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What is Urban Air Mobility (UAM)? e

* A safe, efficient, accessible air transportation system for
passengers and cargo within urban areas

* Enabled by convergence of electric propulsion and
autonomous technologies in aviation

* Concept of Operations:
 10-100 mile trips (2-3x faster than cars?)
 Operate from new ‘vertiport’ infrastructure : -
and/or existing heliports as a part of multi- '
modal transportation
e 1-9 passengers (up to ~2000 Ib payload)
* Single pilot, remote operator, or ‘autonomous’
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Key Feasibility Barriers to UAM e

Ease of certification
Affordability
Safety
Ease of use

Door-to-door trip speed
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Average trip delay
Community noise
Ride quality
Efficiency

Lifecycle emissions

NASA On-Demand Mobility Roadmapping Workshops, 2015-16
http://www.nianet.org/ODM/roadmap.htm
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NASA UAM Reference Vehicles e

« Consistent, known assumptions

* Fully documented & publicly available

Objectives

« Common reference models for researchers across UAM community
* Investigate vehicle technologies & identify enabling technologies

« EXxpose design trades and constraints

 Allow simulation of vehicle operations

* Develop tools & methods
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NASA’s Role in UAM Vehicle Concepts

N N+1 ;55355 N+2 55035

Current helicopter operations  First operational UAM vehicles Next generation UAM vehicles

1. Develop N+1 Reference Vehicles - Use for technology, system, and market studies
2. Explore N+2 UAM vehicles & technologies > Determine high-payoff technologies and research areas

3. UAM network modeling > Analyze the impact of a vehicle-level technology at the network-system level

Network and Mission Model
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Background

Initial Reference Vehicles
Johnson et al.
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Updated Reference Vehicles:
§ized to UAM Mission

% “Silva et al.
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Vehicle Technologies: N+1
Assumptions; N+2 Research Areas
Antcliff et al.

N+1 Reference

Vehicles — add:

e Tiltwing

e Tiltduct

* Quiet Single
Main Rotor

AHS SM_AEROMECH_2018_05

AHS 74-2018-0185

AlAA 2018-3847

AlAA 2018-3677
NASA TM-2019-22007

UAM Mission Requirements
Patterson et al.

UAM Network Modeling
' Kohlmanetal. -

Network and Mission Model
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2020+

Further vehicle research:

*  UAM vehicle workshops
* Technology development
* Tool development

* Design trades

* Network modeling
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Approach

e Document assumptions for N+1 reference vehicles

* Explore potential additional research areas for N+2 vehicles

* Five major systems:

1. Wing

2. Rotor

3. Propeller/fan installation
4. Energy (Fuel) system

5. Engine system
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1. Wing

N+1 Assumptions
e Carbon composite construction: - gfﬁﬂé

* Intermediate-modulus carbon composites
* Parametric wing weight, with technology factors

* NASA general aviation airfoils:
e Partial laminar flow
* Benign stall characteristics
* Benign performance degradation with contaminants |

N+2 Research Area T
Fairchild VZ-5

Deflected Slipstream

* Benefits: ‘rigid’ aircraft; efficient cruise flight; improved transition
characteristics; optional short takeoff and landing (STOL) capability

e Tested in 1950s/1960s: Ryan VZ-3; Fairchild VZ-5; Robertson VTOL

* Enabling technologies: distributed electric propulsion; improved
control systems; improved construction materials; active flow control
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2. Rotor

N+1 Assumptions:
e Carbon composite construction, with lightweight cores

* Leading edge erosion strips; anti-icing treatments
 Airfoil: Boeing VR-12 (working section); SSC-A09 (tip)

N+2 Research Area
Low-Noise Edgewise-Flight Rotors

* Recent improvements in single main rotor helicopters: potential total noise reduction > 6dB
* Variable rotor speed operation
* Higher harmonic control (HHC); individual blade control (IBC)
» Blade shaping (airfoil, planform, tip)
* NOTAR (no tail rotor)-type solution
* Trim state modification by X-force
e Operational adjustments

* Multi-rotor UAM: potential for greater noise reduction
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3. Propeller/Fan Installation

N+1 Assumptions Ryan XV-5B

* Composite construction, fixed/variable pitch
* Tip shape (performance); low tip speed (noise)

+AY .
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N+2 Research Areas x

Stacked Propellers/Rotors Nla
» Co-rotating, coaxially spaced propellers/rotors
* Low complexity, applicable to all vehicle sizes
e Benefits: performance and/or acoustics

