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ABSTRACT 

The relationship between fatigue life and fatigue crack propagation rate is 
explored with a new cohesive damage model. The parameters of the model are 
obtained from idealizations of S-N diagrams used in engineering design. The model is 
based on the hypothesis that both stable tearing damage and damage due to cyclic 
loading are representations of a density of microcracks and, therefore, a single damage 
variable can describe the state of damage. This assumption implies that the quasi-static 
cohesive law that describes tearing is also the envelope of the fatigue damage. Fatigue 
damage within the cohesive envelope is assumed to accumulate at a rate that depends 
on the displacement jumps. The fatigue model was implemented as a UMAT 
subroutine for Abaqus cohesive elements by adding fatigue damage accumulation to a 
cohesive model based on the Turon quasi-static cohesive law. The analyses were 
conducted using a simplified cyclic loading procedure in which the maximum applied 
load is kept constant and the computational expense of cycling the load is avoided. 
The predicted propagation rates for a double cantilever beam (DCB) specimen were 
compared to experimental results for IM7/8552 graphite/epoxy tape. 

INTRODUCTION 

Engineering calculations of fatigue life are usually performed using stress-life 
diagrams, called S-N curves [1]. These curves represent the number of cycles that a 
material can sustain at a given stress level before failure. The data to generate these 
curves is obtained by cycling smooth or notched specimens until failure. The S-N 
curves of many materials are simple and can be approximated by straight lines in 
a log-log plot. In addition, analysis techniques have been developed to account for the 
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effect of the ratio of the minimum to the maximum stress on the S-N curves. Since 
these calculations essentially depend on the knowledge of the stress state, predicting 
fatigue life with S-N diagrams does not require specialized computational tools. 

On the other hand, predicting fatigue crack propagation is significantly more 
difficult. First, fracture mechanics tools are required because the rate of crack 
propagation, defined as a crack extension, da, per incremental number of cycles, dN, is 
a function of the energy release rate (ERR), G. The rate of crack propagation in fatigue 
is often described with the Paris law: 
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where G is the ERR and C and m are material constants that vary with stress ratio and 
mode mixity. When Eq. 1 is plotted on log-log axes, it appears as a straight line 
relating the propagation rate da /dN  to G. 

Cohesive element formulations to predict the nucleation and propagation of cracks 
in composite structures subjected to cyclic fatigue have been the subject of intense 
development for almost two decades. The main difficulty in the development of a 
cohesive fatigue damage model consists in linking the rate of change of the damage 
variable, d, to the crack propagation rate [2]. Turon’s fatigue model [3] proposes 
linking the two as follows:  
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where d / dd N  is the rate of change of the damage variable, lpz is the length of the 
process zone, i.e., the zone where the damage is partially developed, ∆ 

f is the 
maximum displacement jump of the cohesive law, ∆c is the displacement jump for 
damage initiation, and d / da N  is the propagation rate expressed by the Paris law. The 
damage variable is defined such that (1-d) is the ratio of the damaged stiffness over the 
initial stiffness of the cohesive law. The length of the process zone appears in this 
expression because the damage variable at any particular point along the path of the 
crack must gradually increase from zero to one as the entire process zone traverses that 
point. Therefore, for a given propagation rate, d / da N , the longer the lpz, the larger 
number of cycles for the damage variable to reach one. Since the fatigue damage rate 
at a material point depends on the damage state at other locations, the model described 
by Eq. 2 is nonlocal. 

A number of local damage models that attempt to predict fatigue crack 
propagation without the Paris law have also been proposed. In fact, most of the earlier 
cohesive fatigue models were local formulations. For instance, Nojavan [4] proposed a 
local model for mixed-mode delamination in which an S-N response is used to initiate 
damage. After initiation, an empirical expression based on the displacement jumps is 
used to accumulate damage. As in all of the local models presented in the literature, 
the coefficients of the damage model are determined by trial and error by comparing 
the predictions with experimental results. The review by Bak et al. [5] of experimental 
observations also provides an insightful classification of various fatigue models and 
their predictive capabilities. 



