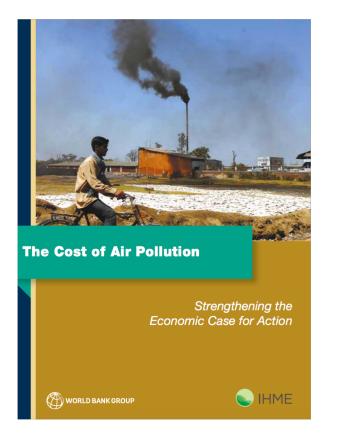
Accelerated simulation of air pollution using NVIDIA RAPIDS

Christoph A. Keller^{1,2}, Thomas L. Clune¹, Matthew A. Thompson^{1,3}, Matthew A. Stroud^{1,4}, Mat J. Evans⁵, Zahra Ronaghi⁶

¹NASA Global Modeling and Assimilation Office (GMAO)
²Universities Space Research Association (USRA)
³Science Systems and Applications, Inc (SSAI)
⁴ASRC Federal Inuteq, ⁵University of York, ⁶NVIDIA

GPU Technology Conference :: 4-6 November 2019 :: Washington, DC

Air pollution is a global problem mitigating it is a big opportunity



World Bank: ~\$5 trillion in welfare losses in 2013

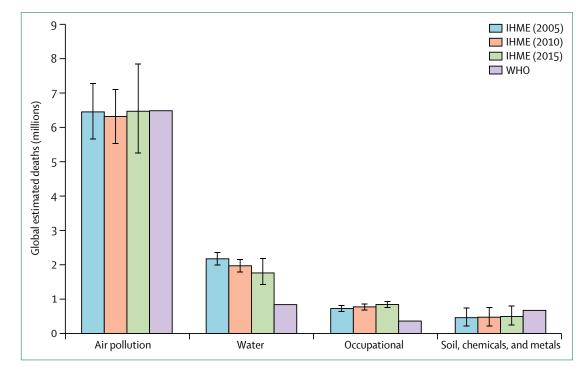
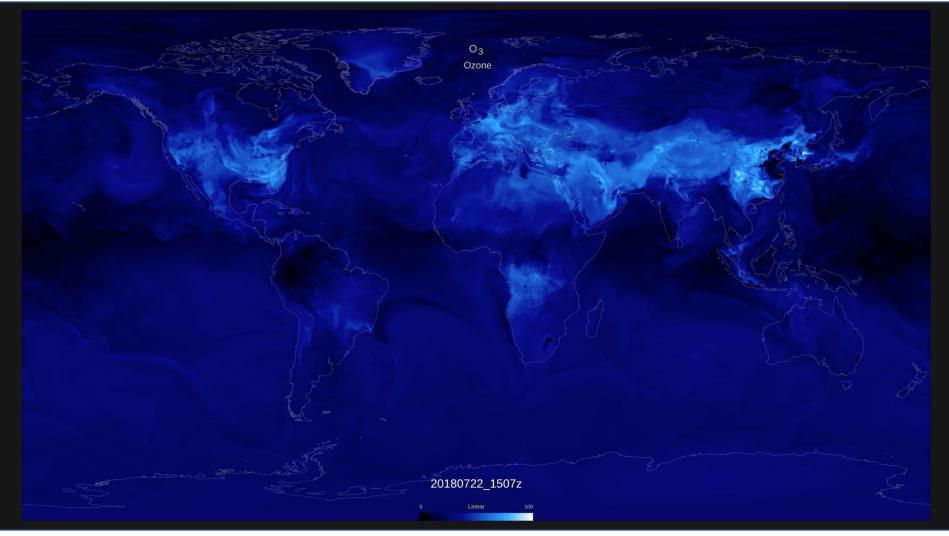


Figure 4: Global estimated deaths (millions) by pollution risk factor, 2005–15 Using data from the GBD study⁴² and WHO.⁹⁹ IHME=Institute for Health Metrics and Evaluation.

