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Air pollution is a global problem -
mitigating it is a big opportunity

World Bank: ~$5 trillion
in welfare losses in 2013
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therapy such as oral rehydration therapy;60 and improved 
nutrition of young children and pregnant women.61

By contrast, the numbers of deaths caused by ambient 
air, chemical, and soil pollution—the forms of pollution 
associated with modern industrial and urban 
development—are increasing. The number of deaths 
attributable to PM2·5 air pollution is estimated to have 
risen from 3·5 million (95% CI 3·0 million–4·0 million) 
in 1990 to 4·2 million (3·7 million–4·8 million) in 2015, a 
20% increase. Among the world’s 10 most populous 
countries in 2015, the largest increases in numbers of 
pollution-related deaths were seen in India and 
Bangladesh, as reported by the Health Effects Institute. 
The increase in the absolute number of deaths and 
DALYs attributable to pollution reflects an increased 
population size, an ageing population, and increased 
levels of air pollution in low-income and middle-income 
countries.23

An analysis of future trends in mortality associated with 
ambient PM2·5 air pollution finds that, under a “business 
as usual scenario”, in which it is assumed that no new 
pollution controls will be put into place, the numbers of 
deaths due to pollution will rise over the next three 
decades, with sharpest increases in the cities of south and 
east Asia.35,121 These trends are projected to produce a more 
than 50% increase in mortality related to ambient air 
pollution, from 4·2 million deaths in 2015 to 6·6 million 
deaths in 2050 (95% CI 3·4 million–9·3 million).35,122 
These projections are corroborated by an analysis107 of the 
health effects of coal combustion in China. Population 
ageing are major contributors to these projections of 
growth and absolute increased numbers of deaths from 
pollution-related disease.

A second analysis123 examining the potential benefits of 
reducing PM2·5 pollution projects that aggressive controls 
could avoid 23% of current deaths related to air pollution. 
However, because of population ageing and consequent 
increases in age-related mortality from cardiovascular 
disease, chronic obstructive pulmonary disease, and lung 
cancer, and also because the exposure–response 
association between PM2·5 pollution and non-
communicable diseases is relatively strong at lower levels 
of exposure but weaker at higher levels, Apte and 
colleagues124 note that it will be easier to achieve reductions 
in mortality in less heavily polluted areas of western 

(Panel 3 continued from previous page)

Mercury
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Convention on Mercury and has developed guidance for 
phasing out mercury-containing instruments in the health 
sector.120 Urgent attention by health departments and ministries 
is needed to address the phase out of import, export, and 
manufacture of mercury thermometers, sphygmomanometers, 
and other mercury-containing instruments in health care.

Cancer
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(IARC) has the responsibility of determining whether 
chemicals are human carcinogens and conducts a range of 
research on cancer worldwide. IARC provides evidence-
based guidance on cancer control to countries around 
the world.

Figure 4: Global estimated deaths (millions) by pollution risk factor, 2005–15
Using data from the GBD study42 and WHO.99 IHME=Institute for Health Metrics and Evaluation.
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Figure 5: Global estimated deaths by major risk factor and cause, 2015
Using data from the GBD Study, 2016.41
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For the Health Effects Institute 
special report on the state of 

global air see https://www.
stateofglobalair.org

The Lancet (2017): Air pollution is
responsible for 6-7 millions death / year
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Ø 56 million grid cells (25x25 km2, 72 levels), 250 chemical species

Numerical simulation of atmospheric chemistry
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NASA’s GEOS composition forecast (GEOS-CF) model 
conducts global air quality simulations in near real-time
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https://fluid.nccs.nasa.gov/cf/

https://portal.nccs.nasa.gov/datashare/gmao/geos-cf/v1/

https://opendap.nccs.nasa.gov/dods/gmao/geos-cf/

https://gmao.gsfc.nasa.gov/weather_prediction/GEOS-CF/

https://fluid.nccs.nasa.gov/cf/
https://portal.nccs.nasa.gov/datashare/gmao/geos-cf/v1/
https://opendap.nccs.nasa.gov/dods/gmao/geos-cf/
https://gmao.gsfc.nasa.gov/weather_prediction/GEOS-CF/
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Need models to fill temporal and spatial gaps in observations
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Surface observations are not global

TOAR (Schulz et al., 2017)