In the proposed model, fatigue damage inside the cohesive law envelope is 
assumed to accumulate according to a simple two-parameter law at a rate that depends 
on the displacement jump. Unlike other local models of this type, the two parameters 
of the damage law are solved using an idealization of S-N diagrams commonly used in 
engineering design.  

The present paper is organized as follows. In the following section, an idealization 
of S-N diagrams based on estimates of the endurance limit is presented. Engineering 
approaches are used to account for the stress ratio R. A two-parameter damage law is 
presented next. It is shown that the two parameters are functions of the stress ratio, and 
that they can be obtained from the corresponding S-N diagrams. Then, the ability of 
the model to predict crack propagation rates is evaluated by examining the results of a 
double cantilever beam (DCB) test. 

A COHESIVE FATIGUE MODEL BASED ON AN ASSUMED S-N DIAGRAM 

The S-N curve is one of the simplest descriptions of the failure of a material as a 
function of the applied cyclic load. For example, the transverse tension fatigue lives of 
unidirectional IM7/8552 graphite/epoxy flexure specimens oriented at 90° to the 
longitudinal axis are plotted in Fig. 1 [6]. The specimens were subjected to a stress 
ratio R = σ min/σ max = 0.1. Despite the fact that the experimental results depend on the 
volume of the specimen, the mode of testing, and the degree of surface polishing, the 
fatigue data, when normalized by the static strength, σc, can be approximated by a 
straight line. (Note: subscripts are used to identify properties of the material or model, 
as opposed to operating variables, identified with superscripts). 

 
Figure 1. S-N curve for matrix failure of IM7/8552 at R = 0.1 [6]. 

For some materials, including steels, the S-N diagram requires three lines. The 
first of these lines represents the low-cycle or ductile response of a material when it is 
subjected to high cyclic stresses. The second line represents the high-cycle response. 
The last line is horizontal, which represents the endurance limit cutoff below which 
the lives of the specimens are not affected by fatigue damage. Fleck [7] defines the 



endurance limit, σe, as the stress amplitude that a smooth unnotched sample will 
sustain without fracture for 107 cycles. The results in Fig. 1 suggest that a single line 
fits the low-cycle and high cycle portions of the graph, so there is no need to 
distinguish between the two when considering the transverse tensile loading of 
IM7/8552. However, the arrow next to one of the data points in Fig. 1 indicates that a 
runout occurred for that point. Due to the absence of data and for simplicity, no 
endurance cutoff was considered in the present work.  

Estimating the Endurance Limit 
A particularly appealing aspect of the straight line approximation of an S-N curve 

is that the entire curve is described by a single value: the endurance limit [1]. In 
addition, the endurance limit can be estimated quite easily from the material strength. 
As early as the 19th century, Goodman [8] observed that the endurance limit of steels 
subjected to fully reversed loading is approximately equal to 1/3 of the yield strength. 
Fleck [7] performed fatigue tests on materials including polymer foams, elastomers, 
woods, polymers, composites, metallic alloys, and engineering ceramics and 
confirmed that the 1/3 ratio is valid for a wide range of materials. This observation is 
evident in Fig. 2, which was generated using the 3078 materials in the complete CES 
Selector material library [9]. 

 

 
Figure 2. Endurance limit vs. tensile strength [chart courtesy of Stéphane Gorsse, ICMCB-

CNRS and Bordeaux INP, France; property chart generated with the CES 
Edupack, Granta Design]. 

Effect of stress ratio R on Endurance Limit 
The endurance limit is usually measured using a rotating-beam specimen that 

subjects the material sample to a full reversal of the load ( 1R = − ).  A procedure to 
estimate the endurance limit for other values of the stress ratio is as follows. Consider 
the cyclic loading illustrated in Fig. 3, where R is greater than zero. 



 
Figure 3. Cyclic loading. 

The stress amplitude, ampσ , and the mean stress, meanσ , can be written in terms of 
the stress ratio R as: 
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The Goodman diagram [8], a plot of alternating versus mean stress, is a design 
tool that represents the locus of stress states corresponding to a runout stress or a given 
number of cycles to failure, for example, 107. The Goodman model postulates a 
straight line connecting the endurance limit, σe, on the y-axis with the ultimate stress, 
σc, on the x-axis, as shown in Fig. 4. The allowable stress amplitude, ampσ , is then 
defined as a function of mean stress, meanσ , as 
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Figure 4. Goodman diagram. 

