# Workload considerations in Urban Air Mobility Tamsyn Edwards, Savita Verma, Jillian Keeler





Research motivation & aims

- Method
- Results
  - Reduced communication associated with lower workload
  - Current procedures associated with fewer controlled aircraft
  - Route modification associated with increased traffic, not necessarily reduced workload
- Conclusions & Implications
- Future research



- UAM receiving rapidly increasing attention across academic, research and industry domains
  - E.g. NASA 'Grand Challenge'
- Offers potential for significant benefits, but also fundamental change
- Human operator involvement remains undefined
  - Dependent on near, medium and far term operations
  - Dependent on airspace location
- UAM operations will interact heavily with traditional airspace and as such, interactions with ATCOs will occur in the near to mid-term future operations
- Investigation of the impact of UAM traffic on ATCOs' workload and performance needed to identify and mitigate potential risks to human performance and human operator roles



#### **Research overview**





- Investigate the effect of:
  - Task demand
  - Route modification
  - Verbal clearance procedures

on workload and efficiency-related performance

- Potential Outcomes:
  - Better understanding of human operator roles
  - Contribution to the development of a humanmachine interaction paradigm for UAM
  - Inform strategies to support human performance in association with UAM traffic
    - UAM traffic management
    - Interaction with air traffic controllers (ATCOs)





### **Method: Simulation**













### Method: Design(1)



- 3 within-measure variables
  - Task demand
  - Communications procedures
  - Routes
- Three task demand scenarios:

| Scenario                       | Temporal<br>spacing<br>(seconds) | Distance<br>spacing<br>(miles) | Vehicle<br>Count |
|--------------------------------|----------------------------------|--------------------------------|------------------|
| Scenario 1: Low UAM density    | 90                               | 3.75                           | 115              |
| Scenario 2: Medium UAM density | 60                               | 2.5                            | 167              |
| Scenario 3: High UAM density   | 45                               | 1.88                           | 225              |

Pilot studies confirmed task demand variation associated with workload variation







- Two sets of communication procedure
  - Current day communications

"UAM942, Love Tower, cleared to enter class bravo. Squawk 4043 [additional instructions]"

- Simulated letter of agreement - reduced verbal communications "UAM173, Love Tower, cleared via [route name]"

### • Two sets of routes

- Current day helicopter routes
- Modified routes, optimized for UAM vehicles
  - Avoided approach and departure paths for commercial or VFR aircraft
  - Avoided common temporary flight restrictions
  - Avoided heavily populated areas
  - Shorter, more direct
  - Introduced two-way routes





### • Experimental conditions overview

Did not use full-factorial design

| Level of<br>UAM<br>traffic | Helicopter Routes                                                  |                                                                       |                                                             |  |
|----------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------|--|
|                            | Current Routes<br>Communications w/o<br>LOA and ATIS<br>(Baseline) | Current Routes<br><i>Communications</i><br><i>with LOA &amp; ATIS</i> | Modified Routes<br><i>Communications</i><br>with LOA & ATIS |  |
|                            |                                                                    |                                                                       |                                                             |  |
| Low                        | Scenario C1                                                        | Scenario CL1                                                          | Scenario M1                                                 |  |
| Medium                     | Scenario C2                                                        | Scenario CL2                                                          | Scenario M2                                                 |  |
| High                       | Scenario C3                                                        | Scenario CL3                                                          | Scenario M3                                                 |  |

### • Measures

- Workload
- Efficiency-related performance
- Participants
  - 6 retired controllers
  - Experience with Dallas metroplex control



# Result 1: Reduced communication is associated with lower workload

San José State





# Result 2: Current day routes & procedures are associated with fewer controlled aircraft

San José State





# Result 2: Route modifications are associated with increased traffic, not necessarily reduced workload













- Findings are provisional (n=6)
- Reduction of verbal communications associated with reduced workload
- Modification of routes associated with increased throughput
- But may still not be sufficient...
- UAM operations significantly restricted if controlled according to current day regulations









- Critical focus moves to development of scalable UAM operation that maintains safety
  - In ATC, ATCOs maintain safe operations
- Balance of human operator and automation in UAM traffic management
  - Dynamic response, prevention and mitigation
- Role and responsibilities of human operator
- System resilience, tolerances and graceful degradation

## Thank youtamsyn.e.edwards@nasa.gov

10: IB 21





#### Result 4: Positioning of UAM routes has implications for workload