The Lancet (2017): Air pollution is responsible for 6-7 millions death / year

Numerical simulation of atmospheric chemistry

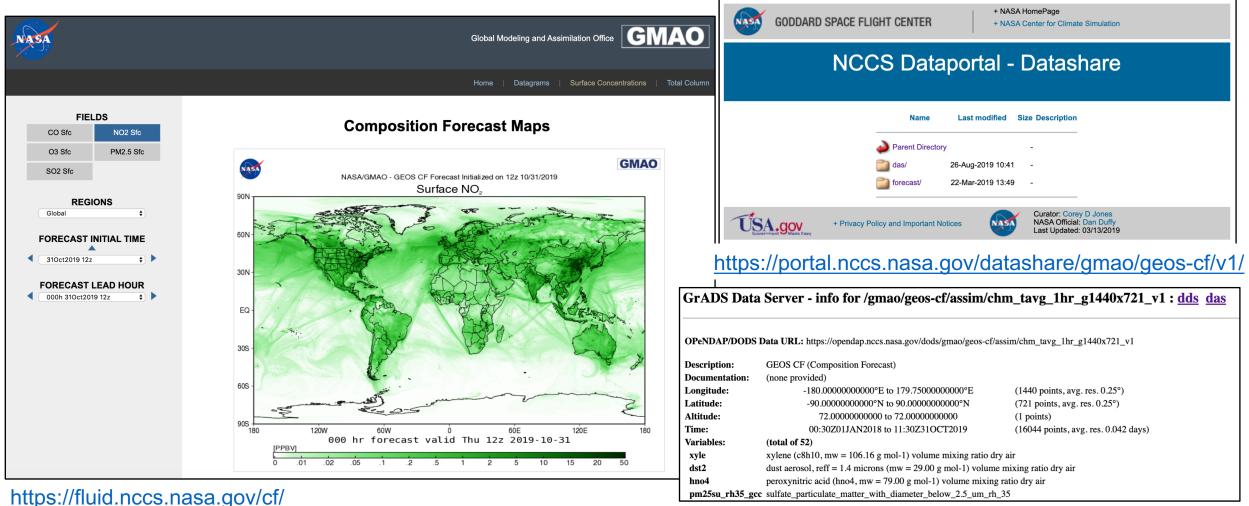


> 56 million grid cells (25x25 km², 72 levels), 250 chemical species

C

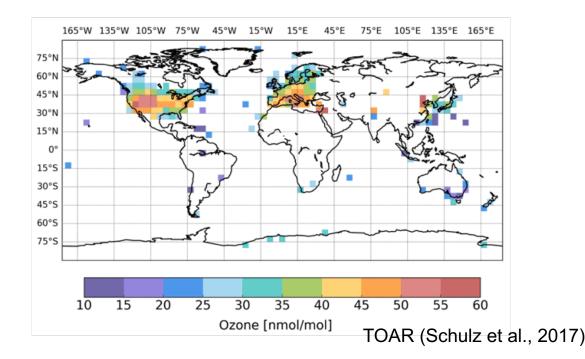
gmao.gsfc.nasa.gov

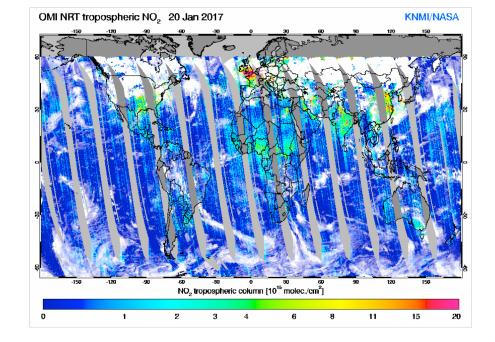
NASA's GEOS composition forecast (GEOS-CF) model conducts global air quality simulations in near real-time



https://opendap.nccs.nasa.gov/dods/gmao/geos-cf/

Need models to fill temporal and spatial gaps in observations

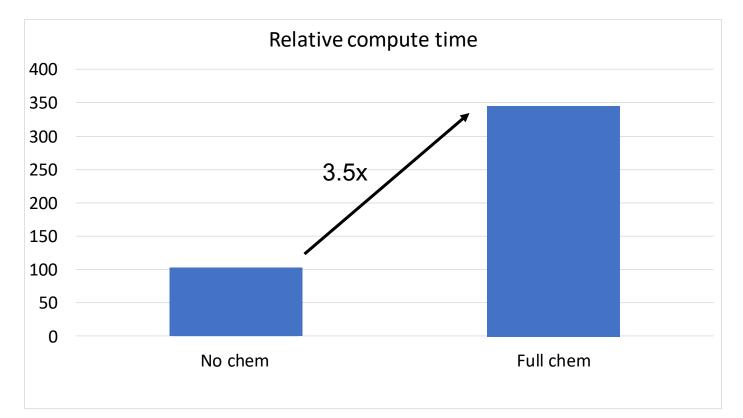




Surface observations are not global

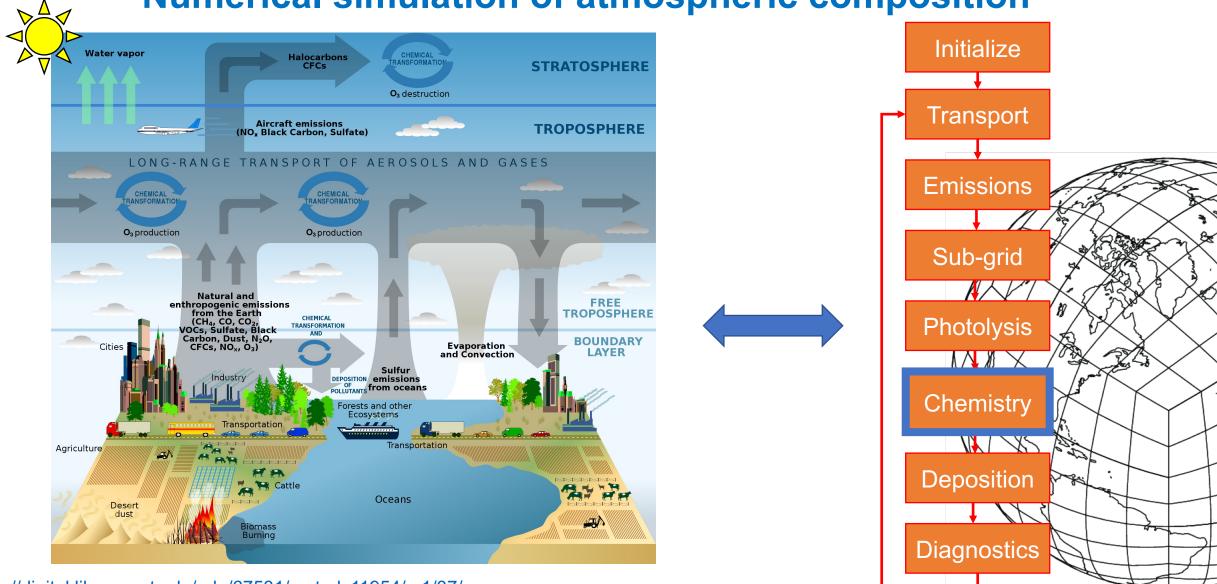
Satellite observations are also discontinuous