The endurance max
eRσ σ=  is defined as the maximum stress for a stress ratio R 

that satisfies the Goodman relation. The endurance is then obtained by substituting  
Eq. 3 into Eq. 4: 
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Substituting Fleck’s [7] expression, ce σσ 3
1= , into Eq. 5 gives the endurance as a 

function of the stress ratio R: 
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The values of the endurance calculated from Eq. 6 are listed in Table I for several 
typical values of R. It can be observed that the endurance for R = 0.1 is 0.53eR cσ σ= . 
This value is consistent with the endurance used to fit the data in Fig. 1. 

In summary, the present model relies on Eq. 6 and the assumption of linearity of 
an S-N log-log plot to establish the S-N diagram for any material and stress ratio. 

TABLE I. ENDURANCE AS A FUNCTION OF STRESS RATIO R. 

R eRσ  

-1 ( )1
3 c eσ σ=  

0 1
2 cσ  

0.1 0.53 cσ  

0.5 2
3 cσ  

 

Cohesive Fatigue Damage Model 
Consider an unnotched bar subjected to tensile cyclic loads, as shown in Fig. 5. A 

fatigue crack is assumed to occur at the center of the bar. The two-piece failure of the 
bar can be assumed to occur after a number of cycles, which depends on the maximum 
applied stress load, σ max, and the life specified by the S-N diagram. 

 
Figure 5. Unnotched bar subjected to cyclic loads. 

A cohesive fatigue law is illustrated in Fig. 6a. The outline of the cohesive law is 
composed of an elastic range O-E, followed by the “tearing” curve, E-T. Since any 
point outside of the cohesive outline corresponds to a failed material state, the outline 
represents the envelope of the damage process. 

When the maximum applied stress, σ max, is less than the strength σ c, the material 
damages in fatigue without ever traversing the portion A-E-F of the cohesive law. 
Instead, at any point P (Fig. 6b) damage d accumulates with the number of cycles. 
Consequently, the maximum displacement jump λ increases gradually from point A to 
point F. At point F, σ max exceeds the load-carrying ability of the material defined by 
the tearing portion E-T of the cohesive envelope and unstable failure ensues.  



 
Figure 6. Cohesive law with fatigue damage – definition of failure envelope and 

variables. 

The evolution of fatigue damage is a function of the applied cyclic load and the 
damage state. The following two-parameter heuristic fatigue damage model is 
proposed: 
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where the damage norm D is defined as [3]: 
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and where the relative displacement jump at any point P is 
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The damage norm D can be interpreted as the ratio of the energy dissipated during 
the damage process over the critical energy release rate. Consequently, D is also the 
ratio of the damaged area over the area associated with the local discretization [3]. 
This norm is a linear function of the displacement jump λ* and it is independent of the 
penalty stiffness. The loss of stiffness (1-d) of the cohesive law is related to D as 
follows: 
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For the one-dimensional constant-amplitude problem considered in Fig. 5, the total 
number of cycles from A to unstable failure (point F in Fig. 6a) can be calculated by 
integrating Eq. 7 for the range of damage D = 0 to D F. The result is: 
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where DF is the damage at point F (Fig. 6a): 
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Eq. 11 represents the number of cycles to failure under a constant amplitude cyclic 
load in terms of the maximum stress ratio, max / cσ σ . The pair of coefficients β, γ  that 
defines the damage model in Eq. 7 can be determined by fitting the results of Eq. 11 
onto an S-N curve. The next section outlines the procedure to determine these 
coefficients. 

