TFAWS Passive Thermal Paper Session

Design and Test of a Structurally-Integrated Heat Sink for the Maxwell X-57 High Lift Motor Controller

Ryan Edwards & Andrew Smith NASA Glenn Research Center

> Presented By Ryan Edwards

Thermal & Fluids Analysis Workshop TFAWS 2019 August 26-30, 2019 NASA Langley Research Center Hampton, VA

TFAWS LaRC 2019

ANALYSIS WORKSHOP

&

THERMASI

Background

Fully Electric Aircraft Demonstrator

- Two 60 kW Cruise Motors
- Twelve 12kW High Lift Propulsors
 - Primarily used for lift augmentation for take-off and landing
- Li Battery powered DC bus

Distributed High Lift System

- Enables low profile wing shape, reducing unnecessary drag during cruise
- Motor controllers and inverters are located in the nacelle with each motor
- Inactive for majority of flight, driving the need for low mass and drag

High Lift Propulsor Assembly

- Generalized Intelligent Motor Controller (GIMC)
- OML Cooled proof of concept for
 - 10-14 KW

GiMC-Heist Test Configuration

TFAWS 2019 - August 26-30, 2019

- Thermal
 - Dissipate controller and inverter waste heat for a 12 kW high lift system
 - Prevent components from exceeding their maximum operating temperatures
 - Particularly the High Power SiC MOSFETs
 - 100C Maximum Tj (150 C 50 C de-rating)

- Qualification testing per DO-160G
- Worst Case Hot Environment
 - Stopped on runway with HLP at max power
 - 45C Ambient, 50 W/m²C (Prop Wash) Convection
- Worst Case Cold Environment
 - Cruise with HLP off
 - -25C Ambient, 110 W/m²C Convection
- Qualification Test Margin

 $- \pm 15C$

Environmental Temperature Extremes for Qualification Testing -40C to +60C

	Duration	High Lift Controll		
	(Seconds)	Input Power (kW)		
		97.0% Efficiency		
Phase		1 Motor	12 Motors	
Taxi from NASA	600	-	-	
TO Checklist	120	-	-	
Cruise Runup	30	-	-	
HLP Runup	30	11.4	136.7	
Flight go/no-go	30	-	-	
Ground roll	10	11.4	136.7	
Climb to 1500'	90	5.7	68.4	
Cruise Climb	540	-	-	
Cruise	300	-	-	
Descent to 1500'	450	-	-	
Final approach	180	5.7	68.4	
Go Around to 1500	90	5.7	68.4	
Approach pattern	90	-	-	
Final approach	180	5.7	68.4	
Rollout and turnoff	60	-	-	
Taxi to NASA	600	-	-	
Total (s kWh Wh)	3400	1.0	11.8	

Mod 4 HLP Flight Profile

Superimposed Envelope up to 15k ft

- Initially greatly over weight
 - HEIST was prepackaged (multiple thermal interfaces)
 - Separately designed thermal, structural, and power electronics
- Rapid redesign process
 - Weekly iterations
 - Quick turnaround analysis tools
 - In house controller design greatly increased electronics efficiency
 - Enabled by subsystem cooperation
- Structural Thermal design iterations
 - Competing requirements
 - Very low mass margins

NASA

High Power Electronics

- Thermally sinked to external flow
- Aluminum external sink conforms to OML
- SiC MOSFETs are distributed around the circumference of the sink to minimize temperature gradient
- Designed External Sink Surface Area
 - 640 cm²

• Low Power Electronics (LPE)

- Two copper thermal planes on each PCB to distribute heat
 - 1.4 mil (1 oz copper)
- PCBs are thermally linked together through aluminum standoffs which are in contact with the thermal planes
- Secondary Low Power Heat Sink with heat pipe conductor
 - Low Power Sink is thermally insulated from High Power Sink with G10 standoffs
 - Sintered Wick Copper Heat Pipe
 - Water working fluid
 - 27W Capacity
 - 30 to 120C Temperature range
- Additional convection to internal nacelle environment

Low Power Electronics with G10 spacers

Low Power Heat Sink and Heat Pipe

NAS

Thermal Analysis

Convection Heat Transfer Characterization

• RANS (SST) Turbulence Model

- Enhanced wall treatment for heat transfer
- Design points based on uniform inlet temperature, speed, and dissipated power.