Atmospheric chemistry models are computationally expensive



- High-resolution chemistry simulation requires >1000 CPU's
- Throughput: approx. 20 simulation days in 24 hours
- Outputting the full chemical state: ~1.5 TB / simulation day

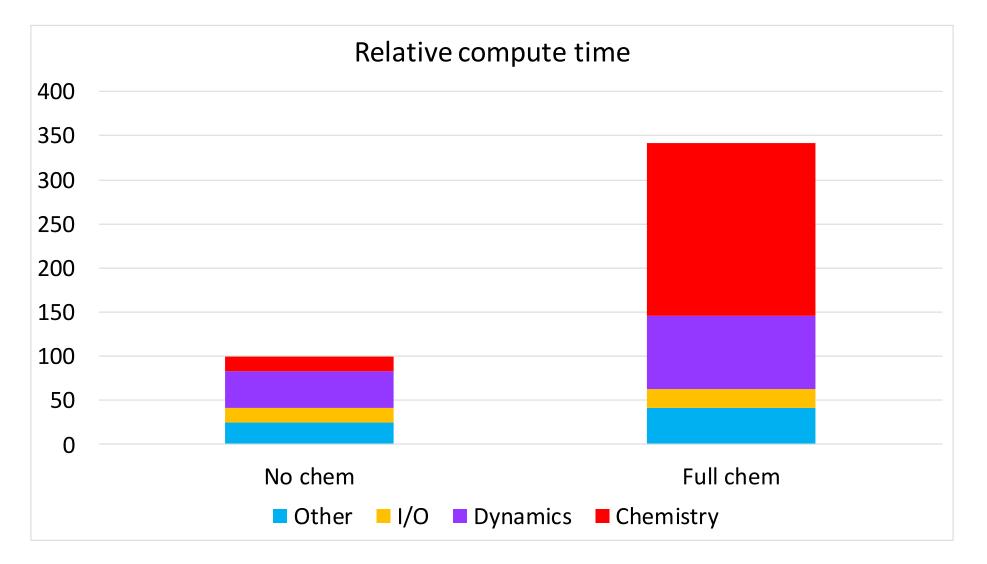
Numerical simulation of atmospheric composition



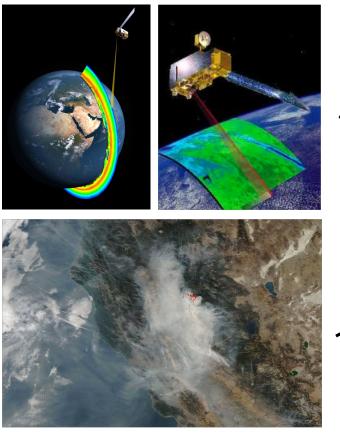
https://digital.library.unt.edu/ark:/67531/metadc11954/m1/37/

christoph.a.keller@nasa.gov

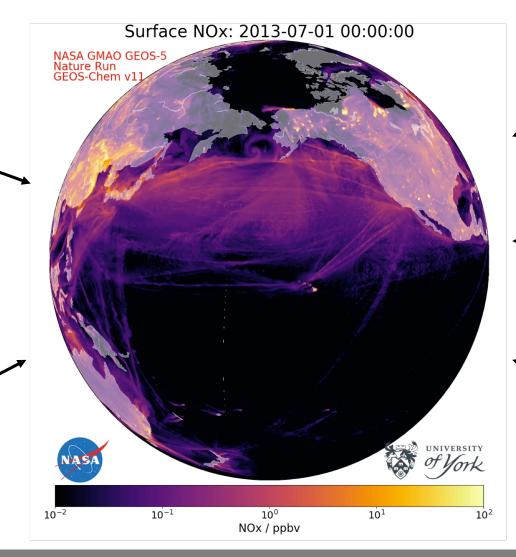
Chemistry accounts for more than 50% of compute time



High computational cost of chemistry currently prevents optimal use of observations



