

EXPLOREFLIGHT

Sin

WE'RE WITH YOU WHEN YOU FLY

Air Mobility Data & Reasoning Fabric

TACP/CAS D&R Fabric Team

MOBILITY CHALLENGE

• Throughout the world, especially in dense urban environments, the quality of life is being negatively impacted by ever growing commute time.

- Travel, beyond commuting, is increasingly driven by door-to-door challenges not just gate-to-gate considerations.
- Air Mobility may be an approach to address these challenges, as it can effectively convert our 2D mobility system to a 3D mobility system, vastly increasing mobility options.

AIR MOBILITY VISION and CHALLENGES

CHALLENGES

- Require far more decisions, at times in very short amounts of time, and in safety critical situations.
- Many decisions will need to be made or augmented by machine intelligence.
- Decisions must be made based on accurate, reliable, and current data must be available to humans, machines, or a combination.
- Data will arise from Smart Vehicles operating in Smart Airspace systems, engaged with an instrumented Smart City.

<u>VISION:</u> A far greater density of heterogeneous vehicles (UAV, eVTOL, to electrified and autonomous urban, short-haul, and long-haul subsonic and supersonic aircraft) operating safely in all eco-systems, rural to dense urban environments, accommodating routine and contingency situations.

Air Mobility Data & Reasoning Fabric

SMART AIRSPACE

Data & Reasoning Fabric needs to be an open architecture and a set of data and reasoning services with the following attributes:

Data (Available in-time from disparate sources) – Availability, Quality, Integrity, Correctness, and Authenticity will be driven by standardized requirements.

Fabric (Consistent capabilities available as connected nodes across cyber physical entities) – Brings together a choice of nodes across multiple cloud and edge resources that seamlessly work together to tie in data and the reasoning elements for real-time and non-real-time decision-making by *all* users (humans and machines) of the airspace.

Reasoning (Available as services) – At the minimum includes various analytics, AI techniques, Machine learning algorithms, uncertainty quantification methodologies, and a set of Physics engines.

OPPORTUNITY: Retain current levels of safety even with increased air travel density, complexity, and user communities.

Air Mobility Planning, Operations, and Performance

APPLICATION ENGINES

REASONING FABRIC

SMART VEHICLES

SMART AIRSPACES

SMART CITIES

MICRO-WEATHER

Air Mobility Data & Reasoning Fabric

SMART AIRSPACE

Questions:

- 1. Does an Air Mobility Data & Reasoning Fabric address the data & reasoning challenges that must be resolved to achieve the "Jetson's" air mobility vision?
- 2. Can elements of the Fabric/Mesh/Big Data technology base being developed across the world be re-deployed as the technology base of an Air Mobility Data & Reasoning Fabric?
- 3. What role should NASA play?
 - a) Prototype application of Fabric technologies to air mobility challenge?
 - b) Identify missing standards/technologies and develop, then re-prototype?
 - c) Other?
- 4. How do we assess this opportunity, realistically, given the complexity of the technical challenge and the extreme pace of Fabric technology development?