,
and runtime verification
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