www.nasa.gov

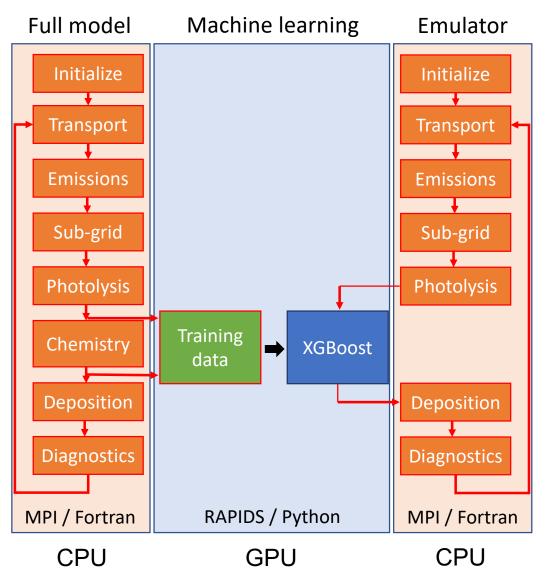


ide 🕢 Inside Iors 🕜 Sensors 👩 Senso openag

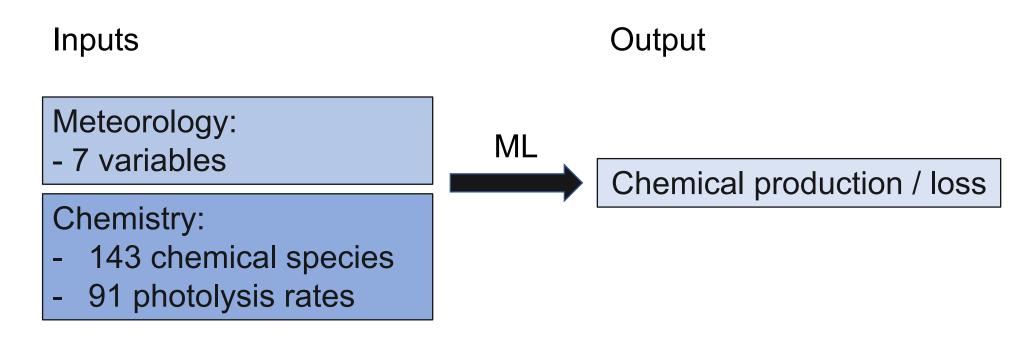
openaq.org

purpleair.com

Replace slow chemical integrator with machine learning model



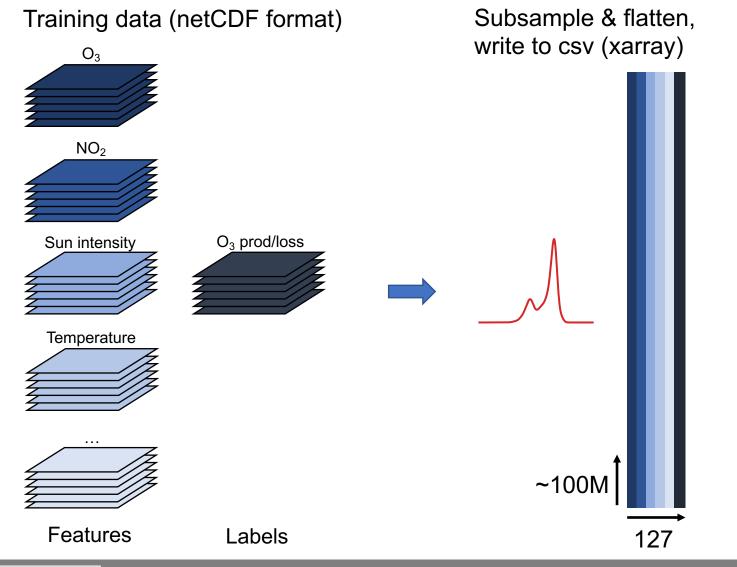
Use machine learning to emulate chemical transformations in the atmosphere



- Algorithm: extreme gradient boosted decision trees (XGBoost)
- > Train separate algorithm for each species

NASA

Machine learning workflow



Train (XGBoost):

- Read csv, convert to DMatrix

- Train

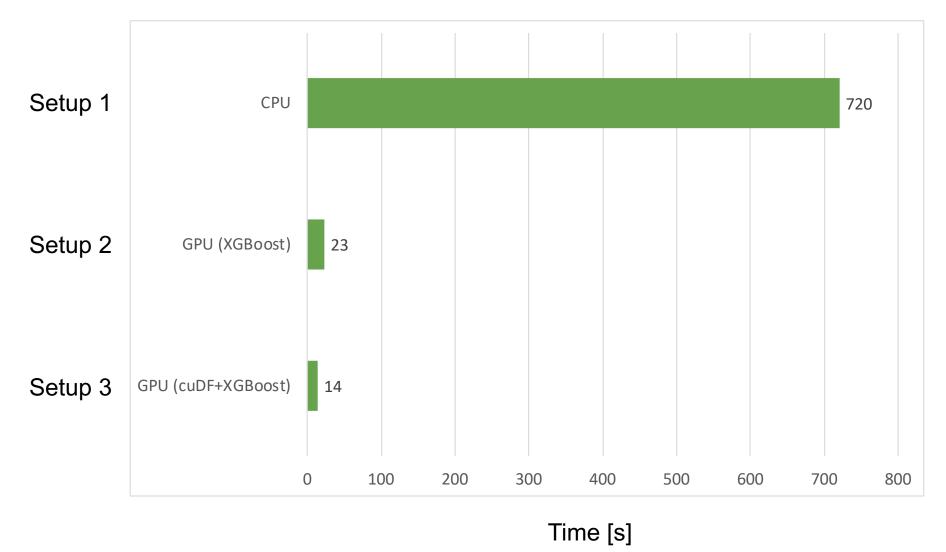
Setup 1 Read on CPU (Intel Haswell) Train on CPU

Setup 2: Read on CPU Train on GPU (V100)

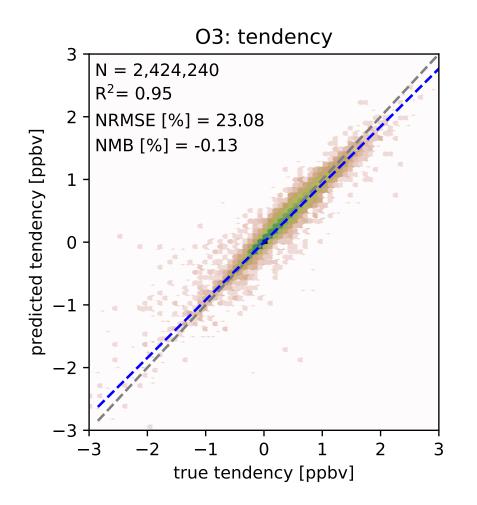
Setup 3: Read on GPU (cuDF/cuIO) Train on GPU (dask-XGBoost)