Thermal Analysis

Convection Heat Transfer Characterization

Printed Circuit Board Thermal Analysis & Model

- All boards have two 2oz copper thermal layers
 - 1.4 mil thickness
 - Additional ground and bus planes will help distribute heat
- Thermal vias located throughout boards
- Heat Pipe interface boundary
 - 65C
- High Temperature Sink boundary
 - 72C
- Natural Convection
 - 5W/m²C @ 60C
- Majority of active components have maximum operating ambient air temperature limits
 - Results show we can keep all components below their maximum ambient temperature limit
 - Conservative due to actual component maximum operating temperature being higher than ambient operating temperature

PCB Thermal Model Component Results

NA
5egC
84
82

Component	Part	Qty	Pwr (mW) ea	Pwr (mW) Tot	Max Operating Temp	Model Temp	Notes
Capacitor	B32778G1206K000	3	83	249	105	69.9	
Current Sensor	LA 100-P	2	240	480	85*	74.3	Ambient Max
Total			323	729			

Surface: Temperature (degC

Component	Part	Qty	Pwr (mW) ea	Pwr (mW) Tot	% Output of Max	Max Operating Temp	Model Temp
Gate to Source Resistor	RT1206BRD075KL	6	10	60		155	78.9
6V Zener	MMSZ5233B-7-F	6	32.53	195.18		150	78.9
6V Zener Current Limiting Resistor	ERJ-14NF3321U	6	97.59	585.54		155	78.9
HS Driver PS	ATA00H18S-L	4	80.02	240.07	13%	85	77.6
LS Driver PS	ATA00H18S-L	4	240.07	240.07	40%	85	78.7
Opto Driver	ACPL-339J-500E	6	240	1440		95 (amb)	78.9
Gate Resistors		12	10	120		155	78.9
Total			710.22	2880.87			

Component	Part	Qty	Pwr (mW) ea	Pwr (mW) Tot	% Output of Max	Max Operating Temp	Model Temp	Notes
ADC Buffer Amp	AD620BRZ-R7	5	31.2	156		85	78.7	
5V CVTR	SD02S1205A	1	27.6	27.6	6%	98.2*	77.7	Derated Ambient Temp
3.3V Delfino CVTR	JTE0624S3V3	1	472.824	472.82	43%	82.8*	79.8	Derated Ambient Temp
12V CVTR	ISB0124D12	1	28.08	28.08	15%	92*	79.3	Derated Ambient Temp
DAQ Chip	AD7606BSTZ-RL	1	110	110		85	79.7	
Delfino	TMS320C28346ZFEQ	1	1989.6	1989.6		125	85.9	
1.2V Regulator	TPS62400DRCT	1	22.5	22.5	13%	85*	78.6	Derated Ambient Temp
1.8V Supply	TPS72118DBVT	1	38.45	38.45	33%	85*	79	Max dissipation 154mW
EEPROM	AT24C512C-SSHD-T	1	9.9	9.9		85	78.9	
Ethernet TxRx	DP83640TVVX/NOPB	1	330	330		95	78.6	
Opto Coupler	AFBR-59F1Z	1	247.5	247.5		85	76.6	
Total			3307.6585	3432.46				

High Power Heat Sink Thermal Analysis

- Analysis assumptions
 - FETs
 - $\theta_{jc} = 0.27 \text{ C/W}$
 - Junction mass = 5g
 - Junction $c_p = 0.9 \text{ J/g*C}$
 - Heat Sink
 - Mass = 380g
 - $C_p = 0.9 J/g^*C$
 - Surface Area = 640 cm²
 - Environment
 - 20s/90s Transient
 - Temperature = 60C
 - Convection Coefficient = $50 \text{ W/m}^2\text{C}$
 - Flight Profile
 - Worst case flight maximums

