

Developing high-throughput organ-on-a-chip models to investigate the effects of ionizing radiation on the central nervous system

Sherina Malkani

Blue Marble Space Institute of Science

Space Biosciences Research Branch, NASA Ames Research Center

lonizing radiation effects on the central nervous system (CNS)

Ionizing Radiation *Galactic Cosmic Rays Solar Particle Events*

Role of the blood-brain barrier (BBB) in CNS

Blood

Glioblastoma, De Vleeschouwer S, editor. Brisbane (AU): Codon Publications; 2017 Sep 27.

OrganoPlate system

2-lane plate setup Endothelial cells only

....

The street

3-lane plate setup *Endothelial cells*

Astrocytes

Goal

DAPI nuclear stain of endothelial cells on a chip in a 2-lane plate

Execution

Using OrganoPlates to measure human CNS responses to ionizing radiation

- BBB permeability and morphology and astrocyte activation after X-ray irradiation
- Immediate and delayed responses
- Oxidative stress and cytokine production

Non-leaky barrier

Leaky barrier

Relative fluorescence of dye in extracellular matrix channel / lumen channel

1Gy X-ray irradiation increases BBB permeability

1Gy X-ray irradiation increases BBB permeability

Area under curve, 40kDa dextran

Area under curve, 155kDa dextran

PBMEC, 0Gy

PBMEC, 1Gy

72h

1 wk

Astrocyte and endothelial cell co-cultures on OrganoPlate

Astrocytes change endothelial cell responses to 1 Gy X-ray irradiation

Future Directions

Immediate

More complex models (neurons, pericytes) Explore NFκB as a potential signaling pathway Longer term cultures

In the coming year Exposure to high-LET radiation via simulated GCRs Compare high and low dose rate ionizing radiation responses Transcriptomic analysis

Long-term Adapting this platform for spaceflight!

Radiation Biophysics Lab at NASA Ames Research Center

Sylvain Costes

Egle Cekanaviciute

Eloise Pariset

Vanesa Gomez Gonzalez

Alejandra Lopez-Macha

Brookhaven National Laboratory

Adam Rusek Peter Guida NSRL Support Staff

Funding

NASA HRP NASA Ames ARIA

Supplementary Slides

Hazardous Components of Space Radiation

Hassler et al., Science, 2014