Determination of Coefficients β and γ  for IM7/8552 

The coefficients β(R) and γ(R) are functions of the stress ratio R. They are 
calculated by fitting the curves obtained by the integral in Eq. 11 to the material S-N 
curve for the corresponding stress ratio. The fitting is achieved by specifying two 
anchor points. The first point corresponds to a high maximum stress ratio that 
represents the end of the low-cycle fatigue portion of the S-N curve. In ductile 
materials, the range between the first cycle and the first anchor point can be 
significant. In the present study, this point is arbitrarily set equal to two cycles, which 
translates into a short ductile range that appears to fit data shown in Fig. 1 well. The 
second anchor point is set by the endurance limit, which is calculated with Eq. 6 and 
reported in Table I. The calculation of the constants β and γ  involves the solution of a 
nonlinear system of two equations for the range of stress ratios.  

The coefficients β and γ for several typical stress ratios are reported in Table II, 
and the corresponding S-N curves are shown in Fig. 7. The curve for R = 0.1 is darker 
than those for other stress ratios to highlight the fact that the test data, also shown, 
corresponds to this stress ratio. 

Finally, it is important to emphasize that the coefficients (β ; γ ) can be determined 
by fitting the results of Eq. 11 to experimental data. However, in the present work, 
they are calculated based on the endurance limits estimated with the use of Eq. 6. 

 
 

TABLE II. COEFFICIENTS (β ; γ ) FOR SEVERAL VALUES OF THE STRESS RATIO. 

R β γ 
-1 13.611     0.001911 
0 21.842 0.002142 

0.1 23.649 0.002194 
0.5 38.033 0.002643 



 

  
Figure 7. S-N curves for different stress ratios obtained using Eq. 11 and the coefficients in 

Table II. The test data shown by the symbols is for R = 0.1. 

Predicting Crack Propagation with Simplified Cyclic Loading (SCL) 
The cohesive fatigue model proposed in Eq. 7 and the determination of the 

coefficients β and γ described in the previous section are based on the assumption that 
damage, i.e., a measure of microcrack density and loss of stiffness at a material point, 
characterizes simultaneously a degradation of the material by fatigue or by tearing. In 
other words, the model assumes that both states of damage evolve together such that a 
reduction in remaining life is always accompanied with a degradation of the tearing 
resistance and vice-versa. This assumption ensures that the envelope of the cohesive 
law is valid for tearing, for fatigue, or for any combination of the two so that a single 
variable, d, is sufficient to track the effects of all aspects of the past loading history at a 
material point. Therefore, the model is notionally capable of accounting for damage 
accumulation anywhere within the cohesive envelope. Although the model 
coefficients are determined from the constant maximum stress conditions of an S-N 
diagram, the model can capture the fatigue damage accumulation along any loading 
path. 

The fatigue damage model was implemented in a finite element framework as a 
cohesive constitutive model and solved within a simplified cyclic loading (SCL) 
procedure that avoids the computational expense of having to cycle the applied load. 
In SCL, the maximum load is held constant. For simplicity, the frequency of cyclic 
loading is 1 Hz, so that the analysis pseudo-time represents the number of cycles, as 
illustrated in Fig. 8. The effect of cycling on fatigue damage is represented by the 
stress ratio R within the constitutive damage model. The analysis is conducted in two 
steps. The first step from 0 to 1 introduces the applied load (force or displacement). 
No fatigue damage is allowed in the first step. During the second step, the applied load 
is held constant but the solution is recalculated to account for the internal load 
redistribution that occurs with fatigue and tearing damage accumulation. 



 
Figure 8. SCL procedure: the load is held constant during the analysis while 

the effects of loading amplitude, stress ratio, cycle count, and 
damage accumulation are processed within the constitutive model. 

A user-written UMAT subroutine for Abaqus cohesive elements was developed. 
UMAT subroutines are called by the Abaqus implicit solver at every integration point, 
at every equilibrium iteration of every time increment. The subroutine receives the 
current damage state, the displacement jump, and the analysis time increment. The 
output of the subroutine is the damage state. A UMAT for fatigue damage was written 
by modifying a UMAT of Turon’s quasi-static cohesive model [10]. Implementation 
of the fatigue model within the quasi-static cohesive UMAT only required adding the 
calculation of the fatigue damage. 