G

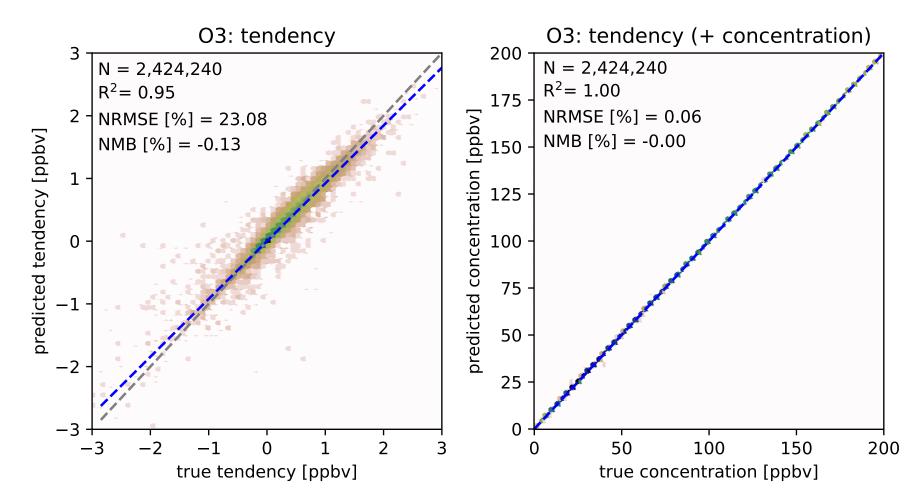
XGBoost training benchmarks

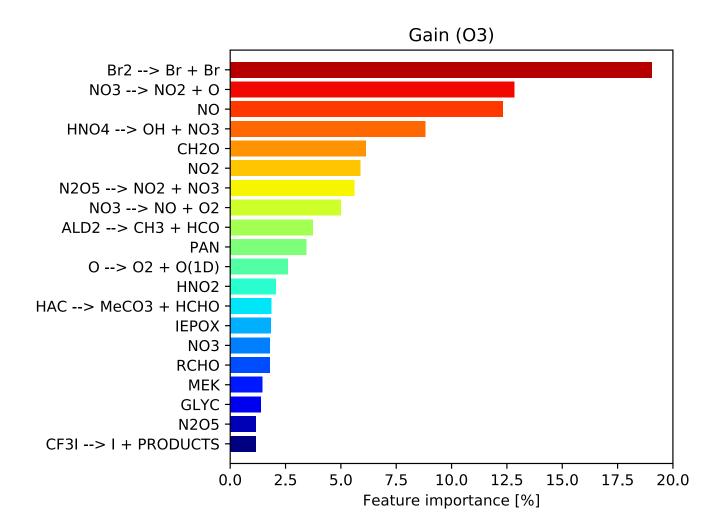


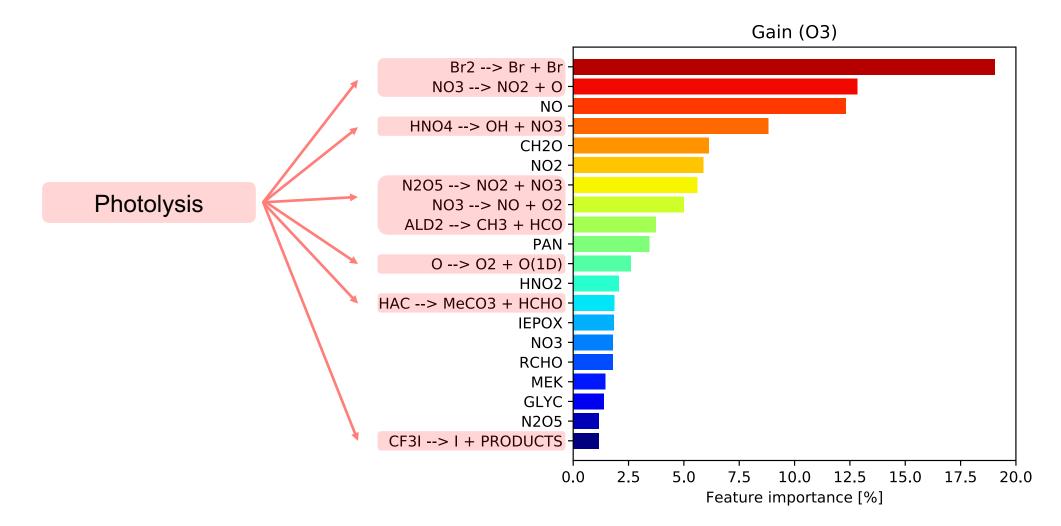
XGBoost reproduces target concentrations well (single-step prediction)

