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What are miRNAs and why study miRNAs

A) Classical View of Molecular Biology C) New Understanding of Molecular Biology

DNA B) miRNA Publications over Time DNA
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Space Environment
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Space Health Risks On Astronauts

FEMALE ASTRONAUT

Female astronauts,

(to date) do not exhibit
clinically significant visual
impairment
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Female astronauts are
more susceptible to
orthostatic intolerance
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Urinary tract
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more common in
female astronauts
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Women suffer less from hearing
loss with advancing age, and do
not display a bias towards loss

of hearing In the left ear
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Women demonstrate
a slight bias towards
accuracy versus
speed in response to
an alertness test
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Women mount
more potent
immune
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Large individual
variability to muscle
and bone loss in
women
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@ Health effect observed on Earth

Struvite kidney stones
more common in women

MALE ASTRONAUT
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Men suffer more from hearing
loss with advancing age, and
display a bias towards loss of
hearing in the left ear
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Men demonstrate a
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speed versus accuracy
in response to an
alertness test

Men mount less
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Calcium oxalate kidney
stones more common
in men

%& Health effect observed in space

Some male astronauts
exhibit clinically significant
visual impairment
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Male astronauts
less susceptible to
orthostatic intolerance

Urinary tract
infections less
common in male
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Large individual
variability to muscle
and bone loss in men
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Neurobehavioral decrements
(anxiety, fatigue, performance)

Cataract formation

Damage to quiescent
neural stem cells in the
hippocampus
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. Degenerative damage to
cancer risk g 9

the circulatory system

Prodromal effects
such as nausea
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Gonads susceptible
to cancer and genetic

Skin burns germline mutations

Changes to bone,
muscle and cartilage
microarchitecture

Select health effects due to space radiation

exposures.
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Systems Biology View of miIRNAs
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A microRNA signature and TGF-$1 response
were identified as the key master regulators
for spaceflight response
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Translating fundamental biological discoveries from NASA Space Biology program into
health risk from space flights has been an ongoing challenge. We propose to use NASA
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Determining miRNA signature associated with diseases:

Lymphoma
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potential circulating factors impacting space biology. This study exemplifies the utility of the
GeneLab data repository to aid in the process of performing novel hypothesis-based
research.
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We analyzed miRNA and mRNA expression profiles in human peripheral blood lymphocytes (PBLs) incubated in microgravity
condition, simulated by a ground-based rotating wall vessel (RWV) bioreactor. Our results show that 42 miRNAs were differentially
expressed in MMG-incubated PBLs compared with 1g incubated ones. Among these, miR-9-5p, miR-9-3p, miR-155-5p, miR-150
3p, and miR-378-3p were the most dysregulated. To improve the detection of functional miRNA-mRNA pairs, we performed
gene expression profiles on the same samples assayed for miRNA profiling and we integrated miRNA and mRNA expression
data. The functional classification of miRNA-correlated genes evidenced significant enrichment in the biological processes of
immune/inflammatory response, signal transduction, regulation of response to stress, regulation of programmed cell death, 2
regulation of cell proliferation. We identified the correlation of miR-9-3p, miR-155-5p, miR-150-3p, and miR-378-3p expression
with that of genes involved in immune/inflammatory response (e.g., IFNG and ILI7F), apoptosis (e.g, PDCD4 and PTEN), and
cell proliferation (e.g., NKX3-1 and GADD45A). Experimental assays of cell viability and apoptosis induction validated the results
obtained by bioinformatics analyses demonstrating that in human PBLs the exposure to reduced gravitational force increases the

frequency of apoptosis and decreases cell proliferation,
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Technique to Quantify miRNAs
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Presence of miRNA signature in Serum of Mice in Simulated
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11 days After IR

1 day After IR

p = 0.066

p=0.063

*
*ip = 0.063
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1 Day Post IR

11 Days Post IR
NL+2Gy Iron
NL+1Gy Iron
NL+1Gy Proton
HU+1Gy Mix

|
I NL+1Gy Mix
|

HU
* p-value > 0.05
** p-value > 0.01
*** p-value > 0.001

*kk
*k

L e e e e e B S e e

-3

0 1

T T T

3

T

1 [ T T T T T 7T T T T T

— T T T

4 -2 -1 0 1 2 3 4 5

Fold-Change (Log,) vs Sham+NL, 1 Day postIR  Fold-Change (Log,) vs Sham+NL, 11 days post IR

