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Space Radiation Risks

Neurobehavioral

One of the 5 Hazards of Human Spaceflight (NASA’s Human Research Program) Formation

HAZARD ONE
Space Radiation
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Health Risks from Space Radiation:
Increased risks of cancer
Acute and late central nervous system effects
Degenerative tissue effects

Acute radiation risks

cancer and
genetic germline
mutations

Changes to bone,
muscle and cartilage
microarchitecture

Chancellor et al., Life, 2014
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Predicting Individual Radiation Sensitivity
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Investigation in a cohort of 780 human donors

Irradiation at Brookhaven National Laboratory
Gamma, %2Si (350 MeV/n), 4°Ar (350 MeV/n), >6Fe (600 MeV/n)
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Baseline Quantification of DNA Damage
53BP1+ immunostaining
High-throughput imaging
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Quantification of Quantification of
DNA Damage Cell Death and
Oxidative Stress
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Whole Genome Sequencing 780 healthy subjects

NovaSeq 6000, GenelLab /

Oklahoma Blood Institute
European Descent, 18-75 years old, 50/50 males/females



Irradiation at Brookhaven National Laboratory
Gamma, %2Si (350 MeV/n), 4°Ar (350 MeV/n), >6Fe (600 MeV/n)

Xadiated 6 sets out of 8 (75%)
I 4h & 24h post-
irradiation
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Quantification of Quantification of
DNA Damage Cell Death and

Oxidative Stress
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sets at time point 4h

Baseline Quantification of DNA Damage
53BP1+ immunostaining
High-throughput imaging

Quantified for 557
individuals out of 780 (70%)
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Oklahoma Blood Institute
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W Influence of Demographic Variables on the Baseline Level of
ﬁ DNA Damage

p = 0.05825, F-statistic
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LU Radiation Response: DNA Damage

At 4h post-irradiation At 24h post-irradiation
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Radiation Response for Extreme Baselines

Baseline Level
Low

High

Selection of the 10 “highest baselines” and the 10 “lowest baselines”,
based on the average number of foci per individual, without irradiation
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» Individuals with low number of foci at baseline seem to be more responsive to radiation



ldentifying Extreme Responders

Selection of the 10 “highest responders” and the 10 “lowest responders”, based on the level of DNA damage at Fluence 1
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Fluence/Dose Level
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Perspectives: Systems Biology Analysis

Multiple Potential Predictors:
Genotype
Secreted Factors
Immune Phenotype

Systems

Biology
Approach

Multiple Outputs of
Radiation Sensitivity:
DNA damage
Cell death
Oxidative Stress

» Node size encoding for the “response score”
» Length of connecting edges encoding for the distance between subject signatures

IMarchetti et al., Hindawi, Exploring the Limitations of
Peripheral Blood Transcriptional Biomarkers in Predicting
Influenza Vaccine Responsiveness, 2017

The Microsoft Research-University of Trento Center for
Computational and Systems Biology (COSBI)

Identification of relevant genes of radiation sensitivity for: A
e Discovery of relevant pathways for radiation countermeasures and biomarkers

e Personalized radioprotective approaches for astronauts

* |Improved treatment planning in radiotherapy

J
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Normalized Average Number of Foci per Nucleus

Radiation Response: DNA Damage for Gamma

At 4h post-irradiation At 24h post-irradiation
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Radiation Response for Extreme Baselines
(gamma)
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Dose, LET and Strain Dependence of Radiation-Induced 53BP1 Foci in 15 Mouse Strains Ex Vivo
Introducing Novel DNA Damage Metrics.

Penninckx $'?, Cekanaviciute E>#, Degorre C®, GuietE', Viger L' Lucas 82, Costes W14
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Abstract

We present a comprehensive comparative analysis on the repair of radiation-induced DNA damage ex vive in 15 strains of mice, including 5
inbred reference strains and 10 collaborative-cross sfrains, of both sexes, totaling 5 million skin fibroblast cells imaged by three-dimensional
highthroughput conventional microscopy. Non-immaortalized primary skin fibroblasts derived from 76 mice were subjected to increasing doses
of both low- and high-LET radiation (X rays: 350 MeV/n 40Ar; 600 MeV/n 56Fe), which are relevant to carcinogenesis and human space
exploration. Automated image quantification of 53BP1 radiation-induced foci (RIF) formation and repair during the first 4-48 h postirradiation
was performed as a function of dose and LET. Since multiple DNA double-strand breaks (DSBs) are induced in a dose- and LET-dependent
manner, our data suggest that when DSBs are formed within the same discrete nuclear region, referred to as the "repair domain”, novel
mathematical formalisms used to report RIF allowed us to conclude that multiple DSBs can be present in single RIF. Specifically, we
observed that the number of RIF per Gy was lower for higher X-ray doses or higher LET particles (i.e., 600 MeV/n E"E‘Fe}, suggesting there
are more DSBs per RIF when the local absorbed dose increases in the nucleus. The data also clearly show that with more DSBs per RIF, it
becomes more difficult for cells to fully resolve RIF. All 15 strains showed the same dose and LET dependence, but strain differences were
preserved under various experimental conditions, indicating that the number and sizes of repair domains are modulated by the genetic
background of each strain.
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