	Duration	High Lift Controller			
	(Seconds)	Input Power (kW)			
		97.0% Efficiency			
Phase		1 Motor	12 Motors		
Taxi from NASA	600	-	-		
TO Checklist	120	-	-		
Cruise Runup	30	-	-		
HLP Runup	30	11.4	136.7		
Flight go/no-go	30	-	-		
Ground roll	10	11.4	136.7		
Climb to 1500'	90	5.7	68.4		
Cruise Climb	540	-	-		
Cruise	300	-	-		
Descent to 1500'	450	-	-		
Final approach	180	5.7	68.4		
Go Around to 1500	90	5.7	68.4		
Approach pattern	90	-	-		
Final approach	180	5.7	68.4		
Rollout and turnoff	60	-	-		
Taxi to NASA	600	-	-		
Total (s, kWh, Wh)	3400	1.0	11.8		

Mod 4 HLP Flight Profile from AFRC

C# Model GUI

🖳 ThermalProps		- 0	×	
FET Props	Heat Sink			
Bis: DOT CAN	Mass F00			
0,0	500 g			
Junc Mass 5 g	Cp 0.9 J/gC	:		
June Cp 0.9 J/gC	Surface A 640 cm2			
TIM Props	💀 GiMC-SCEPTOR Thermal			– 🗆 ×
TotTh Res 0.9 Ccm2/W	Analysis Type			
	Profile			◯ Continuous
Length 40 mm	Phase Duration (c)	Dissipation Env Terms (C)	Conv Coef	Conv Coef 0 W/m2C
	Phase Duration (s)	(W) Env Temp (C)	(W/m2C) Ramp	Env T 0 C
width 30 mm	HLP Runup 30	250 60	5/	Altitude 0 ft
Subt Area 0 mm2	Ground Poll 10	250 60	57	
	Climb to 1500' 90	125 20	57 2	Heat Die
Presets	Cniise 900	0 25	110	
~	Final Approach 180	125 60	110	
	*GoAround 90	125 60	110	
	Use Convection Coefficient Use Airspee	d	Save Load Clear	
	Plotting			
	Start FET Heat (W)	Time :	Step (s) 1.0 + Convection to Air: 52.9690	756421879 W
	HPE Sink Temp	(C) Filena	me	
	Stop Conv Coef (W/m	12C)		
	Air Speed (m/s) Altitude (ft)		Save to CSV	
	Clear Chart Data		Thermal Properties	
	100			FET Junction Temp (C)
	1 h			Environment Temperature (C)
	80			
	60			
	40			
	20			
	0			
	-1	499	999	1499

Results

Transient results with heat sink mass, thermal resistance, temperature, and convection modeled at profile power

Testing

• Steady State Thermal Extremes

- Sea level Thermal Chamber
- -40C to +60C Extremes
- Functional & Workmanship Testing
- Water cooled test heat sink

- Transient Wind Tunnel Testing
 - Sea level & Altitude (15kft) Testing
 - Flight Heat Sink performance and Model Validation
 - Functional testing at worst case conditions

TFAWS 2019 - August 26-30, 2019

NAS

Wind Tunnel Test Unit Build

- Additively manufactured aluminum heat sink
- 3D printed forward Nacelle and Motor Section analog

NASA

Testing Results (Transient)

Transient Test Case 4

- 20s 100% power
- 90s 50% power
- Environment
 - 20m/s
 - 12.7 psi (4000 ft)
 - 60 degC

Testing Results (Steady State)

NAS

- Developed models for heat transfer characterization and transient modeling of passive 'OML' cooled power electronics
- Designed, built, and tested well-integrated multidiscipline motor controller package for X57
- Completed design successfully met all operational and environmental requirements at worst case conditions