VALIDATION: CRACK PROPAGATION IN MODE I AND MIXED MODE 

Analysis of Double Cantilever Beam Specimen 
The double cantilevered beam (DCB) specimen is a standardized test method for 

determining the onset of delamination propagation for mode I loading [11]. The DCB 
specimen has also been used for determining the delamination growth rate in fatigue. 
The results of an extensive characterization of delamination onset and growth under 
Mode I fatigue loading of IM7/8552 graphite/epoxy unidirectional tape specimens by 
Murri [12] were used in the present study to evaluate the ability of the proposed model 
to predict delamination propagation rates. 

The DCB specimens tested by Murri were manufactured with 24 plies of 
IM7/8552 unidirectional tape with a thin Teflon film at the mid-plane at one end to 
induce an initial delamination. The specimens were nominally 178-mm long and 
25.4-mm wide. The configuration of the test specimen is defined by the nominal 
dimensions reported in Table III. 

TABLE III. DIMENSIONS OF DCB SPECIMEN IN MM. 

a0 b h 
50.8 25.4 2.25 

 
The parametric model of a DCB specimen shown in Fig. 9 was constructed in 

Abaqus/Standard [13]. The model parameters can be used to change the dimensions of 
the specimen and the number of elements in each of the regions of the model. For 
computational efficiency, the width of the model is 1 mm and the reaction force is 
scaled by the width b = 25.4 mm of the specimen. The propagation zone length varied 



between 5 mm and 15 mm, depending on the length of crack propagation that was 
needed. To ensure accurate trends in the crack propagation rates, the element edge 
length in the propagation zone of the model is 0.04 mm. A mesh convergence study 
indicated that an element size up to 0.1 mm is sufficient to predict crack length as a 
function of cycles, but the propagation rate becomes noisy. Three layers of SC8R 
continuum shell elements were used through the thickness of each arm, and three 
elements were used across the width. The material properties used in the analysis are 
provided in Table IV, and were generated within the scope of the NASA Advanced 
Composites Project (ACP) [14]. 
 

 
Figure 9. Finite element model of a 1-mm-wide strip of a DCB specimen. 

 

TABLE IV. MATERIAL PROPERTIES OF IM7/8552 [14]. 

E11 (avg T/C) 146,671. MPa 
E22=E33 8703. MPa 
G12=G13 5164. MPa 

G23 3001. MPa 
GIc 0.240 N-mm/mm2 
GIIc 0.739 N-mm/mm2 
σc 80.1 MPa 
τc 97.6 MPa 
η 2.1  

 
 
To simulate the experimental procedure, which was conducted under displacement 

control, the model was loaded with a constant applied displacement, δ, and the 
reaction force, F, was recorded as a function of the number of cycles. 

Predicting Paris Law Propagation Rate 

The crack length, a, can be obtained by direct examination of the finite element 
model at repeated cycle increments, although such post-processing can be tedious. 



Alternatively, the crack length can be calculated from the compliance C=δ/F of the 
model using a closed form expression derived by the corrected beam theory. The ERR 
during the simulation varies as a function of the reaction force F and the crack length. 
Details on the procedure to extract the crack length and ERR from the compliance can 
be found in Dávila [15]. 

Analyses were performed with applied displacements δmax  = 1.48 mm, 1.7 mm, 
1.92 mm, and 2.25 mm. At the start of the analyses, these displacements correspond to 
G/GIc ratios of 0.3, 0.4, 0.5, and 0.69, respectively. As the cracks propagate, these 
ratios become smaller. The rates of propagation were obtained by calculating ∆a/∆N 
from the crack lengths obtained at a number of time increments. The analysis results 
and the corresponding experimental values are shown in Fig. 10. The arrows indicate 
the direction of progression, from the start towards the end of the simulations. The 
blue circular symbols shown on the predicted curves in Fig. 10 correspond to a 5% 
increase in specimen compliance compared to the compliance at the start of the 
simulation. This change occurs after 0.9 mm of delamination propagation. This point 
is sometimes referred to as the 5% onset [16]. 