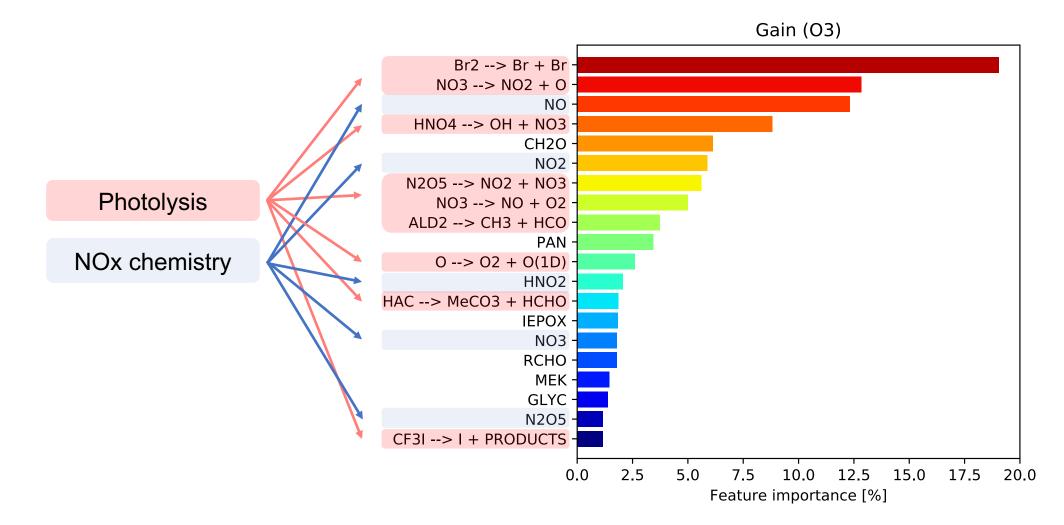


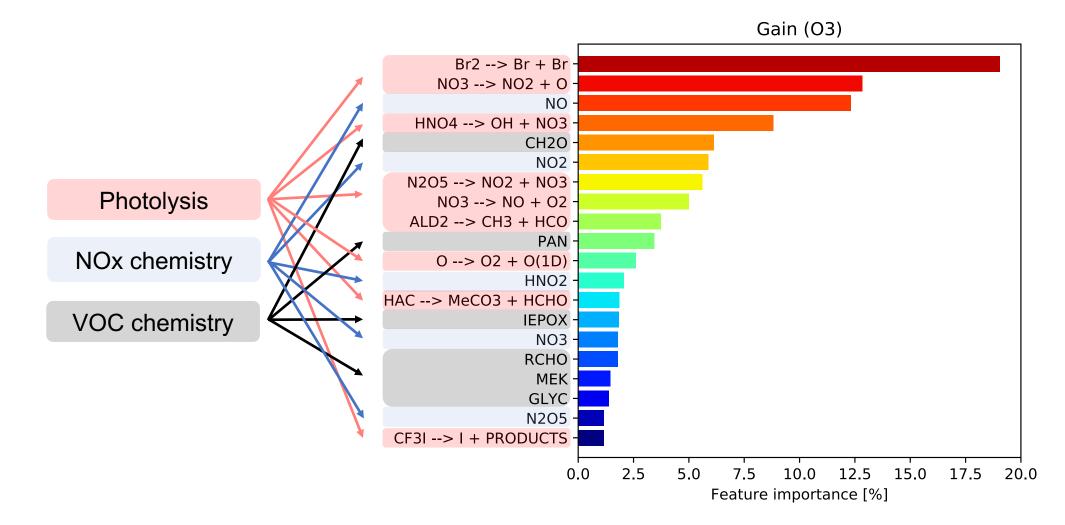
XGBoost reproduces target concentrations well (single-step prediction)