SNECMA C450
Coléoptere

Bell X-22

Ducted Propellers/Fans
* Benefits: improved thrust/efficiency, reduced noise, terminal safety, passenger acceptability
* Tilting duct, coleopter, and lift fan have shown promise

* Electric propulsion reduces integration challenges
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4. Energy (Fuel) System e

N+1 Assumptions o)
F e

* Conventional fuels
» Battery specific energy 400 Wh/kg (pack):

NASA X-57 Li-ion Battery
* Cell: 220Wh/kg

* 650 Wh/kg (cell-level), 30% packing weight
* Charge to 95% capacity, discharge to 15% capacity

* Pack: 120Wh/kg
e 4.5C

* Maximum C-rate: 2-3C

N+2 Research Areas
Battery installation infrastructure

* Battery management systems; packing techniques

Solid Oxide Fuel Cell (SOFC) with Liquefied Natural Gas (LNG)
* Compared to 300 Wh/kg battery packs, SOFC with LNG may provide:

* Increased range

Reduced carbon dioxide emissions

Faster turn-around times

Reduced operating costs & infrastructure costs

Other alternative energy systems E.g. fuel cells, flow batteries, other battery chemistries
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5. Engine System

N+1 Assumptions

* Existing turboshaft engines

* Existing aviation diesel engines (reciprocating
internal combustion engines)

e Existing aviation & automotive electric motors

e Various hybrids

N+2 Research Area
Improved Small Engine Weight Efficiencies (100-1000 shp)

* Small turboshafts: targeted research to improve power-to-weight and specific fuel consumption
* Metal 3D-printing may enable low-cost manufacturing of recuperation options

X-57 motor test stand

* Small aviation diesels: advanced materials and improved design layouts to improve power-to-
weight ratio; maintain good specific fuel consumption (SFC)

* Electric motors: improve power-to-weight; lesser vehicle-level payoff relative to improvements in
electric energy storage methods or small engine weights
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Summary: N+2 Vehicle Technology Research Areas e
1. Wing

» Deflected slipstream

2. Rotor Discussion Questions:
* Low-noise edgewise rotors 1. Do you agree?
3. Propeller/fan Installation 2. What are we missing?

 Stacked propellers/rotors
* Ducted propellers

4. Energy (Fuel) System

» Battery installation infrastructure
e SOFC with LNG
e Other alternative fuel systems

5. Engine System
* Small engine weight efficiencies

siena.k.whiteside@nasa.gov 13



Backup



Paper References e

Johnson, W, Silva, C., and Solis, E., “Concept Vehicles for VTOL Air Taxi Operations,” AHS Technical Conference on
Aeromechanics Design for Transformative Vertical Flight, AHS International, 2018. [AHS SM_AEROMECH_2018 05]

Patterson, M. D., Antcliff, K. R., and Kohlman, L. W., “A Proposed Approach to Studying Urban Air Mobility Missions
Including an Initial Exploration of Mission Requirements,” AHS International 74th Annual Forum, AHS International, 2018.
[AHS 74-2018-0185]

Silva, C., Johnson, W. R., Solis, E., Patterson, M. D., and Antcliff, K. R., “VTOL Urban Air Mobility Concept Vehicles for
Technology Development,” 2018 Aviation Technology, Integration, and Operations Conference, American Institute of
Aeronautics and Astronautics, 2018. [AIAA 2018-3847]

Kohlman, L. W., and Patterson, M. D., “System-Level Urban Air Mobility Transportation Modeling and Determination of
Energy-Related Constraints,” 2018 Aviation Technology, Integration, and Operations Conference, American Institute of
Aeronautics and Astronautics, 2018. [AIAA 2018-3677]

Antcliff, K. R., Whiteside, S. K. S., Kohlman, L. W., and Silva, C., “Baseline Assumptions and Future Research Areas for
Urban Air Mobility Vehicles” 2019 SciTech Forum and Exhibition, American Institute of Aeronautics and Astronautics, 2019.
[AIAA 2019-0528]

Kohlman, L. W., Patterson, M. D., and Raabe, B. E., “Urban Air Mobility Network and Vehicle Type—Modeling and
Assessment,” NASA TM-2019-220072, 2019. [NASA TM-2019-220072]

siena.k.whiteside@nasa.gov 15