The predicted propagation rates start high and then quickly reduce to a rate that 
falls onto the straight line of a Paris law. The initial transient response is the result of 
the formation of a process zone, which starts with the tearing damage caused by the 
first loading cycle, and then grows under the cyclic loading to a stable size. The band 
of red elements in Fig. 11a correspond to the process zone. The elements to the left of 
the process zone are completely damaged, and those to the right are intact. The crack 
extension as a function of the number of cycles is reported in Fig. 11b. The points 
correspond to lengths of propagation measured from the analysis results in Fig. 11a, 
and the curve was obtained using the compliance solution. Both methods provide 
similar results, but the compliance method is much easier to generate. 

 

 
Figure 10. Comparison of measured and predicted delamination growth rates in 

a DCB specimen for different values of the applied displacement. 



          
a) Detail of propagation of process zone.         b) Crack extension as a function of cycle count. 

Figure 11. Crack propagation in DCB specimen with applied displacement δmax = 1.92 mm. 

 
 
At steady-state propagation, the lpz is observed to be approximately 0.3 mm, and lpz 

remains constant during propagation despite the fact that the ERR and the 
corresponding crack propagation rate decrease with crack length. In fact, the length of 
the process zone appears to be independent of the applied cyclic load and nearly 
identical to the 0.35 mm that forms by quasi-static tearing. 

The results of the analyses for different R ratios (see Ref. [15]) indicate that there 
is a relationship between the stress ratio R and the following: the endurance limit (Eq. 
6), the exponent β of the damage model (Eq. 7), and the slope m of the Paris law. The 
relationship between β and m, which ties the S-N diagram to the Paris law, appears to 
be linear. 

The results also indicate that the coefficient C of the Paris law is a function of 
factors that do not affect m, including the strength σc and the critical energy release Gc. 
To illustrate the sensitivity of the predicted propagation rate on these two material 
properties, two analyses of the DCB specimen were performed in which σc and Gc 
were increased by 50% over their nominal values. In the first analysis, the strength 
was increased from 80 MPa to 120 MPa, while all other properties remained at their 
nominal values. In the second analysis, Gc was increased from 0.24 N-mm/mm2 to 
0.36 N-mm/mm2. The results of the analyses are compared to the nominal results in 
Fig. 12. Paris lines were fit through the predicted propagation rates, and the 
coefficients C of the lines were used to calculate the relative propagation rates. The 
predicted crack propagation rate for a 50% increase in strength is 2.6 times slower 
than predicted with the nominal strength value, and the predicted rate for a 50% 
increase in Gc is 94 times slower than predicted with the nominal Gc value. 



 
Figure 12. Predicted fatigue crack propagation rate for DCB specimen with nominal properties 

compared to predicted fatigue crack propagation rate with either strength or critical 
ERR increased by 50%. 

SUMMARY AND DISCUSSION 

The relationships between the material properties that describe tearing (Gc, σc), 
those that describe fatigue life (S-N), and those that describe crack propagation rates 
(Paris law) are explored using a new cohesive fatigue damage model. The model relies 
on the former two characterizations (tearing and life) to predict the latter two (onset 
and Paris law). The proposed fatigue model assumes that a single variable is sufficient 
to represent the historical effects of load cycles on damage at a material point, 
regardless of whether the damage was caused by tearing or by fatigue. With this 
assumption, the quasi-static cohesive law becomes the envelope of the fatigue law. 
Fatigue damage inside the envelope accumulates at a rate that depends on the 
displacement jumps. The damage model relies on the simplicity of typical S-N 
diagrams and the fact that the endurance limit can often be estimated from the quasi-
static strength without performing any fatigue tests. The two parameters required by 
the model, β and γ, are extracted from the quasi-static properties and the S-N 
idealizations.  

The fatigue cohesive model proposed is capable of predicting interfacial failure in 
unnotched problems where life and S-N diagrams dominates the physics of the 
problem, as well as the crack propagation rate, where the Paris law is typically used. 
The fatigue model was implemented as a user-written subroutine UMAT for Abaqus 
using Turon’s cohesive law. The predictive capability of the fatigue model was 
evaluated by comparing predicted crack propagation rates in DCB specimens 
composed of IM7/8552 graphite/epoxy material with experimental data. 
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