Satellite observations are 
also discontinuous
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Atmospheric chemistry models are computationally expensive
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www.nccs.nasa.gov

Ø High-resolution chemistry simulation requires >1000 CPU’s
Ø Throughput: approx. 20 simulation days in 24 hours
Ø Outputting the full chemical state: ~1.5 TB / simulation day
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Numerical simulation of atmospheric composition

christoph.a.keller@nasa.gov

https://digital.library.unt.edu/ark:/67531/metadc11954/m1/37/
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Chemistry accounts for more than 50% of compute time
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High computational cost of chemistry currently 
prevents optimal use of observations 

christoph.a.keller@nasa.gov

NASA/NOAA

OMPS (O3)

www.nasa.gov

openaq.org

purpleair.com
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Replace slow chemical integrator with machine learning model
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Use machine learning to emulate chemical 
transformations in the atmosphere

Ø Algorithm: extreme gradient boosted decision trees (XGBoost)
Ø Train separate algorithm for each species

Meteorology:
- 7 variables

Chemical production / loss
Chemistry:
- 143 chemical species
- 91 photolysis rates

ML

Inputs Output

christoph.a.keller@nasa.gov
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Machine learning workflow
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Training data (netCDF format)
O3

NO2

Sun intensity

Temperature

…

O3 prod/loss

Features Labels

Subsample & flatten, 
write to csv (xarray)

Train (XGBoost):

127

~100M

- Read csv, convert to DMatrix
- Train

Setup 1
Read on CPU (Intel Haswell)
Train on CPU 

Setup 2:
Read on CPU
Train on GPU (V100)

Setup 3:
Read on GPU (cuDF/cuIO)
Train on GPU (dask-XGBoost)
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XGBoost training benchmarks
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XGBoost reproduces target concentrations well 
(single-step prediction)
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XGBoost reproduces target concentrations well 
(single-step prediction)
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XGBoost solution reflects known features of chemical kinetics
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XGBoost solution reflects known features of chemical kinetics
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Photolysis
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XGBoost solution reflects known features of chemical kinetics
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NOx chemistry

Photolysis
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XGBoost solution reflects known features of chemical kinetics
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NOx chemistry

VOC chemistry

Photolysis
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MPI / Fortran
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Training 
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Full model Emulator

MPI / Fortran RAPIDS / Python

Machine learning

1-month simulation with XGBoost emulator

christoph.a.keller@nasa.gov

RAPIDS / 

Python XGBoost

C / C++ API

Fortran

binary files

ISO_C_BINDING
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Emulator model is generally accurate, but 
overestimates ozone concentrations over remote regions
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Surface concentrations over polluted regions are well 
reproduced by ML model
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Machine learning model remains stable over the long-term
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Ø XGBoost model is ~25% faster than reference model
Ø Chemistry is still slowest part of the model
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Incorporating photolysis calculation into the ML algorithm

Ø Original ML algorithm uses as input 91 photolysis rates

Meteorology:
- 7 variables

Chemical production / loss
Chemistry:
- 143 chemical species
- 91 photolysis rates

ML

Inputs Output

christoph.a.keller@nasa.gov



Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

Meteorology:
- 7 10 variables

Chemical production / loss
Chemistry:
- 143 chemical species
- 91 photolysis rates
- 14 aerosol columns

ML

Inputs Output

Incorporating photolysis calculation into the ML algorithm

Ø Original ML algorithm uses as input 91 photolysis rates
Ø Replace photolysis rates with quantities needed to compute photolysis

christoph.a.keller@nasa.gov
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Model speedup with optimized XGBoost model 
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Ø XGBoost chemistry model is now ~2 times faster than reference model
Ø Chemistry >6x faster than before, dynamics becomes bottleneck
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Summary

Ø Machine learning can help speed up air quality models by at least 2-5x
Ø Benefits:

• Better use of satellite observations
• Improve (short to medium-term) air quality forecasts

Ø Ongoing work:
• Train on very large data sets (>1 TB)
• Better coupling between CPU and GPUs (model side)
• Dynamics for >200 chemical species is still slow

Keller and Evans: Application of random forest regression to the calculation of gas-phase chemistry within the 
GEOS-Chem chemistry model v10, GMD, 2019.

christoph.a.keller@nasa.gov
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