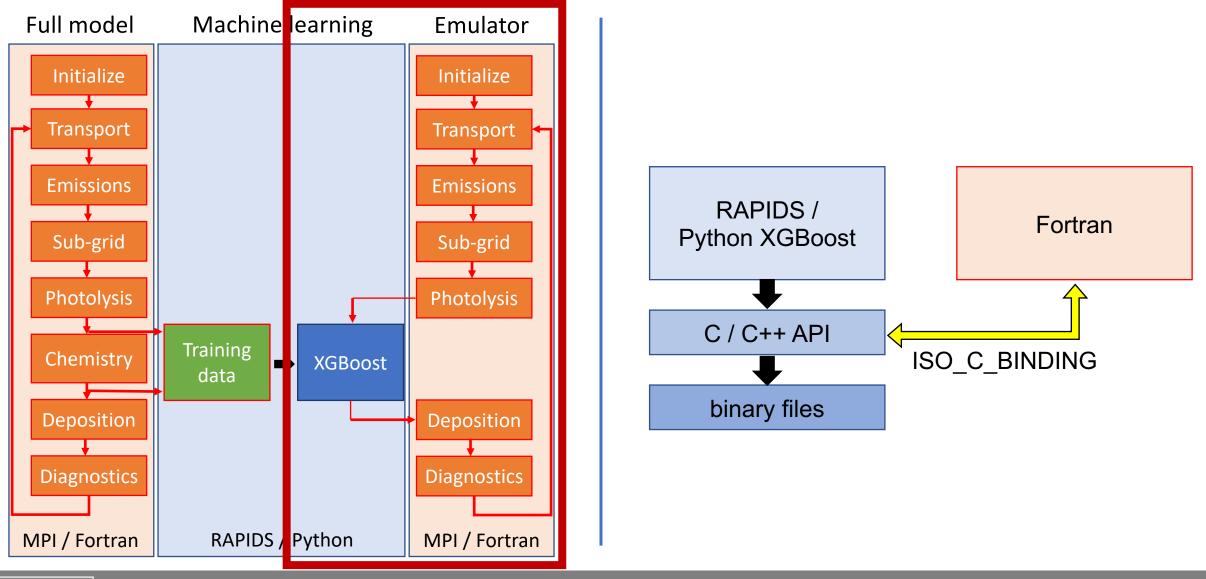




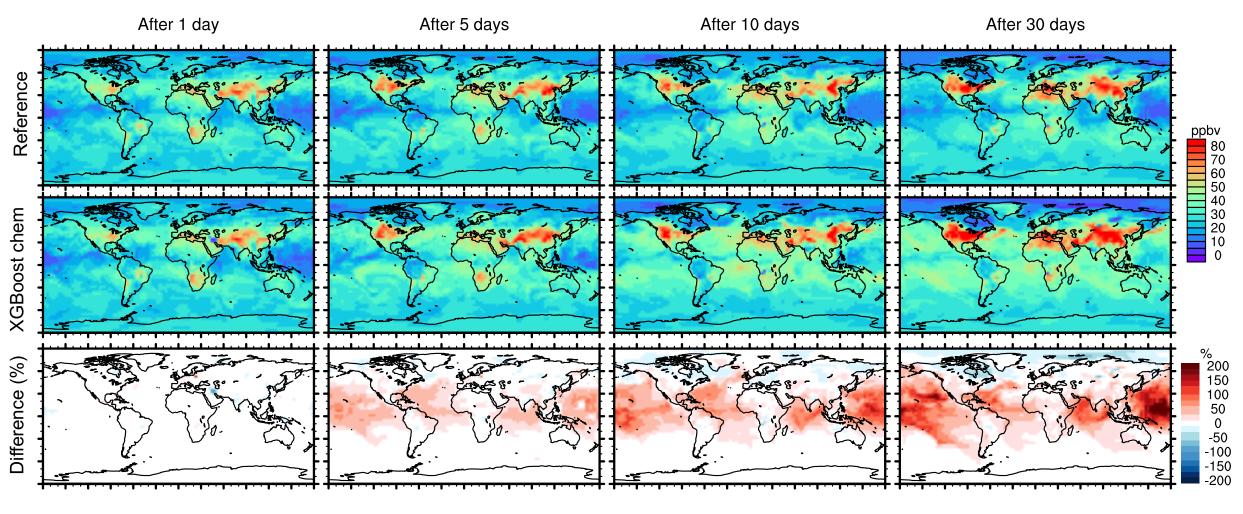




1-month simulation with XGBoost emulator

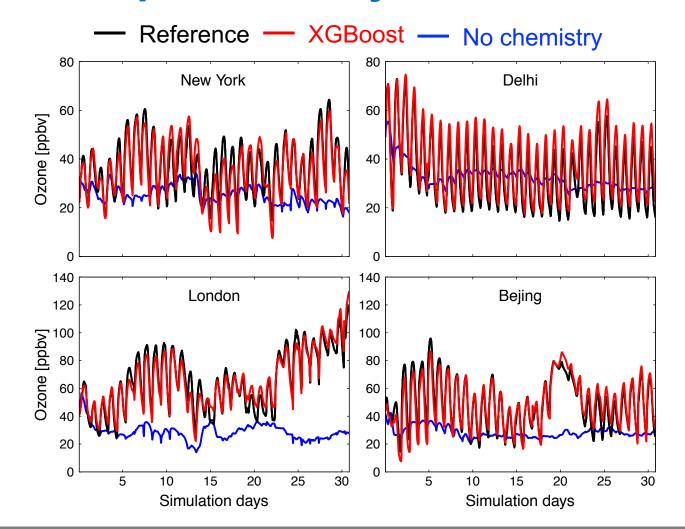


GMAO

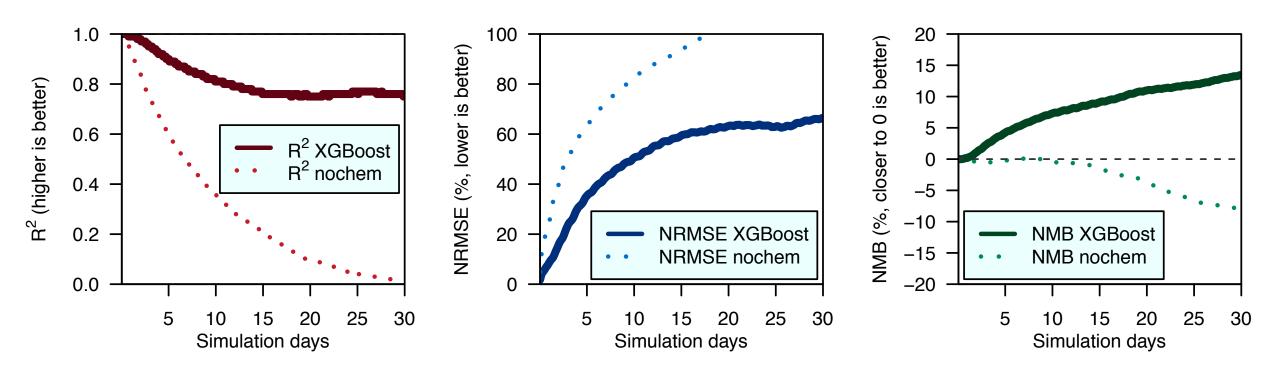


G

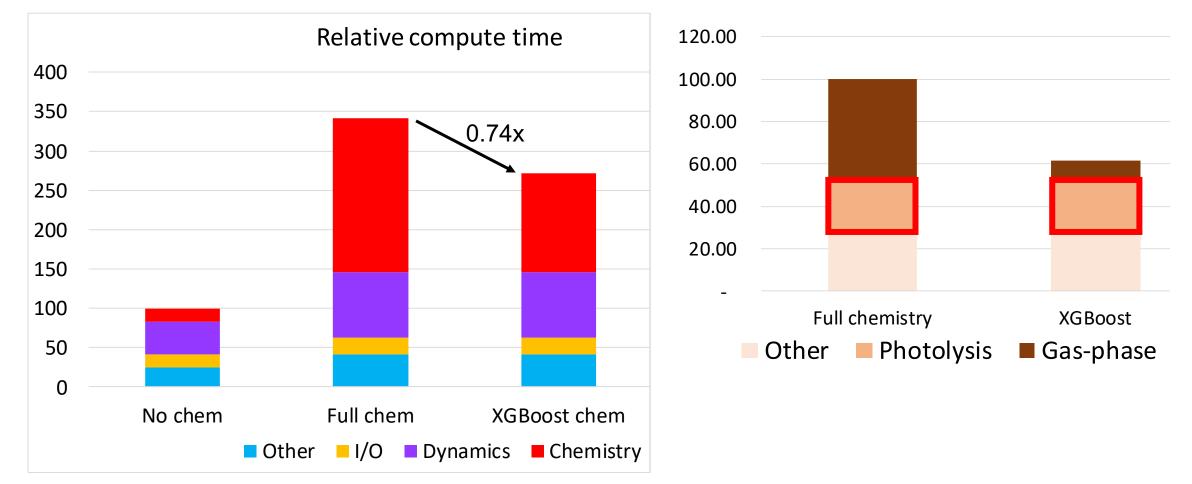
Surface concentrations over polluted regions are well reproduced by ML model