Confirmation exists in the miRNAs from the NASA
Twin Study!!!
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B) Diseases Regulated by the miRNA Signature
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Cell cycle
GF-beta signaling pathway
iral carcinogenesis
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acterial invasion of epithelial cells
hyroid hormone signaling pathway
'athways in cancer
olorectal cancer
atty acid biosynthesis
Fatty acid metabolism
P53 signaling pathway
ECM-receptor interaction
M Prion diseases
Pancreatic cancer
Prostate cancer
Bladder cancer
Glioma
Signaling pathways regulating pluripotency of stem cells
. Oocyte meiosis
FoxQ signaling pathway
Transcriptional misregulation in cancer
Other types of O-glycan biosynthesis
Arrhythmogenic right ventricular cardiomyopathy (ARVC)
Small cell lung cancer
Protein processing in endoplasmic reticulum
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ErbB signaling pathway
Prolactin signaling pathway
RNA transport
Wnt signaling pathway
PI3K-Akt signaling pathway
Neurotrophin signaling pathway
mTOR signaling pathway
Renal cell carcinoma
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Non-small cell lung cancer
s HTLV-I infection
‘[ Endocytosis
MAPK signaling pathway
I Regulation of actin cytoskeleton
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EXPAND HUMAN KNOWLEDGE THROUGH NEW
SCIENTIFIC DISCOVERIES.

\ EXTEND HUMAN PRESENCE DEEPER INTO SPACE
AND TO THE MOON FOR SUSTAINABLE LONG-
' TERM EXPLORATION AND UTILIZATION.

HUMAN EXPLORATION

NASA’s Path to Mars

W ADDRESS NATIONAL CHALLENGES AND
CATALYZE ECONOMIC GROWTH.
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MISSION: 6 TO 12 MONTHS MISSION: 1 TO 12 MONTHS MISSION: 2 TO 3 YEARS
RETURN TO EARTH: HOURS RETURN TO EARTH: DAYS . RETURN TO EARTH: MONTHS

OPTIMIZE CAPABILITIES AND OPERATIONS.

o

NASA 2018 Strategic Plan Framework

Strategic Goal Strategic Objective

&
1.1: Understand the Sun, Earth, Solar System, and Universe
2 Ay // EXPAND HUMAN KNOWLEDGE
& by el y DISCOVER THROUGH NEW SCIENTIFIC
Q. G V A ° ¢ DISCOVERIES. 1.2: Understand Responses of Physical and Biological Systems to
\ A S ’ Spaceflight
s 9 (f”;i' SN
NG "ﬁ\ - > (/ EXTEND HUMAN PRESENCE 2.1: Lay the Foundation for America to Maintain a Constant Human
Y DEEPER INTO SPACE AND TO Presence in Low Earth Orbit Enabled by a Commercial Market
{ EXPLORE THE MOON FOR SUSTAINABLE
F LONG-TERM EXPLORATION AND 2.2 Conduct Exploration in Deep Space, Including to the Surface of the
UTILIZATION. Moon.

3.1: Develop and Transfer Revolutionary Technologies to Enable
Exploration Capabilities for NASA and the Nation

“

Mastering fundamentals
aboard the International
7’ Space Station

4 ¢ ADDRESS NATIONAL A
- y s DEVELOP CHALLENGES AND CATALYZE 3.2 Transform Aviation Through Revolutionary Technology Research

ECONOMIC GROWTH. Development, and Transfer

3.3: Inspire and Engage the Public in Aeronautics, Space, and Science

4.1: Engage in Partnership Strategies.

4.2: Enable Space Access and Services.

P EXpandlng Capabllltles by & ORTIM G CAEADILITIES AND, 4.3 Assure Safety and Mission Success.
U.S. companies visiting an asteroid redirected 7 4

provide access to to a lunar distant retrograde orbit Y2 -
low-Earth orbit -

4.4: Manage Human Capital
4.5; Ensure Enterprise Protection

4.8: Sustain Infrastructure Capabilities and Operations

The next step: traveling beyond low-Earth 'ﬁ(@ Developing planetary independence
orbit with the Space Launch System v ) by exploring Mars, its moons and
WWW.Nasa.gov rocket and Orion spacecraft other deep space destinations
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