Machine learning model remains stable over the long-term

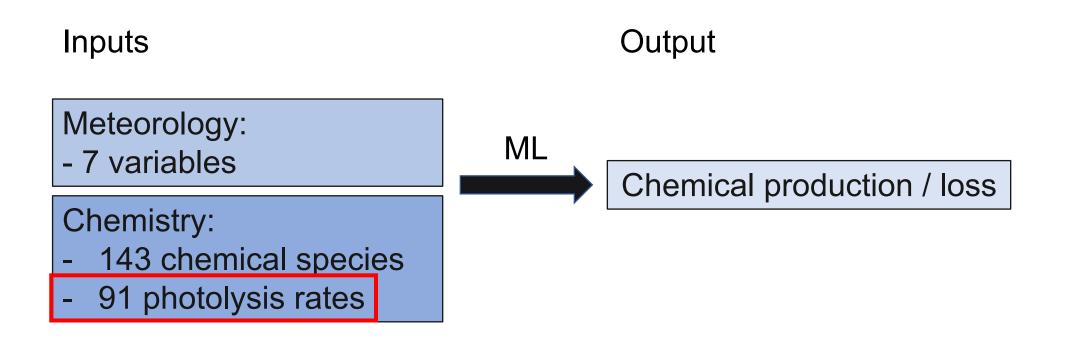


Model speedup



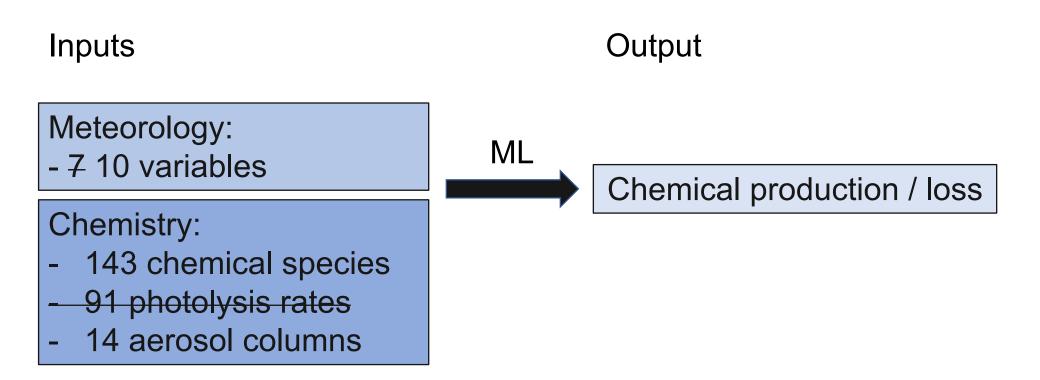
- > XGBoost model is ~25% faster than reference model
- Chemistry is still slowest part of the model

Incorporating photolysis calculation into the ML algorithm



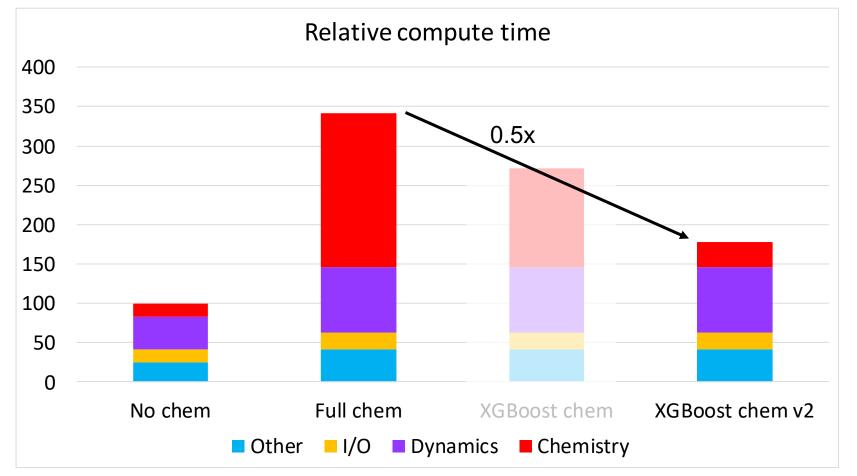
> Original ML algorithm uses as input 91 photolysis rates

Incorporating photolysis calculation into the ML algorithm



- > Original ML algorithm uses as input 91 photolysis rates
- Replace photolysis rates with quantities needed to compute photolysis

Model speedup with optimized XGBoost model



XGBoost chemistry model is now ~2 times faster than reference model

Chemistry >6x faster than before, dynamics becomes bottleneck

Summary

- > Machine learning can help speed up air quality models by at least 2-5x
- > Benefits:
 - Better use of satellite observations
 - Improve (short to medium-term) air quality forecasts
- > Ongoing work:
 - Train on very large data sets (>1 TB)
 - Better coupling between CPU and GPUs (model side)
 - Dynamics for >200 chemical species is still slow

Keller and Evans: Application of random forest regression to the calculation of gas-phase chemistry within the GEOS-Chem chemistry model v10, GMD, 2019.

National Aeronautics and Space Administration

